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Abstract: Silicon (Si) is recognized as a promising candidate for next-generation lithium-ion batter-
ies (LIBs) owing to its high theoretical specific capacity (~4200 mAh g−1), low working potential
(<0.4 V vs. Li/Li+), and abundant reserves. However, several challenges, such as severe volumetric
changes (>300%) during lithiation/delithiation, unstable solid–electrolyte interphase (SEI) formation,
and inherently low electrical and ionic conductivity, impede its practical application. To mitigate
these challenges, direct contact between the surface of the Si particle and the electrolyte must be
prevented. In this review, we elucidated the surface coating strategies to enhance the electro–chemical
performance of Si-based materials. We identified the impact of various coating methods and ma-
terials on the performance of Si electrodes. Furthermore, the integration of coating strategies with
nanostructure design can effectively buffer Si electrode volume expansion and prevent direct contact
with the electrolyte, thereby synergistically enhancing electrochemical performance. We highlight
opportunities and perspectives for future research on Si-negative electrodes in LIBs, drawing on
insights from previous studies.
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1. Introduction

Lithium-ion batteries (LIBs) have become the dominant battery technology owing
to their high energy density, low self-discharge rate, and lack of memory effects. The
escalating demand for high-capacity energy storage systems emphasizes the necessity
to innovate batteries with enhanced energy densities. Consequently, materials for nega-
tive electrodes that can achieve high energy densities have attracted significant attention.
Intercalation-based materials, such as graphite, have constrained energy density and are
becoming insufficient to satisfy the expanding requirements of diverse applications. Con-
sequently, a transition from intercalation to alloy-type electrode materials is underway.
Among alloy-based materials, silicon (Si) is regarded as one of the most promising ma-
terials for application in next-generation LIBs. Si offers a theoretical specific capacity
(4200 mAh g−1, Li22Si5) approximately 10-fold higher than that of graphite (372 mAh g−1).
Moreover, its low working potential (<0.4 V vs. Li/Li+) enhances energy density [1,2].
The abundant reserves of Si also augment its competitiveness in pricing. However, sev-
eral challenges hinder its practical application. Si undergoes considerable volumetric
expansion and contraction (>300%) during lithiation/delithiation, which results in particle
cracking and pulverization [3–5]. This phenomenon induces the formation of an unstable
solid–electrolyte interphase (SEI) layer, contributing to a thick SEI and loss of electrical
connectivity between the active material and the current collector. Additionally, the inher-
ently low electrical (~1 × 10−5 S cm−1) and ionic (~1 × 10−14 S cm2 s−1) conductivity of Si
contributes to various issues, such as low initial Coulombic efficiency (ICE) and reduced
cycle life in electrochemical performance [6–9].

Extensive research efforts have been dedicated to various strategies to mitigate these chal-
lenges. Key research areas include SEI layer modification using electrolyte additives [10–12],
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novel binders [13–15], Si nanostructures [16–22], and surface/interface engineering [23–29].
Electrolyte additives aid in forming a thin, stable SEI layer by introducing various substances
into the electrolyte, ensuring the integrity of the SEI layer over extended cycling periods and
reducing continuous electrolyte decomposition. Binders are crucial in enhancing ICE and
cycling stability, with various functional binders significantly improving the electrochemical
performance of Si electrodes. The nanostructuring of Si presents a promising strategy by
mitigating crack formation in active materials and providing the necessary space to accommo-
date the substantial volume changes that occur during charge/discharge cycles. However,
the enlarged surface area of nanostructured Si may increase surface-side reactions, reducing
ICE [22]. Preventing the direct exposure of Si particle surfaces to the electrolyte is essential
for addressing these issues fundamentally. Surface/interface engineering involves modify-
ing and stabilizing the electrode–electrolyte interface. Surface coating, a prominent strategy
in this domain, involves applying a stable layer on the electrode surface to prevent con-
tinuous electrolyte decomposition, thus enhancing ICE and cycle life. The choice of both
coating methods and materials significantly impacts the electrochemical performance, mark-
ing this as a critical area of research. Combining Si nanostructure design with surface-coating
strategies [27,28,30–40] significantly enhances the electrochemical performance of Si-negative
electrodes by providing a dual advantage: (i) Nanostructures accommodate the substantial
volume expansion of Si during lithiation/delithiation, thereby preventing the cracking and
degradation of the active material. (ii) The coating layer serves as a protective barrier, prevent-
ing direct exposure of Si to the electrolyte and reducing continuous electrolyte decomposition
and the formation of an unstable SEI. This combined approach stabilizes the Si structure as
well as enhances ICE and cycle life, resulting in more reliable and high-performance LiBs.
Consequently, this approach has garnered significant interest.

In this review, the surface mechanisms of Si electrodes are discussed in detail, followed
by the inherent challenges faced by these electrodes. We summarize surface-coating
strategies for improving the electrochemical performance of Si materials, concentrating
on coating methods and the impacts of various coating materials on the performance of
Si-negative electrodes. We highlight the opportunities and perspectives for future research
on Si-negative electrodes in LIBs, building upon prior studies.

2. Si-Negative Electrode
2.1. Reaction Mechanism of Si-Negative Electrode

Si is a negative electrode material that forms an alloy via an alloying reaction with
lithium (Li) ions. During the lithiation process, Si metal accepts electrons and Li ions,
becomes electrically neutral, and facilitates alloying. Conversely, during delithiation, Li
ions are extracted from the alloy, reverting the material to its original Si metal state through
dealloying.

xLi+ + xe− + Si ↔ LixSi (1)

Alloy-forming negative electrode materials can achieve significantly higher capacities
than intercalation electrode materials, as they are not limited by the host atomic structure
during reactions. In the Li–Si system, Li22Si5 is the Li-rich phase, containing substantially
more Li than the fully lithiated graphite phase, LiC6. Thus, Si can achieve a theoretical
maximum specific capacity of 4200 mAh g−1 during lithiation, whereas graphite reaches
only 372 mAh g−1. Primarily, crystalline Si has been developed as an active material,
undergoing electrochemical lithiation via a two-phase mechanism, likely owing to the high
activation energy required to decompose the crystalline Si matrix [41–44]. During this
process, Si reacts with Li, resulting in the formation of lithiated amorphous Si (LixSi). This
LixSi phase is highly lithiated, containing approximately 3.4 ± 0.2 Li atoms per Si atom [45].

The Li storage mechanism in crystalline Si varies with temperature (Figure 1). At
high temperatures, Si exhibits a step-shaped galvanostatic voltage profile during lithia-
tion/delithiation, arising from Si and Li ions, sequentially forming four stable crystalline
intermediate phases (intermediate equilibrium phases) [46]. These phases, with nominal
compositions of Li12Si7, Li7Si3, Li13Si4, and Li22Si5, exhibit voltage plateaus at 0.332, 0.288,
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0.157, and 0.044 V. Among these, the Li22Si5 phase demonstrates the highest theoretical
capacity for Si electrodes at high temperatures, reaching up to 4200 mAh g−1 [47]. In
contrast, at room temperature, Si displays a continuous upward- and downward-curved
galvanostatic voltage profile during lithiation/delithiation [41,48]. Initially, crystalline
Si undergoes a two-phase reaction, where a significant number of Li ions surround the
Si, transforming it into lithiated amorphous Si (LixSi) rather than forming equilibrium
phases. Subsequently, the reaction continues in an amorphous state. During this process,
the initial crystalline structure of Si is disrupted and fragmented, leading to the formation
of Si–Si single bonds and Si atoms. These fragments continuously integrate into amorphous
Li15Si4, resulting in a relatively flat voltage plateau at approximately 0.1 V [44,49]. The
lithiation process at room temperature involves electrochemical solid-state amorphization,
which forms metastable amorphous LixSi phases instead of equilibrium intermetallic com-
pounds [46]. Solid-state amorphization occurs because the formation of equilibrium phases
is kinetically hindered, resulting in the formation of an amorphous phase with a lower
Gibbs free energy than that of the reactants [41]. During the lithiation process, when the
potential decreases by approximately 50 mV, the highly lithiated amorphous LixSi imme-
diately converts to metastable crystalline Li15Si4. Therefore, at room temperature, each Si
atom can accommodate approximately 3.75 Li ions, resulting in a theoretical capacity of
3580 mAh g−1 [50]. The metastable Li15Si4 phase, not observed to be a line compound, un-
dergoes a reaction within this phase when the cell has an open-circuit potential, leading to
a self-discharge mechanism [45]. This can potentially cause a capacity loss in batteries with
Si-negative electrodes. Subsequently, the crystalline Li15Si4 phase returns to amorphous Si
during delithiation, accompanied by volume contraction [51]. At room temperature, the
discontinuous conduction pathways of Si, along with the residual Li15Si4 within the Si bulk
phase, increase the irreversible capacity, thereby reducing the ICE.

Batteries 2024, 10, x FOR PEER REVIEW 3 of 27 
 

LixSi phase is highly lithiated, containing approximately 3.4 ± 0.2 Li atoms per Si atom 
[45]. 

The Li storage mechanism in crystalline Si varies with temperature (Figure 1). At high 
temperatures, Si exhibits a step-shaped galvanostatic voltage profile during lithiation/del-
ithiation, arising from Si and Li ions, sequentially forming four stable crystalline interme-
diate phases (intermediate equilibrium phases) [46]. These phases, with nominal compo-
sitions of Li12Si7, Li7Si3, Li13Si4, and Li22Si5, exhibit voltage plateaus at 0.332, 0.288, 0.157, 
and 0.044 V. Among these, the Li22Si5 phase demonstrates the highest theoretical capacity 
for Si electrodes at high temperatures, reaching up to 4200 mAh g−1 [47]. In contrast, at 
room temperature, Si displays a continuous upward- and downward-curved galvanos-
tatic voltage profile during lithiation/delithiation [41,48]. Initially, crystalline Si undergoes 
a two-phase reaction, where a significant number of Li ions surround the Si, transforming 
it into lithiated amorphous Si (LixSi) rather than forming equilibrium phases. Subse-
quently, the reaction continues in an amorphous state. During this process, the initial crys-
talline structure of Si is disrupted and fragmented, leading to the formation of Si–Si single 
bonds and Si atoms. These fragments continuously integrate into amorphous Li15Si4, re-
sulting in a relatively flat voltage plateau at approximately 0.1 V [44,49]. The lithiation 
process at room temperature involves electrochemical solid-state amorphization, which 
forms metastable amorphous LixSi phases instead of equilibrium intermetallic com-
pounds [46]. Solid-state amorphization occurs because the formation of equilibrium 
phases is kinetically hindered, resulting in the formation of an amorphous phase with a 
lower Gibbs free energy than that of the reactants [41]. During the lithiation process, when 
the potential decreases by approximately 50 mV, the highly lithiated amorphous LixSi im-
mediately converts to metastable crystalline Li15Si4. Therefore, at room temperature, each 
Si atom can accommodate approximately 3.75 Li ions, resulting in a theoretical capacity 
of 3580 mAh g−1 [50]. The metastable Li15Si4 phase, not observed to be a line compound, 
undergoes a reaction within this phase when the cell has an open-circuit potential, leading 
to a self-discharge mechanism [45]. This can potentially cause a capacity loss in batteries 
with Si-negative electrodes. Subsequently, the crystalline Li15Si4 phase returns to amor-
phous Si during delithiation, accompanied by volume contraction [51]. At room tempera-
ture, the discontinuous conduction pathways of Si, along with the residual Li15Si4 within 
the Si bulk phase, increase the irreversible capacity, thereby reducing the ICE. 

 
Figure 1. Electrochemical lithiation/delithiation curve of Si at high temperature (dotted line) and
room temperature (solid line) [1]. Reprinted with permission from Ref. [1]. Copyright © 2013
WILEY-VCH.

2.2. SEI Formation of Si-Negative Electrode

During the initial lithiation of the negative electrode, as Li ions are incorporated into
the active material, the potential of the negative electrode decreases below 1 V (vs. Li/Li+)
toward the reference electrode (Li metal), approaching 0 V in the later stages of the process.
In Figure 2a, the stability window of the electrolyte (Eg) is represented by the energy gap
between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular
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orbital (HOMO) [52]. If the electrochemical potential (µA) of the negative electrode exceeds
the LUMO, the electrolyte is reduced until a passivation layer forms that prevents electron
transfer to the LUMO. Typically, the organic electrolytes used in LIBs exhibit oxidation and
reduction potentials around 4.7 V and 1.0 V vs. Li/Li+, respectively [53]. The working
potential of Si electrodes, approximately 0.37 V vs. Li/Li+, falls below the stability window
of the electrolyte [54]. This decrease in voltage prompts the organic electrolyte to undergo
reductive decomposition on the surface of the negative electrode, owing to the reduction
potential of the electrolyte exceeding that of Li. The interaction of the organic electrolyte with
the active material results in the formation of an SEI layer on the negative electrode surface [52].
The composition and structure of the SEI layer on Si electrodes evolve into a more complex
form with repeated cycling owing to inherent structural instability. In EC-based electrolytes,
the initial SEI on Si electrodes predominantly comprises lithium ethylene dicarbonate (LEDC)
and lithium fluoride (LiF), which are reduction products of the electrolyte [55]. During the
lithiation/delithiation process, the extensive volume changes cause fractures in Si particles,
increasing their surface area. This results in LEDC, the initial SEI component, evolving into a
more complex SEI, which produces lithium carbonate (Li2CO3), lithium oxide (Li2O), CO2, and
other by-products (Figure 2b). On the Si surface, predominantly oxidized to SiO2, reactions
with Li yield by-products such as lithium silicate (LixSiOy) and Li2O [56]. Consequently,
a substantial amount of lithium silicate accumulates on the Si surface, with the SEI layer
progressively being composed of LEDC, Li2CO3, and LiF towards the outer regions [52,57–60].
To overcome the challenges with Si electrodes, which will be outlined in the following sections,
a comprehensive understanding of surface reactions must be established in advance.
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Figure 2. (a) Schematic open-circuit energy diagram of an electrolyte. ΦA and ΦC are the work
functions, and µA and µC are the electrochemical potential of the negative and positive electrodes,
respectively. Eg is the electrochemical stability window of the electrolyte. A µA > LUMO and/or
a µC < HOMO requires kinetic stability via the formation of an SEI layer [61]. Reprinted with
permission from Ref. [61]. Copyright © 2009 American Chemical Society. (b) Schematic diagram
for the initial generation and evolution of the SEI layers on Si electrodes derived by EC-based
electrolytes [60]. Reprinted with permission from Ref. [60]. Copyright © 2021 IOP Publishing Ltd.

2.3. Challenges of Si-Negative Electrode

Si particles exhibit intrinsic properties that lead to unfavorable phenomena in Si-
negative electrodes (Figure 3). This section provides a detailed discussion of the various
challenges associated with Si, specifically addressing extreme volume change, unstable SEI,
and low electrical conductivity.
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2.3.1. Extreme Volume Change during (De)Lithiation

Commercially used graphite electrodes experience approximately 10–13% expansion
during Li intercalation [63]. However, one unavoidable challenge with alloy-type electrode
materials such as Si is the significant volume change during lithiation/delithiation, leading
to decreased cycle stability. When fully lithiated, Si accommodates approximately 4.4 Li
atoms per Si atom, resulting in a substantial volume expansion of approximately 420%
(assuming that the final alloy composition is Li22Si5). As depicted in Figure 3, the repetitive
large volume changes in the particles induce high internal stresses in the Si, leading to
the cracking and pulverization of the Si particles. The fragmentation of Si particles causes
the active material to lose electrical contact with the electrode components, including
conduction agents, binders, conductive networks, and current collectors, resulting in self-
isolation of the active material. Consequently, this loss of active material accelerates capacity
fading and can lead to reduced rate capability and voltage degradation [3]. Therefore,
ongoing research efforts focus on alleviating the volume expansion of Si particles during
cycling to enhance cycle stability.

2.3.2. Unstable Solid–Electrolyte Interphase (SEI)

Significant volume changes in Si electrodes induce particle pulverization leading to
repetitive growth and the formation of unstable SEI layers [4]. During cycling, the pul-
verization repeatedly exposes fresh Si surfaces to the electrolyte, causing the cracking,
delamination, and regrowth of the SEI layers (Figure 3). As the SEI layer continues to grow
excessively, it leads to ongoing decomposition and consumption of the electrolyte, resulting
in a significant depletion of Li ions. In EC-based electrolytes, SEI components such as
LEDC, Li2CO3, Li2O, and CO2, which predominantly dissolve in the electrolyte or exist
as gases, increase the porosity of the SEI layer. This enhanced porosity facilitates further
electrolyte reduction and forms a thicker SEI. A thick SEI layer impedes both electrical
conduction pathways and the diffusion of Li ions into the electrode, significantly hindering
electrochemical reactions and resulting in reduced Coulombic efficiency (CE) and reversible
capacity. Consequently, for optimal electrochemical performance, the SEI layer must effec-
tively prevent direct contact between the electrolyte and the active material to avoid further
electrolyte decomposition [5]. Especially for Si, the SEI requires robustness to withstand the
substantial volume expansion of Si particles during cycling, thereby adapting flexibly to
changes in particle morphology and ensuring stability through extended cycling periods.



Batteries 2024, 10, 327 6 of 25

2.3.3. Low Intrinsic Electrical Conductivity

Si, a semiconductor, exhibits low intrinsic electrical conductivity, approximately
1 × 10−3 S cm−1. Following lithiation, this conductivity may increase to approximately
1 × 102 S cm−1; however, such enhancement is inadequate for efficient electron and Li-ion
transport within the Si matrix, thus hindering overall battery performance [6]. Additionally,
Si demonstrates a low Li diffusion coefficient, ranging from 10−14 to 10−13 cm2 s−1, which
further restricts Li-ion mobility [7–9]. These intrinsic limitations, including low electrical
conductivity and sluggish Li diffusion, severely limit the utilization of its full capacity and
impact its rate capabilities and overall efficiencies [64–66]. Therefore, the development
of innovative strategies to augment the conductivity and mobility of Li ions is crucial for
improving battery performance.

3. Surface-Coating Strategies for Improvement of Si Performance

To address the challenges associated with Si electrodes, extensive research has been
conducted. Nanotechnologies, in particular, have proven to be an effective strategy for en-
hancing cycle life and rate capabilities [16–22]. Nanomaterials, compared to bulk materials,
exhibit markedly different behaviors due to their unique properties: (i) They can buffer
volume changes during lithiation/delithiation, enhancing cycle stability and maintaining
a high capacity. (ii) Their increased surface area shortens electron transport and Li-ion
diffusion distances, reducing polarization and improving rate capabilities [67]. However, Si
nanoparticles (SiNPs) still experience fragmentation during cycling, owing to the extreme
volume expansion of Si (>300%), even as particle expansion diminishes. This results in
unstable SEI growth and reduced cycle stability. The large surface areas cause uncontrolled
reactions and thermal runaway, raising serious safety concerns. Additionally, their intrinsic
low electrical and ionic conductivity lead to low ICE [68,69]. To address these limitations of
SiNPs, considerable research has focused on the development of Si nanocomposites with
core–shell, yolk–shell, porous, and hollow structures. Surface coating has proven to be
highly effective in preventing direct contact between Si and the electrolyte. These coatings
enhance electrochemical stability, modify the properties of Si, and facilitate the formation of
a thin, stable SEI film. They also facilitate rapid Li-ion transport and can be either robust or
flexible, thereby mitigating the mechanical stress experienced by SiNPs [70]. The introduc-
tion of coating layers into Si nanostructures is increasingly being recognized as a promising
strategy for enhancing both tap density and cycling stability [32–34,36–38,40,71,72].

3.1. Common Coating Methods

To enhance the efficiency of next-generation LIBs, research on various surface-coating
strategies has intensified. This section addresses the six most commonly employed coating
methods: high-energy ball milling, hydrothermal synthesis, chemical vapor deposition,
electrospinning, the sol–gel method, and spray drying. A schematic of these common
coating methods is provided in Figure 4. Each coating method exhibits distinct advantages
and limitations; thus, combining two or more methods is a common practice to optimize
outcomes. When applying surface-coating processes to SiNPs, considering the high perfor-
mance as well as cost, efficiency, and complexity of the processing methods is imperative.
The advantages and disadvantages of each surface-coating method are briefly described
in Table 1.
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Table 1. Comparison of the advantages and disadvantages of different coating methods [73]. Reused
with permission from Ref. [73]. Copyright © 2021 WILEY.

Coating Method Advantages Disadvantages

High-energy ball milling Low cost, easy operation, simple equipment, suitable
for industrial production

Non-uniform coating layer that detaches easily,
contamination of products despite adequate
protection

Hydrothermal
Low cost, low process temperature, minimal
pollution, simple equipment, suitable for large-scale
preparation and industrial production

Extended processing time, low purity, non-uniform
coating layer thickness, partial oxidation of Si
particles, frequent necessity for subsequent
treatments

CVD High uniformity (quality), controllable coating
thickness, dense coating layer

High-temperature requirements, high costs, complex
processing steps, limitations on materials that can be
coated, variable yields, expensive equipment

Electrospinning Capable of preparing complex hierarchical and
free-standing structures, high uniformity

Limited geometrical freedom, non-scalable due to
low production rates, potential safety hazards due to
high voltage

Sol–gel High processing feasibility, excellent homogeneity,
cost-effectiveness

Significant shrinkage during processing, presence of
residual porosity or hydroxyl groups, long
processing times

Spray drying Low cost, ease of operation, suitable for large-scale
production in continuous mode

Restrictions on materials that can be coated, thick
coating layers, large equipment size, complex
equipment requirements, high power consumption,
low energy efficiency
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Restrictions on materials that can be coated, thick 
coating layers, large equipment size, complex 
equipment requirements, high power consump-
tion, low energy efficiency 

 

Figure 4. Scheme of fundamental setup and procedures of common coating methods. (a) HEBM [74].
Reprinted with permission from Ref. [74]. Copyright © 2022 MDPI. (b) Hydrothermal method. (c) CVD.
(d) Electrospinning [75]. Reprinted with permission from Ref. [75]. Copyright © 2021 Elsevier. (e) Sol–gel.
(f) Spray drying [76]. Reprinted with permission from Ref. [76]. Copyright © 2018 MDPI.
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3.1.1. High-Energy Ball Milling (HEBM)

HEBM represents an efficient method for nanoparticle production. The HEBM process
is depicted in Figure 4a [74]. This method operates on the principle of mechanical alloying,
where repeated fracturing and cold welding of powder particles occur. The rotation of
the milling chamber generates significant impact forces and friction between balls and
chamber walls, leading to the deformation and fracture of raw materials [77–79]. These
interactions lead to surface modifications that result in the synthesis of nanostructured
materials with enhanced chemical properties [80]. Owing to its simplicity, cost-effectiveness,
and scalability, HEBM has been predominantly utilized for the surface coating of Si-based
active materials [81]. Fan et al. [24] synthesized nano-sized Si/C core-shell structures by
combining HEBM with subsequent carbonization using polyperinaphthalene (PPN) as the
carbon precursor. The resulting samples exhibited an initial capacity of 1512.6 mAh g−1 and
maintained a capacity retention of 74.2% after 500 cycles. This improvement is attributed to
the modification of the Si surface by ball milling, which allows for the formation of covalent
bonds between the carbon shell and Si surface, thereby enhancing structural stability.
However, this method introduces impurities, presents challenges in particle size control
depending on milling duration, and poses limitations on feasible chemical combinations,
complicating its application in large-scale composite manufacturing [77].

3.1.2. Hydrothermal Method

Hydrothermal synthesis, a widely employed method for producing various metal
oxide nanostructured materials, primarily facilitates the synthesis of crystals and ceramic
powders. A fundamental setup for the hydrothermal method is schematically shown in
Figure 4b. This process involves chemical reactions within a mixed precursor solution un-
der conditions exceeding the boiling point of water. An autoclave reactor is typically used
to generate necessary high-temperature and high-pressure environments, utilizing water or
organic solvents as the reaction medium to fabricate nanomaterials. The resultant slurry is
cooled, filtered, washed, and dried to obtain the synthesized powder. For carbon coatings,
the carbon source must undergo additional heat treatment at elevated temperatures of
400–750 ◦C in a N2 or Ar atmosphere to achieve carbonization. Shao et al. [25] employed
glucose as a carbon source to synthesize nanostructured Si/porous carbon spherical com-
posites (N-SPC) using a hydrothermal process combined with a soft template method. The
porous structure facilitated SEI layer formation and enhanced the mobility of electrons
and Li ions. Consequently, the N-SPC composites exhibited high cycling stability with
an 85% capacity retention and 1607 mAh g−1 after 100 cycles. Additionally, they demon-
strated excellent rate capability, delivering 1050 mAh g−1 even at a high current density of
10 A g−1. The temperature of the water is a critical parameter, as it influences the reaction
rate, ionization degree, particle size, and crystalline structure of the powder. Furthermore,
the particle size, morphology, and chemical composition can be controlled by adjusting the
concentration of the reactants and the reaction duration [82]. During the process, heated
water facilitates particle diffusion, leading to relatively rapid crystal growth. This method is
simple, cost-effective, and particularly effective at preserving intrinsic material properties.
It is suitable for growing large, high-quality crystals with controlled composition. However,
it may yield non-uniform thickness of coating layers and partial oxidation of Si particles,
and it may present challenges in monitoring crystal growth.

3.1.3. Chemical Vapor Deposition (CVD)

CVD is a widely used technique to create thin films and coatings by depositing material
from a vapor phase onto a substrate, where gaseous precursors are decomposed through
chemical reactions. The CVD process is depicted in Figure 4c. This process involves trans-
porting gaseous reactants into a tube furnace, where they undergo chemical reactions and are
subsequently deposited onto the substrate surface. Wu et al. [26] synthesized double-walled
Si–SiOx nanotubes (DWSiNTs) by coating carbon fibers with Si via CVD, followed by anneal-
ing in an air atmosphere to selectively remove the inner carbon template. The SiOx layer of
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the continuous Si tube provided mechanical robustness, mitigating volume expansion as Si
expanded inward. Consequently, DWSiNTs maintained stable capacity over a long-term cycle
of up to 6000 cycles. Through this method, high-quality and high-purity films can be synthe-
sized, and the thickness of the coating layer can also be controlled. In producing Si-based
electrode materials, CVD is utilized to enhance the synergy between the coating material and
the surface of SiNPs. Additionally, the process is relatively convenient and easily controlled
due to its mechanized nature. However, CVD is associated with high costs, the necessity for
high-temperature conditions, and the complexity of processing steps. Additionally, other
gas-phase deposition methods, including atomic layer deposition (ALD) [83–85], physical va-
por deposition (PVD) [86–89], pulsed laser deposition (PLD) [87,90], and supercritical carbon
dioxide fluid method (SCCO2) [91], are also being investigated for coating Si.

3.1.4. Electrospinning

Electrospinning is an effective method for synthesizing nanofibers from polymer solu-
tions and composites. A fundamental setup for electrospinning to produce nanofibers is
schematically shown in Figure 4d [75]. This process uses kilovolt-level electrostatic voltages
on polymer solutions, creating a Taylor cone, where electric fields cause charged droplets
to overcome surface tension and create polymer nanofibers [92,93]. Among the various
parameters, adjusting the precursor solution composition is the most convenient method
for controlling the produced fibers. Its economic viability and simplicity make it suitable
for preparing complex hierarchical and free-standing structures. In the LiB industry, elec-
trospinning is employed to synthesize carbon nanofibers (CNFs) that are subsequently
coated onto SiNPs to enhance electrochemical performance. Zhang’s group [27] utilized
polyacrylonitrile (PAN) as both a spinning medium and carbon precursor to synthesize
Si/C composite nanofibers through electrospinning and subsequent carbonization. Elec-
trodes derived from 15 wt.% Si/PAN precursors carbonized at 800 ◦C demonstrated a high
capacity of 962 mAh g−1 and stable cycling performance with 67.3% capacity retention after
50 cycles. This enhanced performance is due to the high surface area of CNFs, excellent
electrical conductivity, and continuous carrier transport channels, which effectively buffer
the volume expansion of Si during lithiation and facilitate rapid carrier transport. Nonethe-
less, this method faces challenges such as low yield and potential safety risks associated
with high voltage.

3.1.5. Sol–Gel Method

The sol–gel method is a low-temperature wet synthesis method often developed for
the synthesizing metal oxides or inorganic materials such as ceramics or glasses. The
procedures in the sol–gel method are depicted in Figure 4e. The sol–gel method, originally
developed for synthesizing inorganic materials such as ceramics and glasses, is straightfor-
ward and scalable. The process involves creating a colloidal suspension (sol) and inducing
gelation to form a network structure (gel), which is then dried and heat-treated. Within the
LiB industry, this technique is applied extensively to produce SiO2 or carbon layers that coat
the surfaces of SiNPs. Specifically, SiO2 is a sacrificial layer strategically etched to create
voids within Si nanostructures. Liu et al. [94] synthesized a 3D N-doped carbon-coated
hierarchically porous Si (hp-Si@NC) composite using a sol–gel process accompanied by
phase separation, followed by a magnesiothermic reduction and a polydopamine pyrolysis.
The hp-Si@NC composite demonstrates outstanding electrochemical performance due to
its unique porosity and N-doped carbon layer. It exhibits initial discharge and charge
capacities of 1077 and 723 mAh g−1, respectively, at a current density of 0.2 A g−1. The
CE improves from 67.1% in the first cycle to 99% by the 100th cycle, indicating superior
rate performance. Nonetheless, this method faces challenges such as significant shrinkage
during processing, residual porosity (or hydroxyl groups), and prolonged processing times.
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3.1.6. Spray Drying

Spray drying, a primary technique for the mass synthesis of powdered materials,
involves dispersing a slurry or liquid into fine particles through mechanical action, subse-
quently drying into spherical powder particles using hot air. A fundamental setup for the
hydrothermal method is schematically shown in Figure 4f [76]. Key parameters include the
feed rate, atomization pressure, and drying temperature, which affect the particle size and
morphology. Pan et al. [29] employed a spray-drying method followed by a calcination
process to fabricate micro-sized Si@carbon@graphene spherical composites (Si@C@RGO).
This structure, where Si is encapsulated with carbon and graphene, significantly enhances
the electrical conductivity of the composite and accommodates the substantial volume
changes of Si during cycling. As a result, the Si@C@RGO electrodes exhibited excellent
electrochemical performance, achieving a capacity of 1599 mAh g−1 at 100 mA g−1, a
capacity retention of 94.9% at 200 mA g−1, and a high reversible capacity of 951 mAh g−1

at 2000 mA g−1. Spray drying is highly scalable and relatively high-yield, making it increas-
ingly popular for producing Si/C materials. Nevertheless, the limitations of this method
include constraints on suitable coating materials and the potential for producing overly
thick coating layers.

3.2. Coating Materials

Coating materials should ensure the effective prevention of direct exposure of Si
particle surfaces to the electrolyte. Consequently, these materials should inherently demon-
strate high mechanical stability to accommodate the volumetric expansion of Si during
cycling, while also exhibiting electrochemical inertness to inhibit undesirable side reactions
with Li-ions and the electrolyte. In addition, to compensate for the low electrical conduc-
tivity of Si, the coating material must also possess high electrical conductivity. Coating
materials for nanostructured Si encompass a diverse range of substances, including car-
bon [28,30,32–36,95], silicon oxides [38–40], metals [31,37,96,97], metal oxides [71,72,84],
and polymers [98–101]. In this review, we categorize the coating materials based on their
chemical composition and physical properties into four main groups: carbonaceous ma-
terials, Si oxides, metals, and metal oxides. The advantages and disadvantages of each
surface-coating material are briefly described in Table 2.

Table 2. Comparison of the advantages and disadvantages of different coating materials.

Coating Material Advantages Disadvantages

Carbonaceous Materials
High electrical conductivity, buffering
volume expansion due to its minimal
volume change

Lower mechanical strength
compared to other coating
materials, low Coulombic
efficiency

Si Oxides (SiOx)
Buffering of volume expansion due to
lower volumetric expansion compared
to pure Si (160%)

Low electrical conductivity,
complex high-temperature
oxidation processes

Metals

Copper (Cu)

Excellent electrical conductivity
compared to that of carbon, favorable
mechanical ductility, electrochemical
inertness leading to the mechanical
stabilization of SiNPs

High equipment costs, complex
preparation procedures

Silver (Ag)

Superior electrical conductivity than
that of Cu, reduction in interparticle
resistance, promoting Li-ion diffusion
and decreasing Li-ion consumption

Expensive materials, time
consuming, demanding
experimental conditions



Batteries 2024, 10, 327 11 of 25

Table 2. Cont.

Coating Material Advantages Disadvantages

Metal
Oxides

Titanium dioxide
(TiO2)

Buffering of volume expansion due to
negligible volume change during
lithiation (<4%), excellent thermal
stability

Lower Li-ion diffusion coefficient
(~10−17 cm2 S−1), poor electrical
conductivity (~10−12 S cm−1)

Alumina (Al2O3)

High ionic conductivity and
mechanical stability, suppression of
material degradation, prevention of
cobalt diffusion and dissolution,
increased output voltage

Low electrical conductivity
(~10−16 S cm−1), high processing
costs

3.2.1. Carbonaceous Materials

Carbon-coated Si-based negative electrodes have been a focal point since their pro-
posal in the early 21st century [102]. Owing to their numerous advantages, carbonaceous
materials are the prevalent choice for Si coatings. Carbon exhibits excellent electrical
conductivity, which enhances electrical contact between Si particles and other electrode
components, reducing electrode polarization. Additionally, carbon coatings stabilize the
negative electrode–electrolyte interface, inhibiting excessive SEI growth and enhancing CE.
The minimal volume change in carbon during cycling (approximately 10% for graphite)
effectively buffers the volume expansion of Si [63,103]. These benefits of carbon coating
have established structures such as core–shell, yolk–shell, and porous configurations as
promising strategies for embedding Si particles within a uniform carbon shell.

Core–shell structures consist of a sturdy inner core surrounded by one or more diverse
material layers (shells). The outer carbon shell protects the Si core from environmental
fluctuations, restricts volume expansion, and preserves structural integrity, thereby pre-
venting the aggregation of the core into larger particles. Such architectures frequently
exhibit enhanced chemical and physical properties relative to that of monolithic materi-
als [104]. Hou et al. [32] synthesized a Si/C micro-/nanocomposite (SiNS/C) with a 3D
plum pudding-like morphology through radiofrequency induction thermal plasma process-
ing and subsequent spray drying using glucose as the carbon source (Figure 5a). This Si/C
electrode demonstrated a high ICE of 88%, a high volumetric capacity of ~1244 mAh cm−3,
and a stable rate performance compared with that of pristine SiNPs (Figure 5b,c). The
enhanced electrochemical performance is attributed to the 3D structure, which accommo-
dates volume changes, facilitates Li-ion transport, and enhances conductivity and stability
through the carbon matrix. Luo et al. [33] investigated the impact of carbon-coating thick-
ness on the long-term cycling performance of core–shell structures prepared by the sol–gel
method, coating SiNPs with a phenolic-resin-based microporous carbon layer (Figure 5d).
An analysis of samples with carbon shell thicknesses of 5, 10, and 15 nm showed that the
10 nm carbon shell displayed the highest capacity of 1006 mAh g−1 and a CE of 99.5% after
500 cycles at 500 mA g−1 (Figure 5e). A 10 nm carbon shell is optimal as it effectively allevi-
ates internal stress caused by volume changes in SiNPs during cycling while facilitating
fast Li-ion transport and stable SEI film formation. Precise engineering of the carbon shell
thickness is crucial for balancing capacity and structural stability. Du et al. [34] synthesized
carbon-coated SiNPs using alkali lignin (AL) or an AL-derived azo polymer (AL-azo-NO2)
as carbon precursors. The Si@C composites were prepared by evaporating the THF solvent
from the dispersion solutions of the SiNP/carbon precursors, followed by carbonization
in a nitrogen atmosphere (Figure 5f). The AL-azo-NO2 precursor can synthesize an N-
doped carbon shell, exhibiting superior electrochemical performance compared to that
of AL-derived carbon shell. Si@C-AL-azo-NO2 demonstrated a high reversible capacity
of 882 mAh g−1 at 200 mA g−1 with a high CE of 99% (Figure 5g) and a lower Rct value
due to its N-doped carbon shell (Figure 5h). These results confirm that N-doped carbon
significantly enhances electrical conductivity and improve electrochemical performance
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relative to undoped Si@C materials. However, during lithiation/delithiation, the volu-
metric expansion of the core SiNPs within Si/C core–shell structures can compromise the
structural integrity of the carbon shell, potentially leading to the exposure of the Si core.
Therefore, novel structures aimed at mitigating this issue have been a subject of discussion.

In contrast to the core–shell structure, the Si/C yolk–shell structure, where the Si
core and carbon shell experience indirect contact, is characterized by a hybrid design
with a hollow carbon shell surrounding a mobile Si core in an empty space. This void
effectively buffers the volume expansion of the Si core during cycling, outperforming the
core–shell structure. Consequently, this design is highly beneficial for maintaining the
integrity of the Si core by shielding it from exposure to the external environment. Zhang
et al. [28] employed a one-pot sol–gel approach, utilizing resorcinol–formaldehyde (RF)
and tetraethyl orthosilicate (TEOS) as precursors, to synthesize Si/C yolk–shell composites.
This method involved etching the SiO2 layer with a 15% HF solution (Figure 6a). In this
configuration, a ~60 nm void between the Si core and the carbon shell effectively mitigates
the volume expansion of Si particles, thereby enhancing cycle stability. As a result, the
Si@HC-1 samples exhibited a high charge capacity of 1807.4 mAh g−1. Furthermore,
at 1 A g−1, these samples maintained a reversible capacity of 500 mAh g−1 even after
2000 cycles (Figure 6b). This verifies that the carbon shell serves a dual function: enhancing
the electrical conductivity of Si and acting as a protective barrier during cycling. This
prevents electrolyte decomposition, thereby ensuring stable maintenance of the SEI. Similar
research has been conducted on dual yolk–shell structures. Yang et al. [30] reported
the first successful synthesis of a dual yolk–shell structure (Si/void/SiO2/void/C). This
novel structure was fabricated by selectively etching SiO2 in a Si/SiO2/C configuration
using HF solution (Figure 6c). In the dual yolk–shell structure, the carbon layer enhances
conductivity, and the SiO2 layer provides mechanical strength. The two inner voids
effectively accommodate the volume expansion of Si during lithiation. Consequently, the
Si/C core–shell structure exhibited a sharp capacity decline within the first 10 cycles under
identical experimental conditions. Conversely, the dual yolk–shell structure demonstrated
outstanding electrochemical performance, maintaining a stable and high specific capacity
of 956 mA h g−1 and a capacity retention rate of 83% at a current density of 0.46 A g−1

even after 430 cycles (Figure 6d). Additionally, the Si/void/SiO2/void/C composite
demonstrated excellent rate capability (Figure 6e).

The porous structure, similar to that of the yolk–shell structure, integrates voids within its
framework to mitigate the volumetric expansion of Si. The yolk–shell structure establishes a gap
between the Si and carbon shells to introduce voids, whereas the porous structure incorporates
voids directly within the Si matrix to mitigate volumetric expansion; that is, a structure in which
porous Si is coated with carbon. Consequently, as porosity in Si increases, the potential to
mitigate volumetric expansion also increases. However, this increased porosity can significantly
diminish the compressive strength of the particles, leading to a decline in structural integrity.
Furthermore, increased porosity augments the specific surface area of the Si-negative electrode,
facilitating rapid Li-ion diffusion, which enhances the reactivity of the negative electrode and,
consequently, its electrochemical performance. Nonetheless, such enhanced reactivity may
promote side reactions at the electrode–electrolyte interface, emphasizing the necessity for a
carbon-coated layer to prevent direct contact between the electrolyte and electrode surface and to
stabilize the interface. Therefore, the meticulous design of the carbon-coated porous Si structure
is pivotal for achieving high ICE and sustained cycle stability. An et al. [35] synthesized ant-nest-
like microscale porous Si (AMPSi) using a scalable top-down technique, creating a structure of
three-dimensionally interconnected Si nanoligaments and bicontinuous nanopores (Figure 7a).
This porous configuration accommodates volume expansion during cycling, effectively mitigat-
ing particle-level outward expansion (Figure 7b). The carbon-coated AMPSi-negative electrode
exhibited outstanding electrochemical performance, with a specific capacity of 1271 mAh g−1

and 90% capacity retention after 1000 cycles at 2100 mA g−1 (Figure 7c). Additionally, the
electrode showed a substantial reduction in volume expansion to 17.8% during cycling, relative
to the 300% expansion observed in pure Si electrodes. To examine the impact of porosity within
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the porous structure on electrochemical performance, Men et al. [36] synthesized hierarchically
structured Si/C composite microspheres using a spray-drying-assisted magnesiothermic reduc-
tion method (Figure 7d). During this process, a carbon precursor, gelatin, was deposited onto
the SiO2 nanospheres; subsequent magnesiothermic reduction carbonized the gelatin, resulting
in porous SiNPs encapsulated in a carbon shell. TEM analysis confirmed successful carbon
coating on the SiNPs in all three samples (Si/C-X, X = 1, 2, 3), with increasing carbon content
and density and decreasing porosity as X increased. During the galvanostatic cycling evalua-
tion (Figure 7e) at a current density of 200 mA g−1, Si/C-2 maintained an excellent reversible
capacity of 523 mAh g−1 and a CE above 99% even after 300 cycles. Si/C-2 exhibited superior
rate capability (Figure 7f), attributed to its optimal porous structure, which mitigates volume
expansion during lithiation/delithiation, and the appropriate thickness of the carbon coating,
which enhances the stability and conductivity of the electrode material, facilitating efficient elec-
trochemical reactions even under high-rate conditions. Therefore, the rational design of porous
structures with optimal void spaces and density is paramount for Si/C composite negative
electrodes to achieve high energy density, exceptional ICE, and extended cycling stability.
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and (c) rate performance at various current densities (420, 840, and 2100 mA g−1) for the SiNS/C
composite electrode [32]. Reprinted with permission from Ref. [32]. Copyright © 2016 Elsevier.
(d) Schematic of the fabrication of phenolic resin-based carbon interfacial layer coated SiNPs. (e) Cycle
performance of carbon coated Si core–shell structures with controllable layer thickness at a current
density of 500 mA g−1 [33]. Reprinted with permission from Ref. [33]. Copyright © 2016 Elsevier Ltd.
(f) Schematic of the preparation of the N-doped carbon shell-coated Si/C nanocomposites. (g) Cycling
performance and (h) impedance measurements for Si@C-AL and Si@C-AL-azo-NO2 [34]. Reprinted
with permission from Ref. [34]. Copyright © 2018 Elsevier B.V.
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(a) Schematic diagram of the synthesis process for the Si@HC yolk–shell structure (Si@void@HC).
(b) Long-term cycling performance of the Si@HC-1 at 1000 mA g−1. [28]. Reprinted with permission
from Ref. [28]. Copyright © 2020 Elsevier B.V. (c) Schematic diagram of the synthesis process for the
dual yolk–shell structure. (d) Cycling behavior of Si/void/SiO2/void/C and Si/C composite at a
current density of 0.46 A g−1 (e) Rate performance of Si/void/SiO2/void/C composite at different
current densities [30]. Reprinted with permission from Ref. [30]. Copyright © 2015 nature.
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(a) Schematic of the preparation of AMPSi and AMPSi@C and (b) the lithiation/delithiation process
of the AMPSi. (c) Long cycling test of AMPSi@C at 0.5 C after activating the first three circles at
0.05 C (1 C = 4.2 A g−1) [35]. Reprinted with permission from Ref. [35]. Copyright © 2019 nature.
(d) Schematic illustration of the synthetic route to the carbon-coated porous Si nanospheres. (e) Cy-
cling stability of p-Si, Si/C-1, Si/C-2, and Si/C-3 at a current density of 200 mA g−1. (f) Rate capability
of Si/C-1, Si/C-2, and Si/C-3 at stepped current densities ranging from 100 to 2000 mA g−1 [36].
Reprinted with permission from Ref. [36]. Copyright © 2019 Elsevier Ltd.

3.2.2. Si Oxides (SiOx)

Si powder typically exhibits a surface covered with a native oxide layer (amorphous
SiOx) with hydroxyl groups present at its terminations. Trace amounts of water and oxygen
inevitably lead to the formation of an insulating SiOx layer. Density functional theory has
demonstrated the following characteristics for this SiOx layer: SiOx exhibits much lower
volumetric expansion than that of Si (approximately 160% during lithiation/delithiation),
attributed to the significantly higher Si–O bonding energy compared with that of Si–Si
bonding energy. During lithiation, SiOx acts as a barrier that blocks electrical conduc-
tion, leading to its transformation into lithium oxide (Li2O) and lithium silicate (Li4SiO4).
These compounds serve as a matrix to buffer volume expansion in subsequent cycles.
Consequently, the SiOx layer contributes substantially to structural stability during cy-
cling, facilitating the formation of a stable SEI film and thereby enhancing cycling stability.
Zhang et al. [38] synthesized a core–shell-structured Si/SiO nanocomposite using a sol–gel
method, followed by additional heat treatment. Tetraethyl orthosilicate (TEOS) served
as the SiO precursor (Figure 8a). The SiO coating layer acted as a barrier to prevent the
aggregation of SiNPs during cycling. Additionally, it functioned as a buffer by forming
Li4SiO4, which mitigates the volume expansion of the SiNPs and alleviates the destruction
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of the Si crystalline structure. The core–shell Si/SiO nanocomposite demonstrated superior
Li insertion/extraction reversibility, higher CE, and better capacity retention than that of
SiNPs (Figure 8b). The formation of SEI varied significantly with the surface of Si. Schnable
et al. [39] conducted experiments on three types of Si wafers: a SiOx-free surface, native
SiOx, and thermally grown SiO2 coatings (Figure 8c–e). The SiOx-free surface exhibited the
lowest CE (<94%), the thickest SEI, and the highest overpotential for lithiation. Conversely,
the SiOx surfaces demonstrated a high CE (>99%) after the second cycle, with a thinner and
more stable SEI and a lower overpotential for lithiation. SiOx lowers the onset potential
for electrolyte reduction and produces an SEI with fewer P–F species. However, the native
SiOx surface exhibited a decay in the CE after the fifth cycle, which was associated with the
resurgence of electrolyte reduction. Therefore, it was concluded that the thermally grown
SiO2-coated surface minimizes side reactions and maintains the most stable SEI, ensuring
efficient cycling. Sim et al. [40] investigated the optimal thickness of the SiO2 coating layer
by evaluating the electrochemical performance of core@shell bulk@nanowire Si-negative
electrodes with various SiO2 coating thicknesses. They observed that excessively thick
native SiO2 coatings (10 and 15 nm) hindered the full lithiation of the electrode, result-
ing in decreased CE and specific capacity (Figure 8f). Owing to the low conductivity of
the amorphous SiO2 shell, the coating must be sufficiently thin to allow for Li-ion inser-
tion/extraction. However, excessively thin SiO2 layers (2 nm) failed to effectively buffer the
volume expansion of the SiNPs. A SiO2 coating thickness of 7 nm significantly improved
the electrochemical performance, including specific capacity, CE, and capacity retention,
while effectively mitigating volume expansion (Figure 8g). Recently, Si carbide and ni-
tride coatings, including Si oxycarbide (SiOC) [91,105–107] and Si nitride (SiNx) [108–110],
have also been researched as coating materials to further enhance the performance of
Si electrodes.
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Reprinted with permission from Ref. [38]. Copyright © 2006 Elsevier B.V. Galvanostatic
cycling of Si wafers with three different surfaces (a SiOx-free surface, native SiOx, and
thermally grown SiO2 coatings). (c) First cycle (start of first cathodic half-cycle is enlarged
in the inset, and differential capacity dQ/dV is presented in (d)). (e) CE [39]. Reprinted
with permission from Ref. [39]. Copyright © 2020 American Chemical Society. (f) Plot of
charge capacity vs. cycle number of half cells with 0, 2, 7, 10, and 15 nm SiOx coatings (after
one cycle at 0.1 C rate, the rest of the cycles were at 0.2 C). (g) Plot of discharge capacity
vs. cycle number of full cells (LiCoO2 core@shell bulk@nanowire Si) with 2 and 7 nm SiOx
coatings at 0.2 C rate [40]. Reprinted with permission from Ref. [40]. Copyright © 2013
WILEY-VCH.

3.2.3. Metals

Owing to their higher electrical conductivity and mechanical strength compared with
that of carbon materials, metals are being explored for coating Si surfaces. The selection
of metals for coating materials must meet the conditions under which they facilitate the
transport of Li ions through Si while remaining inert toward Li and electrolytes. Metal
coating materials such as Cu, Ag, Ni, Co, and Fe have been employed for this purpose,
with particular emphasis on the extensive research involving Cu and Ag.

Cu is a highly suitable coating material for mitigating the severe volume expansion
and low electrical conductivity of Si during cycling. Its excellent electrical conductivity
effectively enhances the electrochemical performance of SiNPs. Moreover, Cu remains
electrochemically inert in the presence of Li ions, thereby mechanically stabilizing the SiNPs
throughout cycling. Kwon et al. [37] synthesized Cu-deposited mesoporous SiNPs (mp-
Si@Cu) via magnesiothermic reduction and electroless deposition. The mp-Si@Cu nanocom-
posite exhibited high ICE, long-term cycle stability, a high capacity of 1569 mAh g−1 after
200 cycles at a current density of 1000 mA g−1, and superior rate capability compared
with that of mp-Si and mp-Si@C. The superior electrochemical performance of mesoporous
Si@Cu is attributed to the deposition of Cu onto the Si surface, which enhances the electrical
conductivity, increases Li+ ion mobility, and improves the structural stability, restricting
the aggregation and pulverization of Si. Xu et al. [96] investigated a novel coating method
through in situ solution chemical deposition and subsequent heat treatment, which success-
fully coated a high-strength Cu-based metal shell onto SiNPs (formation of HT-Si@Cu). The
treatment of SiNPs with dilute HF acid generates reactive hydrogenated Si (n-Si-H) on the
surface, followed by the addition of copper citrate, and results in the immediate reduction
of Cu2+ ions and the formation of a Si@Cu composite. Additionally, heat treatment in an
Ar/H2 mixed atmosphere further strengthens the bonding between Si and Cu, resulting in
the synthesis of heat-treated Si@Cu (HT-Si@Cu) (Figure 9a). Particularly, the HT-Si@Cu-
0.08 electrode exhibited the best electrochemical performance, demonstrating superior
cycling stability with a specific capacity of 1102 mAh g−1 and 85.7% capacity retention after
200 cycles at 0.5 A g−1 (Figure 9b). This performance is attributed to the high-temperature
treatment, which effectively enhanced the contact between Si and Cu, facilitating the forma-
tion of a stable electrode interface. EIS results confirmed that the HT-Si@Cu-0.08 electrode
had the lowest resistance (Figure 9c), indicating a significant improvement in electronic
conductivity due to the additional heat treatment. Even after 400 cycles at 1 A g−1, it
maintained a capacity of 837 mAh g−1 with 83.6% capacity retention, exceeding the cycling
performance of previously reported Si/Cu electrodes (Figure 9d). This improvement is
due to the enhanced conductivity provided by the Cu and Cu3Si phases on the Si particle
surfaces and the alleviation of stress caused by volume expansion.
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Figure 9. Synthesis process and electrochemical performance of Cu-coated Si materials. (a) Schematic
illustration of the preparation of HT-Si@Cu. (b) Cycle performance of n-Si–H, Si@PDA, Si@Cu-0.08,
and HT-Si@Cu-0.08. (c) Nyquist plots of n-Si, Si@Cu-0.08, and HT-Si@Cu-0.08 before cycling. (d) Long-
term cycle performance of HT-Si@Cu-0.05, HT-Si@Cu-0.08, and HT-Si@Cu-0.11 [96]. Reprinted with
permission from Ref. [96]. Copyright © 2024 American Chemical Society.

Research on the coating of Ag onto Si has gained significant attention due to its superior
electrical conductivity compared with that of Cu. This characteristic can potentially enhance
the electrochemical performance of Si-based electrode materials. The silver coating increases
the electrical conductivity of Si particles and improves the diffusion rate of Li ions, thereby
enhancing the cycling stability of Si-based electrodes. Hao et al. [31] synthesized a bimodal
porous (BP) Si/Ag composite under mild conditions using the dealloying method. Because
of its unique BP structure with abundant porosity and the integration of highly conductive
Ag, the fabricated Si/Ag composite exhibited enhanced conductivity and mitigated volume
changes in the Si network during repeated charge/discharge cycles. Consequently, the BP
Si/Ag electrode demonstrated excellent cycling reversibility, maintaining a capacity exceeding
1000 mAh g−1 with a capacity retention of 89.2% after 200 cycles at 1 A g−1. The addition
of a carbon coating to the Si/Ag composite results in further improved cycling stability
and rate performance. Wu et al. [97] synthesized Si/Ag/PDA composites by uniformly
introducing silver ions into Si through a vacuumization process, followed by coating with
PDA, a carbon precursor. The PDA layer on dendritic Si forms via an in situ reduction reaction,
accompanied by the oxidative polymerization of dopamine, without requiring additional
reductants. Subsequent annealing in a high-purity N2 atmosphere produces the Si/Ag/C
composite (Figure 10a). The Si/Ag/C electrode exhibited the highest rate performance,
achieving 1046.9 mAh g−1 at 8 A g−1 (10th cycle), which is superior to that of the Si/C
electrode (715.7 mAh g−1) and the Si electrode (237.8 mAh g−1) (Figure 10b). Additionally,
this electrode demonstrated better cycling performance than the Si/C electrode, maintaining
845.8 mAh g−1 after 400 cycles at 4 A g−1, corresponding to an average capacity decay of
2.1 mAh g−1 per cycle (Figure 10c). Remarkably, it also exhibited excellent long-term cycling
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stability at a high current density of 8 A g−1, maintaining 633.1 mAh g−1 after 500 cycles,
with a significantly low capacity decay rate of 0.9 mAh g−1 per cycle between cycles 200 and
500 (Figure 10d). Based on characterization analysis, the Si/Ag/C composite features a strong
and porous structure that enables fast Li+ ion diffusion and electron conduction, thereby
promoting the formation of a thinner and more stable SEI film.
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Figure 10. Synthesis process and electrochemical performance of Ag-coated Si materials. (a) Schematic
of the synthesis process and chemical reaction formula of dopamine polymerization and redox process
of the Si/Ag/C composite. (b) Rate capacity of the Si, Si/C, Si/Ag/C electrodes between 0.01 V
and 1.5 V at various rates. (c) Cycling performance and Coulombic efficiency of Si/C and Si/Ag/C
electrodes at 0.2 A g−1 for the first five cycles and at 4 A g−1 for the following cycles. (d) Long-term
cycling performance of the Si/Ag/C electrode at 0.2 A g−1 for the first five cycles and at 8 A g−1 for
the following cycles [97]. Reprinted with permission from Ref. [97]. Copyright © 2018 Elsevier Ltd.

3.2.4. Metal Oxides

Metal oxides are robust and suitable as coating materials for Si particles; they effectively
reduce side reactions and expand buffer volume. Among these, titanium oxide stands out ow-
ing to its negligible volume change during lithiation (<4%), enhanced electrical conductivity,
and excellent thermal stability. Yang et al. (2021) [72] synthesized an amorphous TiO2-coated
composite with a controlled porous structure through magnesiothermic solid-state reactions
(Figure 11a). Electrochemical tests revealed that the amorphous TiO2-coated porous Si com-
posite electrode maintained a high reversible capacity of 1965 mAh g−1 after 100 cycles and
an improved ICE of 90.1% (Figure 11b). In another study, Yang et al. (2017) [71] encapsulated
commercial SiNPs in amorphous TiO2 using a sol–gel strategy, creating core–shell structures
(Figure 11c). The amorphous TiO2 shell provides superior buffering effects compared with that
of crystalline TiO2 shells, as well as enhanced safety over conventional carbon-coated Si-based
negative electrodes (Figure 11d). Alumina (Al2O3), known for its high ionic conductivity, has
been utilized as an alternative protective layer to mitigate electrode material cracking and
stabilize the structure. Lee et al. [84] synthesized an Fe–Si powder coated with Al2O3 layers of
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varying thicknesses through atomic layer deposition (ALD) (controlling the Al2O3 content by
varying the exposure time to trimethylaluminum (Figure 11e). With increased Al2O3 content,
the electrochemical properties improved significantly; capacity retention rates of the pouch
full cell at 300 cycles reached 69.8%, 72.3%, and 79.1%, demonstrating the effectiveness of the
Al2O3 layer in suppressing volume expansion of Si and inhibiting SEI formation owing to
cracking (Figure 11f).
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Figure 11. Synthesis process and electrochemical performance of metal oxide-coated Si materials.
(a) Schematic illustration of the synthesis of the pSi and pSi-aTiO2 composite. (b) Cycle performance
results of the non-porous Si, pSi, and pSi-aTiO2 electrodes at a specific current of 0.1 A g−1 [72].
Reprinted with permission from Ref. [72]. Copyright © 2021 Elsevier B.V. (c) Schematic illustration
of the fabrication process for the amorphous TiO2-coated Si core–shell nanoparticles. (d) Cycling
performance of the pristine Si, Si@a-TiO2, and Si@c-TiO2 nanoparticle electrodes at a current density
of 420 mA g−1 (first activated with five cycles at 140 mA g−1). [71] Reprinted with permission from
Ref. [71]. Copyright © 2017 WILEY-VCH. (e) Cross-sectional S/TEM-EDS image of the Al2O3-coated
Si powder. (f) Cyclic performance of the N–Si alloy and Al2O3-1 and Al2O3-2 powders [84]. Reprinted
with permission from Ref. [84]. Copyright © 2022 MDPI.

4. Conclusions

Si is highly regarded as a potential next-generation negative electrode material for LIBs
owing to its high theoretical capacity and energy density. However, Si-negative electrodes
suffer from substantial volume expansion during lithiation/delithiation, leading to the
exposure of fresh Si surfaces and continuous electrolyte decomposition, which inevitably
results in a short cycle life. While various strategies, including electrolyte additives, func-
tional binders, and Si nanostructures have been proposed to address these challenges,
the fundamental solution lies in preventing the direct exposure of Si particle surfaces
to the electrolyte. Combining Si nanostructure design with surface-coating techniques
provides a dual advantage: buffering the volume expansion of Si and preventing direct
contact with the electrolyte, thereby synergistically enhancing electrochemical performance.
Consequently, this approach has garnered significant interest.

Diverse coating processes such as high-energy ball milling (HEBM), hydrothermal
methods, and chemical vapor deposition (CVD) have been developed. HEBM offers a
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simple and cost-effective process, although it typically does not yield high-quality coatings.
In contrast, CVD can produce coatings with highly uniform density and thickness but neces-
sitates significant financial investment. Each coating method possesses distinct advantages
and limitations, often requiring the combination of multiple processes for a comprehensive
coating study. When applying coating technologies, it is essential to consider not only
performance but also cost, efficiency, and convenience.

Nanostructured Si coating materials are categorized into four groups based on their
chemical composition and physical properties: carbonaceous materials, silicon oxides,
metals, and metal oxides. Carbonaceous materials are commonly used for Si coatings due
to their excellent electrical conductivity and minimal volume change. SiOx significantly
enhances cycling stability and CE when used as a coating layer, owing to its high density,
theoretical capacity, and lower volume expansion compared to pure Si. Metals, such as
Cu, offer superior electrical conductivity and mechanical strength compared to carbon
materials and remain electrochemically inactive towards Li ions, thereby stabilizing cycling
performance when used as a coating. Metal oxides, including TiO2 and Al2O3, provide
robust buffering against volume changes and effectively reduce side reactions within the
electrode. TiO2, in particular, demonstrates minimal volume change during lithiation,
coupled with excellent electrical and thermal stability, leading to significant improvements
in overall electrochemical performance. Al2O3, known for its high ionic conductivity and
low volume change, further enhances long-term cycle performance and capacity retention
with increasing content.

Given the distinct characteristics of each process and material, selecting appropriate
coating techniques and materials is critical to the coating strategy. The choice of process
and material can result in significant performance variations, even when coating the same
substrate. Additionally, the quality of the coating layer is critically important. Low-quality
coating layers that are uneven or rough can result in the formation of an unstable SEI, which
subsequently triggers continuous electrolyte decomposition. Therefore, ongoing research
into coating conditions, such as temperature and duration, is essential for improving
the quality of the coating layer. Moreover, given that an electrochemically inert coating
layer inevitably results in a reduction in energy density, determining the optimal coating
thickness that maximizes electrochemical performance while mitigating this inherent loss
is imperative. Beyond improving the electrochemical performances, the development
of coating technologies should also consider commercial viability by focusing on cost-
effectiveness, process efficiency, and scalability. A comprehensive consideration of these
factors will enhance the overall efficacy and impact of coating technologies to the greatest
extent possible. In the context of ongoing research focused on high-Ni positive electrodes
with over 90% nickel content, the application of Si-negative electrodes is imperative to
increase the energy density of batteries. Although the current Si content in negative
electrodes remains below 10%, it is challenging to resolve all issues of Si electrodes through
surface modification alone. Nevertheless, continuous research and development in surface-
coating processes and materials, alongside other technological advancements, will enable a
gradual increase in Si content in next-generation battery negative electrodes.
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