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Abstract: This study uses an equivalent circuit model (ECM) and real-time data to model lithium
iron phosphate (LFP) batteries to accurately represent their thermo-electrical behavior. In particular,
the focus is on a thermal management perspective in high-performance electric vehicles (EVs). The
ECM-based battery management system, which effectively captures the non-linear behavior of Li-ion
batteries, is developed to optimize the safety, lifespan and overall performance of the EV battery
management system. The ECM-based battery model is validated using real-time drive cycle data to
enhance the understanding of battery management systems, contributing to improved overall perfor-
mance and reliability. In addition, advanced estimation algorithms, such as the extended Kalman
filter, are integrated to further improve the predictive capabilities of battery parameters. Battery termi-
nal voltage prediction with an average RMSE error of 0.015% is achieved, highlighting the critical role
of ECMs and advanced numerical simulation methods in optimizing the performance of automotive
battery management systems. The achieved results provide important guidance for model-based
design validation and functional development of battery management for mobility applications.

Keywords: equivalent circuit model; extended Kalman filter; air-cooled battery thermal management
system; model-based design of Li-ion batteries; online battery parameter estimation

1. Introduction

The convergence of advancements in lithium-ion battery technology, battery manage-
ment systems (BMSs) and thermal management solutions represents a paradigm shift in
sustainable transportation [1]. As electric vehicles (EVs) continue to gain traction, optimiz-
ing battery performance, safety and longevity will remain at the forefront of research and
innovation. Advanced numerical modeling techniques for modeling the battery parameters
and developing battery management algorithms hold great promise for greener, cleaner
and more efficient future mobility solutions.

In the realm of sustainable transportation and energy conservation, the advancement
of EV technologies is fundamental to reduce the environmental impact and dependency
on fossil fuels. Among the critical components of EV operation and efficiency, lithium-ion
batteries (LiBs) stand out due to their unparalleled performance characteristics. They are
valued for their high energy density, long service life and excellent energy efficiency. To
realize the full potential of LiBs, advanced BMSs are essential [2]. These systems act as
the nerve center of lithium-ion battery packs, ensuring safe and efficient operation while
optimizing performance for a longer service life.

However, the thermal management of LiBs poses a significant challenge, especially
in EVs. An efficient battery thermal management system (BTMS) is required for ensuring
the longevity of LiBs by optimizing the operating temperatures and reducing the risk of
thermal runaway [3]. BTMSs maintain battery operation within safe limits, extending
battery life and improving the overall safety of the vehicle [4].
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Among the various BTMS solutions, air-based systems have attracted widespread
attention due to their adaptability and reliability [5]. Air-cooled BTMSs offer an attractive
proposition for EV manufacturers seeking to balance performance, efficiency and safety.
Understanding the thermal behavior of LiBs is critical to ensure their performance and
safety [6]. While experimental approaches provide insight into battery operation, they are
often limited by time, effort and accessibility limitations. In contrast, numerical simulations
offer a versatile and flexible means to comprehensively investigate battery operation under
a variety of conditions for design optimization and performance enhancement [7]. These
simulations also allow for validation using different verification protocols like SIL, MIL
and HIL for industrial production.

Among the different types of numerical characterization techniques for battery mod-
eling, equivalent circuit models (ECMs) stand out as essential tools for understanding
and modeling the non-linear electro-thermal behavior of LiBs [8]. ECMs simplify complex
electrochemical processes within batteries, making it easier to accurately estimate critical
battery parameters [9]. These models provide a structured framework for analyzing battery
dynamics and optimizing automotive BMS accordingly.

The state of charge (SOC) is a critical parameter for battery management, and other
battery parameters, such as the state of health (SOH), state of power (SOP) and state of
energy (SOE), are essential for optimizing cell performance and ensuring the reliability of
the battery pack [10]. However, the non-linear and time-varying characteristics of batteries
pose significant challenges in developing battery parameter estimation algorithms [11].
Traditional methods, such as Coulomb counting, are often limited by error accumulation
and initial charge deviation [12].

In contrast, real-time modeling techniques, such as the family of Kalman filters, and
advanced technologies with the assistance of artificial intelligence (AI) like neural networks
provide a robust solution for online SOC estimation and improve system accuracy for better
cell performance [13].

Studies have demonstrated that equivalent circuit models (ECMs) improve the estima-
tion of both the state of charge (SOC) and state of health (SOH), especially when combined
with sophisticated estimation algorithms. For example, research has shown that integrating
ECMs with machine-learning techniques, such as support vector machines (SVMs) [14] and
neural networks [15], can substantially boost the accuracy of SOC estimation, particularly
under constant current (CC) and constant voltage (CV) charging regimes.

In BMS, the integration of machine-learning algorithms and advanced model-based
estimation techniques has significantly improved the accuracy of SOC and SOH estimation.
Predictive thermal management algorithms are currently being developed to proactively
predict thermal issues and adapt cooling strategies accordingly. These advances support
ongoing efforts to improve the efficiency, safety and reliability of EV batteries to increase
the adoption of electric vehicles. However, AI models can strain the currently available
chip resources and require large amounts of data for training, making Kalman filters a
more practical choice for real-time vehicle applications [16,17].

Accurately determining battery parameters is crucial for implementing the designed
models, particularly on functional frameworks like embedded devices to perform the
desired tasks by the BMS [18]. The functional development of BMS algorithms for real-
time application can be achievable by using ECMs and online estimation algorithms like
extended Kalman filters for accurate prediction of battery parameters [19].

This paper details the ECM of LiFePO4 batteries and the method used for the extrac-
tion of battery parameters from HPPC test data for model-based design. It also covers the
implementation of the SOC estimation algorithm using the extended Kalman filter for online
parameter identification and functional development of BTMS, including air cooling. The
developed model estimates battery parameters as a function of the applied load and provides
insight into key metrics, such as the state of charge (SOC) and state of health (SOH).

The real-time test data used in this paper highlight the current importance of such
data and provide valuable insights for validating model-based designs for Li-ion batteries
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and BMS. The paper concludes with an overview of the results and a discussion of the
challenges in SOC estimation using the extended Kalman filter, thoroughly investigating
the topic from inception to completion and beyond.

2. Single-Cell Characterization
2.1. Experimental Setup

The battery test bench used to characterize the cell is visualized as follows (in Figure 1):
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The SOC–OCV relationship obtained from the test bench is represented in Figure 2.
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Figure 2. OCV vs. SOC profile of SSL battery.

For the purpose of cell characterization, a hybrid pulse power characterization (HPPC)
test is performed to evaluate the battery response. The HPPC test provides critical data for
battery management systems, aiding in the development of batteries.

The setup involves fully charging the battery, connecting it to a battery tester for precise
current control and using a thermostatic chamber to stabilize the battery temperature if
necessary. The test procedure involves applying short, high current discharge and charge
pulses at various states of charge (SOC).

Typically, the test starts at 100% SOC and gradually decreases, e.g., by 10%, until a
predefined lower limit is reached. During each pulse, the voltage and current data are
recorded to calculate the internal resistance of the cell.

The current profile used in the HPPC test are visualized in Figure 3, providing insight
into the dynamic behavior of the cell.
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Figure 3. HPPC current profile.

The terminal voltage of the test cell measured on the test bench during the HPPC test
used for the estimation of cell parameters is visualized in Figure 4.
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Figure 4. HPPC cell characterization data.

2.2. Electrical Modeling of the Cell

To improve the accuracy of the battery state of charge (SOC) estimation, it is important
to develop an equivalent circuit model (ECM) that not only provides high accuracy but
also faithfully represents the dynamic characteristics of the battery.

A second-order Thevenin model with two RC networks is chosen for a comprehensive
representation of the electrical behavior. These networks are crucial for simulating both
short-term transients and long-term behavior.

The second-order Thevenin model is extended to include a variable voltage source
to model the open circuit voltage of the cell, a series-connected variable resistor for ohmic
resistance and two parallel RC branches with variable resistors and capacitors to model the
polarization and charging and lowering transfer voltages as a robust foundation.

The obtained cell characterization data in Figure 4 effectively represent the transient
response and steady-state characteristics of a Li-ion battery, which are denoted by

τ1 = R1 × C1, (1)

τ2 = R2 × C2 (2)
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Figure 5 illustrates the construction of the ECM, showing components such as variable
capacitors, resistors and controlled voltage sources.
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These elements combine to simulate important aspects, such as cell capacity and SOC
dynamics; key to the accuracy of the model is the voltage-controlled voltage source, which
non-linearly relates the SOC to open circuit voltage (OCV). The resistors R0, R1 and R2
each represent a different physical process in the cell.

R0 or series resistance: It represents the total ohmic resistance in the circuit, including
the effects from the electrolyte, current collectors and contact resistance at the interfaces,
which affect the cell’s initial response to an applied voltage or current. Higher R0 values
can lead to increased energy losses during operation.

R1: It corresponds to the charge transfer resistance at the electrode interface during the
charge and discharge process and significantly affects the kinetics of lithium-ion insertion
and desorption. Lower R1 values indicate more favorable kinetics, leading to better battery
performance, especially at higher temperatures and speed cycling.

R2: It refers to the resistance encountered by lithium-ions as they diffuse through the
solid electrode material. This is especially important for mass transport at higher states of
charge or faster cycling.

Analyzing these resistance components can provide researchers with insight into
the electrochemical behavior of lithium-ion batteries and allow targeted refinements of
materials and designs to improve performance.

In this paper, we consider all the ECMs to be a function of SOC; thus, the terminal
voltage of the cell is represented as follows:

V(t) = OCV − Vohmic − VRC1 − VRC2 (3)

For the two R–C pairs, the voltage observed at the terminals is governed by

V(t) = I(t)× Rohmic + τ1
dVc1

dt
+ τ2

dVc2

dt
(4)

where V(t) is the terminal voltage over time; I(t) is the load current; Rohmic is the ohmic
resistance of the cell; and Vcn are the capacitor voltages.

2.2.1. Identification of Cell Parameters

A regression algorithm referenced from [20] was developed to identify the voltage
drops at the current profile of 1C rate, and Figure 6 represents the windows, which are
referenced in the algorithm to develop the cell parameters from cell characterization data.
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To identify the different parameters of the cell for modeling a 2RC Thevenin model,
the data obtained from the cell characterization test are used. These data contain the battery
profile in the form of pulses at each respective square load profile. The characterization
consists of several key components:

1. Instantaneous voltage drop (V0 to V1): This drop is due to the ohmic resistance of the
connectors, electrodes and electrolyte (R0).

2. First voltage drop (V1 to V2): This represents the mass transport effects within the cell.
3. Second voltage drop (V2 to V3): This reflects the double-layer effects during each

discharge pulse.

The following voltage drops characterized on the discharge pulse at the respective
SOC for estimating cell parameters are shown in the Figure 7.
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Figure 7. 2RC ECM parameter estimation.

Parameters such as V0, V1, V2, V3, τ1, τ2 serve as the regression parameters. Then,
the parameters of the battery equivalent circuit model, which are OCV, R0, R1, R2, C1, C2,
can be defined as follows:

R0 =
V0 − V1

I
(5)

R1 =
V1 − V2

I
(6)
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R2 =
v2 − v3

I
(7)

The obtained R0, R1, R2 are used in the calculation of c1 and c2 from Equations (1)
and (2).

For all the different time segments of different SOC values at each HPPC current profile,
through parameter identification, the equivalent circuit model parameters are obtained,
and the obtained parameter values from HPPC test data are visualized in Figure 8.
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Figure 8. (a) Represents the values of ohmic resistance R0 with SOC; (b) represents the values
of polarization resistance R1 with SOC; (c) represents the values of hysteresis resistance R2 with
SOC; (d) represents the values of double-layer capacitance C1 with SOC; (e) represents the values of
double-layer capacitance C2 with SOC.
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2.2.2. Validation of the Cell Model

The single-cell model was validated using Coulomb counting for the state of charge
(SOC) estimation applied to a 2RC Thevenin circuit. The equivalent circuit model (ECM)
parameters of the cell were modeled as a function of SOC and temperature. The current
profile used for cell characterization was also used to validate the model by simulating it
with voltage measurements taken from a test device.

The parameters of the simulated battery are listed in Table 1.

Table 1. Parameters of LFP Li-ion SSL battery.

Quantity Parameter Unit

Cell chemistry LFP (Lithium iron phosphate) -
Battery rated capacity 45 Ah
Battery rated voltage 3.3 V

Charging cut-off voltage 3.65 V
Discharge voltage 2.8 V

Specific energy 148 Wh
Max. continuous discharge <50 A

Recommended charging current Up to 45 A

The validation results indicate the ECM modeled with estimated battery parameters
in Figure 9. However, there are deviations in accurate prediction of the cell voltage, with
RMSE and MAE errors reaching up to 0.4% at certain instances. These deviations suggest
that further refinement of parameter estimation using advanced numerical methods is
necessary to improve the model’s accuracy for implementation in real-time applications.
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3. Thermal Modeling

Battery thermal management and electrical operation are closely linked, as battery
performance and safety are significantly affected by temperature. During charge and
discharge cycles, batteries generate heat due to internal resistance and electrochemical
reactions, which in turn affect the battery’s temperature.

These temperature variations affect the battery’s electrical performance, including
capacity, efficiency and internal resistance. High temperatures can increase capacity loss,
while low temperatures can reduce the available capacity and increase internal resistance.
Furthermore, excessive heat can cause thermal runaway, a hazardous condition that can



Batteries 2024, 10, 329 9 of 19

result in fires and explosions, highlighting the need for effective thermal management to
prevent such incidents.

Maintaining the cells within a specific temperature range ensures maximum per-
formance and lifespan. Heat generation in the cell occurs primarily through an irre-
versible process due to the internal resistance while the current is flowing, and it is defined
as follows:

Qirreversible = I2 × R × t (8)

where Qirreversible (Joules) is the rate of irreversible heat generation; I (Amperes) is the
current flowing through the cell; R (Ohms) is the cell’s internal resistance; t (seconds) is the
time during which the current flows.

The fundamental principle of heat transfer under steady-state conditions governing
the thermal behavior of the cell is defined as follows:

Qirreversible = Qconduction + Qconvection + Qradiation (9)

where Qconduction (Joules) is the rate of heat transfer through conduction; Qconvection (Joules)
is the rate of heat transfer through convection; Qradiation (Joules) is the rate of heat transfer
through radiation.

As our approach is a lump-based model, the Qconduction is neglected, and the tem-
perature range remains at a low temperature range; thus, Qradiation is neglected. Only
convective heat transfer (Qconvection) is considered in this paper.

Qconvection = h × A × (Tcell–Tambient) (10)

where h (W/m2K) is the convective heat transfer coefficient; A (m2) is the surface area of
the cell; Tcell (K) is the cell temperature; and Tambient (K) is the ambient temperature.

4. State of Charge Prediction

The state of charge (SOC) reflects the remaining capacity of the battery relative to its
maximum capacity and is essential for monitoring battery health, predicting runtime and
optimizing power management strategies.

4.1. Coulomb Counting

For a LiB, during the discharge or charge process, its SOC using Coulomb counting
can be defined as follows:

SOC(t) = SOC(t0)− (1/Q)
∫ t

0
i(t) dτ (11)

where SOC (t0) is the SOC of Li-ion battery at moment t0; i(t) is the current flowing through
the battery at moment τ; and Q is the rated capacity of the battery.

This approach, however, is very sensitive to measurement errors, as visualized in
Figure 9. In addition, the Coulomb counting algorithm requires the correct initialization
with the initial SOC value, which may not be available, as occurs in HEVs, where the
battery is never fully charged or discharged.

When operating a battery, random noise in the observations of current, voltage and
other physical quantities can lead to the accumulation of errors when calculating the state
of charge (SOC) using the Ah method. Over time, this leads to a decrease in the accuracy of
the estimation. To solve this non-linear estimation problem, the “extended Kalman filter”
(EKF) algorithm is used.

4.2. Extended Kalman Filter for Online Estimation of Battery Parameters

The EKF is an optimal autoregressive data processing algorithm that achieves mini-
mum variance estimates through a recursive approach, providing both the estimate and the
associated error. The discrete non-linear state-space model of the EKF is particularly well
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suited for this application [21], allowing for accurate and reliable SOC estimation despite
the presence of observation noise and inherent non-linearities in battery operation.

As the Kalman filter requires a cell model, the discrete non-linear state-space represen-
tation reference used for this purpose is shown below:{

Xk = f ( Xk−1, Uk−1, wk−1)
Yk = h ( Xk, Uk, vk)

(12)

wk ∼ (0, Q) (13)

vk ∼ (0, R) (14)

where wk−1 is the process noise value at moment k-1; vk is the measurement noise value of
moment k; Q is the covariance of wk; R is the covariance of vk.

4.2.1. Linearization of Charge Utilized

The EKF approximates these non-linear functions using a first-order Taylor expansion
around the current estimate. This process involves computing the Jacobian matrices of
the state transition and measurement functions. These Jacobians are used to linearize the
non-linear model around the current state estimate.

The OCV_SOC profile obtained from cell characterization data, which is represented
in Figure 2, is converted into a polynomial equation representing the open circuit voltage
as a function of SOC and then differentiated by first order to form a polynomial equation
representing the charge utilized as a function of the state of charge.

Cu = P7∗SOC6
predict ++P6∗SOC5

predict + P5∗SOC4
predict + P4∗SOC3

predict + P3∗SOC2
predict + P2∗SOC1

predict + P1 (15)

The state of charge predicted by the EKF algorithm is utilized to calculate the output.
The main idea of the EKF is to use the state equations to predict the state variables of the
system at the next instant in time. By linearizing the non-linear battery model, the EKF
can effectively handle the inherent non-linearities and provide more accurate and reliable
SOC estimates.

4.2.2. State-Space Matrices

An equivalent circuit model with state-space matrices is established as follows:

A =

∣∣∣∣∣∣
0 0 0
0 −1/τ1 0
0 0 −1/τ2

∣∣∣∣∣∣, B =

∣∣∣∣∣∣∣
(−eff ∗ ∆T)/Q

R1 ∗ (1 − e(−
∆T
τ1 ))

R2 ∗ (1 − e(−
∆T
τ2 ))

∣∣∣∣∣∣∣, C =

∣∣∣∣∣∣
Cu
−1
1

∣∣∣∣∣∣ (16)

The states and parameters comprise fast and slow dynamics of the battery. Specifically,
there is a difference in the model-predicted terminal voltage value applied to the load. Also,
the real-time measured voltage value of the cell is used to calculate the error or minimum
variance estimate to update the Kalman gain coefficients accordingly, which are used to
modify the weights of the observations and predictions when computing the estimates of
the state variables, and the steps involved in the process of an extended Kalman filter are
presented in the below Table 2.

The Pk is the error covariance, and the Kk is the Kalman gain coefficient. In each
sampling cycle, the EKF algorithm must estimate the Pk and Xk in two different ways,
including priori estimation and posteriori estimation. Between the two stages, the Kalman
gain coefficient Kk is calculated by the priori estimate.

This representation expresses the system’s behavior using matrices in Equation (16)
and differential equations, relating its state variables, inputs (load current, Uk) and outputs
(load voltage, Yk and sock).

The Kalman filter is initialized with a priori state estimates when the vehicle is turned
on (based on OCV readings and the prior SOC when the vehicle was turned off). The
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algorithm then repeatedly updates the state estimate and state-uncertainty (error bound)
estimate with each set of new measurements as the system runs. The results are presented
based on a real-time test in the results section; they show that accurate SOC estimation
with very tight error bounds is obtained whether the initial SOC estimate is accurate or not.

Table 2. Details of the process inside the EKF algorithm.

Steps Process

Step 1 Initial state variables, x0, y0
Step 2 Covariance matrix, Pk−1
Step 3 Predicted states, Xk = AK−1 ∗ Xk−1 + BK−1 ∗ UK−1 + QK−1
Step 4 Predicted error covariance matrix, PK = A ∗ PK−1 ∗ AT + I ∗ Q
Step 5 Calculation of the error value between the predicted and the measured states
Step 6 Calculation of Kalman gain, Kk =

(
P1 ∗ CT)/

(
C ∗ P ∗ CT + R

)
Step 7 State estimation measurement update, XK+1 = AK+1 + K (YK+1 − XK+1)
Step 8 Error covariance measurement update, Pk+1 = (I − K ∗ C) ∗ PK

Using the measurement equation, the Kalman filter calculates the generalized errors
between the measurable value and the system dynamic variables (including the SOC).
Then, the Kalman gain is used to update the estimation values of the state variables.

The estimation approach depicted in below Figure 10 reveals that a single EKF is
sufficient for simultaneous online battery parameter estimation. The figure likewise demon-
strates how the information flows from one step to another during estimation.
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5. State of Health Estimation Using Impedance Tracking and Coulomb Counting

Accurate estimation of the battery’s state of health (SOH) is critical to ensure reliable
performance and lifespan. SOH estimation techniques provide insight into the remaining
useful life of a battery and help in maintenance planning and preventing unexpected
failures [22]. Among the various methods available, impedance tracking and Coulomb
counting stand out due to their effectiveness and complementarity.

The SOH of the cell is calculated by considering the charge at the start, that is, Qstart
the charge utilized by the load, that is, delta Q; and the charge remaining in the cell at the
end of discharge, which give us the estimation of nominal capacity of the cell, as visualized
in below Figure 11.
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The acquired nominal capacity of the cell can be compared with the nominal capacity
of the cell in the fresh condition using the following equation:

SOH = ( Qmeasured/Qnominal )× 100% (17)

6. Design of BTMS

In terms of battery thermal management, keeping batteries within acceptable tempera-
ture ranges is critical for their performance, durability and general safety. One extensively
used approach is air cooling, which uses fans to remove the heat generated during battery
operation. This introduction will explain the notion of air-cooling systems that use two
fans over a battery pack with 12 cells. Furthermore, it will investigate the integration of
an automated control system to govern the operation of these fans, guaranteeing effective
cooling while minimizing energy usage [23,24].

6.1. Fan Control Algorithm

The fan control algorithm for battery cooling was created using Simulink State flow
and Design flow chart is visualized in below Figure 12. This graphical environment
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provides a visual depiction of the control logic, making it easier to comprehend and alter.
The design method entailed designing four states: Manual On, Manual Off, Auto On
and Auto Off. The transitions between the states were created using human input and
temperature sensor data from important spots throughout the battery pack. The Auto On
mode operates the cooling fan when temperatures surpass a predetermined higher limit,
while the Auto Off state deactivates the fan when temperatures fall below a lower limit.
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User input allows the user to override the automated control and manually switch the
fan on or off. State flow actions were used to regulate the “fan control signal” transmitted
to the actual cooling fan, allowing for variable fan speed control via duty cycle modifica-
tions. This design enables optimal thermal management of the battery by automatically
controlling the cooling fan based on temperature conditions while still allowing for user
intervention when needed.

6.2. Integration of BTMS with EKF for Online Estimation of Battery Parameters

The model-based design, originally presented in [14], provides a framework for
estimating the state of charge (SOC) in a battery management system (BMS).

In our approach, the measured current (Icell) is integrated with an extended Kalman
filter (EKF) to achieve real-time estimation of the state of charge (SOC). The EKF-based SOC
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estimation is coupled with a cell equivalent circuit model (ECM) that is carefully developed
using detailed cell characteristic data.

The EKF works by estimating the voltage drop between the RC circuit and the SOC
using a state-space representation matrix. SOC is fed back to the ECM closed circuit
to predict the cell terminal voltage. In this closed-circuit system, the measured voltage
serves as the reference input. The difference between the actual and predicted voltages
is calculated and used in the update step of the EKF to predict the state for the next
time interval.

In our model-based BMS design, the EKF effectively addresses the limitations of
traditional Coulomb counting methods by accounting for observation noise and non-
linearities. It also leverages a discrete non-linear state-space model of the cell and iteratively
minimizes the variance in the SOC estimate using a recursive algorithm.

This robust methodology ensures accurate and reliable SOC estimation, which is
critical for an efficient battery management strategy. To validate the performance of the
EKF-based model, a comparison is performed with the SOC estimates obtained using
the Coulomb counting method, which demonstrates good robustness and accuracy in
real applications.

The layout shows the overview of a battery management system (BMS) designed using
air-cooled Li-ion battery pack in a 6S-1P configuration with online parameter estimation.
The system starts with an external power demand input that the BMS needs to manage to
ensure the safe operation of the battery pack.

The BMS handles tasks such as power monitoring, cell balancing and fan speed
control while estimating the state of charge (SOC) using Coulomb counting. The battery
pack receives a controlled current input from the BMS to ensure uniform charging and
discharging of all cells.

The estimated SOC is compared with the actual SOC to determine the error, which is
then processed by an extended Kalman filter (EKF). This EKF consists of a propagation step
and a correction step to refine the SOC estimate and provide revised system state outputs.
The designed model of BMS enables accurate real-time monitoring and management of the
battery pack to ensure optimal performance and lifespan.

7. Simulation and Analysis

To investigate the effectiveness of the proposed method, a simulation model of the
entire BMS was created in MATLAB/Simulink (2024 A), as described in the BMS layout
in below Figure 13. The analysis begins with an examination of the cell terminal voltages
and compares the real-time test data with the voltages simulated using the 2RC equivalent
circuit model (ECM).
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7.1. Voltage Predicted by the Model for HPPC Test

The performance of the cell voltage model was evaluated by comparing the predicted
terminal voltage with the measured real-time voltage data during cell discharge.

Despite a higher initial error, the EKF algorithm effectively fine-tunes the battery
parameters over time. As illustrated in Figure 14, the estimation error decreases progres-
sively. Compared to the Ah method, which exhibits an error of 0.4%, the EKF achieves
a significantly lower average estimation error of less than 0.1%. This demonstrates the
superior accuracy and reliability of the EKF approach in estimating battery parameters.
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7.2. Model Validation Using Real-Time Current Profile

The load profile was obtained from the electric vehicle tests carried out as part of the
InnoTherms project and is visualized in Figure 15.

Batteries 2024, 10, x FOR PEER REVIEW 16 of 20 
 

significantly lower average estimation error of less than 0.1%. This demonstrates the su-

perior accuracy and reliability of the EKF approach in estimating ba�ery parameters.  

 

Figure 14. Cell voltage predicted by the EKF for the HPPC test profile. 

7.2. Model Validation Using Real-Time Current Profile 

The load profile was obtained from the electric vehicle tests carried out as part of the 

InnoTherms project and is visualized in Figure 15. 

The current measured at the ba�ery was collected from the test vehicle operating 

under real-time conditions. These data are utilized to validate the ba�ery management 

system (BMS) model and to predict ba�ery parameters accurately. 

 

Figure 15. Real-time discharge profile. 

The performance of the cell voltage model was evaluated by comparing the predicted 

terminal voltage with the voltage data measured in real time during the cell discharge, as 

visualized in Figure 16. 

After experimentation with different sample times, fixed step sizes and model toler-

ances, the following results were obtained with a fixed step size and sample time of 0.15 

Figure 15. Real-time discharge profile.

The current measured at the battery was collected from the test vehicle operating
under real-time conditions. These data are utilized to validate the battery management
system (BMS) model and to predict battery parameters accurately.

The performance of the cell voltage model was evaluated by comparing the predicted
terminal voltage with the voltage data measured in real time during the cell discharge, as
visualized in Figure 16.
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After experimentation with different sample times, fixed step sizes and model toler-
ances, the following results were obtained with a fixed step size and sample time of 0.15
and a model tolerance of 0.001. These settings showed that the model allows for accurate
prediction of the battery parameters.

The close agreement between these two data sets over most of the experimental
time frame indicates that the 2RC-ECM effectively captures the dynamic behavior of the
cell’s voltage response over the entire cycle. Although the root-mean-square error (RMSE)
analysis highlights some discrepancies, the errors are still confined to a narrow range,
indicating that the model is robust under dynamic loading conditions and effectively filters
out noise.

Moreover, the minimal deviations observed in the error plots highlight the model’s
robustness in dealing with dynamic loading conditions and noise.

7.2.1. State of Charge Results

SOC predictions using the Coulomb counting (CC) method and the extended Kalman
filter (EKF) algorithm are visualized in Figure 17.
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Figure 17. State of charge predictions.

Initially, the CC and EKF methods are close to each other. As the experiment progresses,
the EKF’s ability to incorporate new measurements and adjust its estimates accordingly
becomes apparent, allowing for more accurate SOC tracking. This adaptability is critical
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to managing the cumulative errors and inherent noise associated with real-time battery
operation; the CC method has limitations in these areas. The deviation between the
estimates of the two methods becomes larger, especially under high discharge and varying
load conditions, highlighting the superior performance of the EKF in maintaining accuracy
over time.

7.2.2. Visualization and Analysis of Temperature Prediction

The analysis typically involves plotting two key sets of data; the actual temperature
measurements and the temperature predicted by the model is visualized in below Figure 18.
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The optimal results in Figure 18 show high agreement between the real-time tem-
perature data and the model predictions throughout the cycle. Such a close agreement
means that the temperature model is robust and accurate, effectively capturing the thermal
behaviors of the cell.

This validation not only improves the safety and efficiency of battery operations
but also contributes to the broader goal of advancing battery technology for a variety of
applications. Also, implementing an extended Kalman filter (EKF) for a state of charge
(SOC) prediction by a battery management system (BMS) poses a number of complex
challenges that require meticulous attention to ensure optimal performance.

8. Conclusions

A major advancement in the field of battery technology is made by integrating the
equivalent circuit model (ECM) and an extended Kalman filter (EKF) into battery man-
agement systems (BMSs). This model-based approach not only captures the dynamic
behaviors of the battery more accurately but also improves the accuracy of SOC prediction
by effectively removing real-time data fluctuations. The implementation of the extended
Kalman filter (EKF) state of charge (SOC) estimation algorithm involves several critical
steps to ensure accurate and efficient performance.

First, proper battery model selection and parameterization are essential. The 2RC
equivalent circuit model (ECM) selected accurately represents the cell dynamics while
maintaining computational performance. Second, it is important to correctly set the initial
conditions and fine-tune the filter parameters. Process and measurement noise covariance
is critical for the convergence and stability of the EKF. Third, the evaluation of model
tolerances and solver settings (both fixed and variable) proved that fixed step settings and
carefully selected tolerances are optimal, ensuring reliable performance without compro-
mising accuracy.
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Finally, it is important to consider the sampling time, as differences in intervals affect
the accuracy of the SOC estimation. Taken together, these steps highlight the complexity of
EKF implementation and the actions required to address it successfully.

The robust framework provided by this integration improves the performance and
accuracy in battery parameter estimation, making the model especially suitable for online
estimation in real-time applications, such as electric vehicles and other energy storage
systems. With minimal computational complexity and a reduced need for large-scale train-
ing data, the EKF is proved to outperform traditional and other model-based approaches,
positioning it as a highly viable solution to modern battery management challenges.
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