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Abstract: Lithium-ion batteries with high active material loading can yield a high energy density
at low C-rates. However, the sluggish ion transport caused by longer and more tortuous pathways
hinders high energy delivery when extracting high power. This study presents the implementation of
neural networks to optimize the gradient active material distribution profile throughout the thickness
of electrodes to enhance energy density. The profiles were randomly generated, while maintaining a
constant average active material in each electrode. An electrochemical–thermal model was used to
investigate the impact of different profiles. A neural network model was then developed to establish
the connection between the profiles and the resulting energy density for various electrode thicknesses
and C-rates, utilizing a limited amount of simulation data. The neural network model could replicate
the performance of the electrochemical–thermal model, but with significantly reduced computational
time. This enabled the possibility of efficiently exploring a vast number of candidate profiles to
identify the most optimal one for each of the positive and negative electrodes. The results showed
that the gradient profiles were mostly influenced by the average active material, rather than the
thickness of the electrode. Finally, at high currents, the optimal gradient profiles increased the energy
density by over four times compared to uniform electrodes.

Keywords: lithium-ion battery; energy density; electrochemical–thermal model; deep learning;
surrogate modeling; optimization

1. Introduction

Lithium-ion batteries (LIB) are promising energy storage systems that are widely
used as the prime storage solution for electric vehicles and consumer electronics. These
batteries have a high volumetric and gravimetric energy density compared to other types of
rechargeable batteries, which makes them an ideal choice for mobile applications (e.g., elec-
tric vehicles), where the size and weight of the energy storage system are determining
factors [1]. However, there is an increasing demand in industry for high energy–high
power LIBs for electric vehicles, to achieve a comparable performance to that of internal
combustion engines in terms of both mileage and acceleration [2].

LIB’s energy and power characteristics are greatly influenced by the geometric prop-
erties of the electrodes, specifically their thickness and porosity [3]. One simple method
for enhancing the energy level of LIBs is to use thick electrodes with low porosity. The
increased active material loading reduces the total weight and cost of the battery at the
pack level, due to the reduced amount of non-active material used (e.g., current collectors)
[4]. Despite this, the inherent limitation of this method is that these types of batteries are
unable to maintain a high energy value at high C-rates, due to poor utilization of active
material [5].

Electrochemical models such as the Doyle–Fuller–Newman (DFN) pseudo-two di-
mensional (P2D) model have been employed to study the effect of geometrical parameters
and material properties on battery performance [6]. This model offers insights into charge
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and mass conservation mechanisms and reaction kinetics in both electrolyte and active
electrode phases [7]. The resulting information provides an in-depth understanding of the
effect of different parameters on battery dynamics during operation, facilitating rational
guidance for LIB design prior to the manufacturing stage [8].

While analyzing the effect of each individual parameter using electrochemical models
is possible, understanding the superimposed effect of multiple parameters on a desired
characteristic might be challenging. In such a situation, one solution is to exhaustively
search all the possible parameter combinations and select the set that fulfills the desired
objective (e.g., high power and energy); however, such approaches are computationally
intensive for high-dimensional parameter spaces. A more computationally efficient method
is using an optimization method in combination with a physics-based model. Several
studies have performed such a task. Liu et al. [9] performed an optimization task using
a genetic algorithm to enhance the discharge capacity, specific energy, and power by con-
sidering electrode thickness, porosity, particle radius, and positive electrode conductivity
as design variables. In another study, Xue et al. [10] used a gradient-based algorithm
to identify the set of parameters that led to the highest possible energy density values
for a minimum required power density at each operating C-rate by searching through a
design space consisting of geometrical parameters and material properties. De et al. [11]
conducted a simultaneous optimization task by finding the best combination of positive
and negative electrode thicknesses and porosities. The goal was to enhance the energy
level, without sacrificing the deliverable capacity compared to the base set of parameters.

Since there is a limit on the highest energy that can be achieved, even with an optimized
thickness and porosity combination, batteries with gradient porosity electrodes have been
suggested [12]. In such batteries, the porosity varies throughout the electrode thickness,
rather than being constant. These electrodes have been constructed and experimentally
tested to investigate their effectiveness. Yang et al. [13] fabricated a 3-layered graphite
electrode by repeatedly coating and calendaring graphite slurries, resulting in a reduced
capacity loss after 150 cycles in comparison to a single-layered electrode. Liu et al. [14]
tested a double-layered cathode in combination with both Li metal and graphite. In
comparison with a one-layered electrode, the double-layered cathode exhibited a lower
capacity loss after 50 cycles. In addition to the conventional LIB electrodes, gradient
structures have also been proven to be effective in other battery chemistries. Cao et al. [15]
examined the effect of gradient pore volume, alongside gradient sodiophilic sites and
electrical conductivity, resulting in enhanced cycling stability and improved energy density.

Some studies have focused on the analysis and optimization of the gradient profile of
active material using electrochemical models. Ramadesigan et al. [16] studied the effect of
the gradient porosity profile across the positive electrode thickness on the internal resis-
tance. A simplified P2D model was employed, by ignoring the solid phase intercalation
mechanism, with control vector parameterization (CVP) used as the optimization method.
They obtained a 15–33% reduction in the internal resistance with a multi-layered electrode
structure. Golmon et al. [17] investigated the effect of gradient porosity electrodes and
particle radius on LIB performance using an electrochemical model. Their findings demon-
strated that a gradient profile and small particle size improved the battery performance
in terms of the maximum usable capacity and mechanical forces. Hosseinzadeh et al.
[18] studied the effect of gradient porosity on heat generation, as well as the energy and
power of the LIB. They introduced a multi-layered structure in both electrode thickness
and height directions, leading to an 8.37% and 2.6% improvement for energy and power
for an NMC–graphite cell, respectively, and a 4.2–14% reduction in cathode heat gener-
ation rate for an LFP cell. Zhou et al. [19] modified a two-dimensional model to assess
the impact of electrode structure on the lithiation process, using varying sizes of active
material particles to create a gradient within the electrode. Their results showed that the
gradient structure improved the particle utilization near the current collector and reduced
non-uniformity in solid-phase Li concentration across the electrode thickness, leading to
enhanced electrochemical performance. Du et al. [20] investigated the effect of the gradient
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porosity profile on the energy level of thick cathodes by defining the porosity profiles as
first- and second-degree polynomial equations. They reported a negligible improvement
in energy at a 1.5C discharge rate with the profiles that had the lowest amount of active
material next to the separator, while profiles with the opposite direction led to a decreased
level of energy. Yu et al. [21] employed a pseudo-three-dimensional (P3D) electrochemical–
thermal–mechanical (ETM) coupled model to investigate porosity gradients in the positive
electrode. They analyzed the impact of porosity variation on battery temperature and
stress during discharge, finding that the optimal porosity distribution promoted uniform
electrode lithiation and lowered the surface temperature by reducing ionic ohmic heating.

Directly applying optimization methods to numerical models can be computationally
demanding and often requires model simplification. Machine learning (ML) models pro-
vide a solution to this problem by capturing the intricate relationships between the inputs
and outputs and directly linking design parameters to specific cell characteristics, without
solving the underlying model equations. ML models offer fast computation capabilities,
making them a viable choice for real-time LIB state estimation and offline design tasks.
Developing a surrogate ML model for design applications involves defining a design space
and training the model with a limited dataset derived from the simulations. Once properly
trained, the ML surrogate model can replace the physics-based model and be employed,
either in combination with an optimization algorithm, or to quickly predict the effect of
large combinations of parameters.

Considering the potential of ML surrogate modeling, several studies have already
leveraged this approach [22]. Wu et al. [23] used artificial neural networks (ANNs) for both
classification and regression tasks to optimize the energy and power of LIBs. A classifier
neural network was utilized to identify and eliminate the sets of parameters that led to
electrolyte depletion from the design space. A regressor neural network was employed
to calculate the energy and power values for each design set. Using this method, the
computational cost was extensively reduced, facilitating a sensitivity analysis and design
optimization. A similar study was conducted by Quartulli et al. [24], investigating the
advantages of using ensemble classification methods such as voting, gradient stacking,
and deep stacking ensemble over traditional ANNs. The method of data-driven surrogate
modeling has also been used to study electrode structure. Gao et al. [25] studied a gradient
electrode porosity profile by introducing a tapered shape electrolyte channel structure to
reduce tortuosity and improve the specific energy, power, and capacity. A multi-input–
multi-output neural network was used to map the channel structure parameters to the three
selected performance metrics. A Markov chain Monte Carlo (MCMC) gradient descent
optimization algorithm was then used alongside the data-driven model to perform the
design optimization task. This resulted in a 79% improvement in energy density compared
to the high-tortuosity electrode of the base case. In another study by Sui et al. [26], the
effect of vasculature structure on the charge capacity was investigated using a simplified
one-dimensional electrochemical model. The electrode structure was optimized under
defined design scenarios using a bagging ensemble neural network, with mapping of the
vasculature structure parameters and operating C-rate to the charge capacity. Miyamoto
et al. [27] developed a framework for energy improvement of 3D micro batteries, using a
transmission line model (TLM) and principal component regression model. They tested a
huge number of randomly generated electrode geometries, and the energy value of each
geometry was calculated using a machine learning model. Those geometries that resulted
in improved energy values at both low and high C-rates were selected as the optimal ones.

Table 1 presents a summary of the most relevant studies on the effect of electrode structure
on the specific energy of LIBs. As can be seen, the studies without optimization did not report a
significant improvement. Those studies that optimized a gradient electrolyte channel structure
using a ML surrogate model (references [25,26]) reported higher improvements. Miyamoto
et al. [27] reported a significant improvement in specific energy by optimizing a randomly
generated interdigitated electrode structure. However, the electrodes are considered to be
very thick (around 600 µm), which in combination with the interdigitated structure would
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make these types of electrodes quite difficult to manufacture, especially at large scale. Despite
their findings, these studies were limited by not assessing the effect of different active material
distributions for a range of thicknesses and average active material ratios.

In this study, a ML surrogate model was developed to find the optimal distribution
of active material for both negative and positive electrodes. An electrochemical–thermal
model was used to generate a training and test dataset by performing a parametric sweep
over electrode thickness, average active material ratios, active material distribution pro-
files along the electrodes’ thickness, and different C-rates. The effect of active material
distributions for a range of electrode thicknesses across four case studies was assessed.
The introduced gradient active material distribution improved the energy levels at high
C-rates, but the average ratio was also kept constant, which prevented sacrificing energy
values at lower C-rates. The proposed active material functions have a piecewise cubic
shape, comprising a combination of gradient and layered structures. Such structures are
easier to manufacture and can be achieved using either layered structures alone or through
a combination of in-plane channels and layered structures [28,29]. The low computational
time requirements of the developed ML model provided the opportunity to study a large
design space by performing an exhaustive search, without using an optimization algorithm.

Table 1. A comparison of the previously conducted research on gradient electrodes with the
current study.

Study Modeling
Method Optimization Machine

Learning Variables Structure Improvement

[18]

Two-
dimensional

electrochemical–
thermal

X X Electrode
structure Layered 8.37%

[20]
One-

dimensional
electrochemical

X X Electrode
structure

Linear and
polynomial

0.9% at 1.5C
discharge rate

[21]

Electrochemical–
thermal–

mechanical
model

X X Electrode
structure Linear 0.43% at 1C

discharge rate

[25]

Two-
dimensional

electrochemical
model

✓
✓

(Neural networks)
Electrode
structure

Tapered
channels

79% at 25 A/m2

discharge
current

[26]

One-
dimensional

electrochemical
model

✓
✓

(Neural networks)

Electrode
structure,

C-rate

Vascular
channels

≈28.5 Wh/m2

at 10C charge
rate

[27] Transmission
line model ✓

✓
(Principal

component
regression)

Electrode
structure,

volume ratio of
positive and

negative
electrode

Interdigitated
channels

6.5 times higher
energy at 5C

discharge

This study

One-
dimensional

electrochemical–
thermal

✓ ✓
(Neural networks)

Average
porosity,
electrode
thickness,

C-rate,
Electrode
structure

Piecewise cubic
function

(combination of
layered and

gradient
structures)

4.25 times
higher energy

at 5C discharge
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2. Materials and Methods

This study investigated the effect of electrodes with gradient active material profiles on
the energy density of an NMC–Graphite LIB, using a physics-based and data-driven model.
Initially, gradient profiles were generated randomly under certain physically feasible
constraints. Using an electrochemical–thermal model developed in COMSOL Multiphysics
6.1, the effect of the profiles on battery performance was investigated. A large dataset
of simulation data was generated by varying the electrode thickness, the average active
material ratio of each electrode, and the operating C-rate. The dataset was used to train the
data-driven model, which aimed to identify the correlation between the selected design
parameters and the energy density. The gradient profiles were described with 10 points that
were evenly distributed along the thickness of the electrodes. Subsequently, the data-driven
model was employed to efficiently compute the impact of numerous candidate profiles
within a short time frame, resulting in the acquisition of frontier solutions that met the
optimization criteria.

2.1. Electrochemical–Thermal Model

The P2D model is an electrochemical model for LIB simulation which assumes the
electrodes are porous media consisting of spherical particles of active material, with a
binary electrolyte filling the empty spaces among the pores [30]. The model describes the
electrode-level behavior of the cell in the spatial direction of cell thickness (x-direction) and
the particle-level behavior in the pseudo-direction of particle radius (r-direction) [31]. The
governing equations of the model are represented in Table 2.

The main variables described by the model include the solid and electrolyte phase
potentials (V), ϕs and ϕe, and the Li+ ion concentrations in the solid particles and electrolyte
(molm−3), cs and ce.

The parameters defining material properties at the electrode level must be corrected
based on the active material ratio (εs) or electrolyte ratio (εe) at each point along the
x-direction and using the Bruggeman constant (p):

σ
e f f
s = ε

p
s σs, De f f

e = ε
p
e De, κ

e f f
e = ε

p
e κe, (1)

where σ
e f f
s is the effective conductivity of the solid active material (S m−1), De f f

e is the elec-
trolyte diffusion coefficient (m2s−1), and κ

e f f
e is the effective electrolyte phase conductivity

(S m−1). The active material ratio used for correcting the material properties changes along
the electrode thickness:

εs,neg = εs,neg
(
1 − (x/Lneg

)
), 0 ≤ x ≤ Lneg (2)

εs,pos = εs,pos
((

x − Lneg − Lsep
)
/Lpos

)
, Lneg + Lsep ≤ x ≤ Lneg + Lsep + Lpos (3)

where Lpos , Leng and Lsep are the thicknesses of the positive electrode, negative electrode,
and the separator, respectively. Ds is the solid phase diffusion coefficient, which is not
corrected, because it is only applicable at the particle level and there is no mixture of active
material and electrolyte inside the particles, and κ

e f f
D (S m−1) is the effective diffusional

conductivity defined as κ
e f f
D = − 2RTκ

e f f
e

F

(
1 + d ln f±

d ln ce

)
(1 − t+).

Other parameters of the governing equations include as, which is the ratio of active
surface area to the electrode volume, described as as = 3εs/rp; Faraday’s constant, F
(C/mol); and the transference number, t+. The current density, i, is described by the
Butler–Volmer kinetics equation, where η is the overpotential (V), αa and αc are the anodic
and cathodic charge transfer coefficients, R is the universal gas constant (J/molK), T is
the temperature (K), and Eeq is the equilibrium potential for each electrode, as shown in
Figure A1. i0 is the exchange current density, which is a function of the Li+ ion concentration
on the surface of the particles, cs,sur f (mol/m3), and the maximum Li+ ion concentration in
solid phase, cs,max (mol/m3).
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Heat is generated during the cell’s charging and discharging, and the internal temper-
ature changes. The electrolyte properties are dependent on the cell temperature; therefore,
it is important to consider the effect of temperature variation on the electrolyte properties.
The parameters of the thermal model include the density, ρ (kg/m3), the specific heat
capacity, Cp (J/kg K), the thermal conductivity, K (W/mK), and convective heat transfer
coefficient, h (W/m2K). q is the total heat generation of the cell (Wm−3), and consists of
reaction, reversible, and ohmic heat generation terms.

In this work, positive electrode thickness and average active material ratio were
considered as design variables with a defined range. Therefore, the cell capacity was
calculated using positive electrode parameters based on the equation below:

Qcell = cs,max,pos · F · εs,pos,avg ·
(

sol f ,pos − soli,pos

)
· Lpos (4)

where εs,pos,avg is the average solid active material ratio of the positive electrode, and soli,pos
and sol f ,pos are the initial and final state of lithiation of the positive electrode during the
discharge process.

The negative electrode was then calculated based on cell capacity and average negative
electrode active material, which was another design variable.

Lneg =
Qcell

Fcs,max,neg εs,neg,avg∆solneg
(5)

When changing the negative electrode average active material ratio, the thickness was
adjusted accordingly. In this way, we investigated the effect of different active material
ratios, while balancing the areal capacity of each electrode, making sure that both positive
and negative electrodes were used efficiently.

The applied current, iapp (Am−2), was calculated as below:

iapp = C-rate × Qcell (6)

Specific energy (Whkg−1) and power (Wkg−1) values were calculated from the equa-
tion below:

Ecell =
1

Mcell

∫ tdischarge

0
Vcell (t)iappdt (7)

Pcell =
1

tdischarge · Mcell

∫ tdischarge

0
Vcell (t)iappdt (8)

where Vcell is the cell voltage, and Mcell is the cell weight (kgm−2):

Mcell = Mccs + Mneg + Msep + Mpos

Mccs = ρAl LAl + ρCuLCu

Mneg = ρeεe,neg,avgLneg + ρnegεs,neg,avgLneg + ρbinderεbinderLneg

Msep = ρeεe,sepLsep + ρsepεs,sepLsep

Mpos = ρeεe,pos,avgLpos + ρposεs,pos,avgLpos + ρbinderεbinderLpos

(9)

where the subscripts ccs, Al, Cu, e, and binder stand for current collectors, aluminum, cop-
per, electrolyte, and binder and additives, respectively, and εe,avg is the average electrolyte
ratio of each electrode. Since the cell weight does not affect the partial differential equations,
the effect of gradient porosity was not considered here and the average porosity values
were used in the calculations.

Parameters used in the electrochemical–thermal model are shown in Tables A1–A3
in Appendix A. The units for the electrolyte concentration (ce) and temperature (T) in the
electrolyte property equations are based on mol/cm3 and K, respectively.
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Table 2. Summary of the governing equations of the P2D model.

Variable Equation Boundary and Initial Conditions

Charge conservation in solid ∂
∂x

(
σ

e f f
s

∂ϕs
∂x

)
= asi

Φs|x=0 = 0,
∂Φs

∂x

∣∣∣∣
x=Lneg

= 0

∂Φs

∂x

∣∣∣∣
x=Lneg+Lsep

= 0,

σ
e f f
s

∂Φs

∂x

∣∣∣∣
x=Lneg+Lsep+Lpos

= −iapp

Mass conservation in solid particles ∂cs
∂t = 1

r2
∂
∂r

(
Dsr2 ∂cs

∂r

)
∂cs

∂r

∣∣∣∣
r=0

= 0,

Ds
∂cs

∂r

∣∣∣∣
r=rp

= − i
F

,

cs|t=0 = cs0

Charge conservation in electrolyte − ∂
∂x

(
κ

e f f
e

∂φe
∂x + κ

e f f
D

∂ ln ce
∂x

)
= asi

∂Φe

∂x

∣∣∣∣
x=0

= 0,

∂Φe

∂x

∣∣∣∣
x=Lneg+Lsep+Lpos

= 0

Mass conservation in electrolyte εe
∂ce
∂t = ∂

∂x

(
De f f

e
∂ce
∂x

)
+ as

(1−t+)
F i

∂ce

∂x

∣∣∣∣
x=0

= 0,

∂ce

∂x

∣∣∣∣
x=Lneg+Lsep+Lpos

= 0,

ce|t=0 = ce0

Butler–Volmer kinetics i = i0[exp
(

αa F
RT η

)
− exp

(
− αc F

RT η
)
] -

Exchange current density i0 = Fkcαc
s, surf cαa

e
(
cs,max − cs, surf

)αc -

Overpotential η = Φs − Φe − Eeq -

Heat transfer ρCp
∂T
∂t = K ∂2T

∂x2 + q

K
∂T
∂x

∣∣∣∣
x=0

= h(T − T0),

− K
∂T
∂x

∣∣∣∣
x=Lneg+Lsep+Lpos

= h(T − T0),

T|t=0 = T0

Heat generation rate
q =asi(Φs − Φe − U) + asiT

∂U
∂T

+ σ
e f f
s

(
∂Φs

∂x

)2

+ κ
e f f
e

(
∂Φe

∂x

)2
+ κ

e f f
D

(
∂ ln ce

∂x

)(
∂Φe

∂x

) -

The developed model was used to analyze the effect of applying gradient active mate-
rial profiles on the cell’s specific energy. These profiles were generated under the following
assumptions: the ratio of binder and additive was considered to be 0.1, the minimum
amount of solid active material in each electrode could not be below 0.2 (maximum elec-
trolyte fraction is 0.7), and the maximum amount of solid active material was 0.8 (minimum
electrolyte fraction is 0.1). Each profile consisted of 10 points that were evenly spaced along
the electrodes’ thicknesses. The generated points were connected using the cubic-piecewise
interpolation method, and the average active material ratio was equal to the area beneath
the plot, which was numerically calculated with a tolerance of 0.001.

The points were generated under the condition that each point had to be smaller or
equal to the point in front of it, so that the lowest amount of active material was next to
the separator (higher porosity) and the highest amount was next to the current collectors
(lower porosity), as depicted in Figure 1. The reason for such an assumption is shown in
Figure 2.
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Figure 1. Schematic representation of an LIB cell with uniform and gradient electrodes, where the
uniform electrodes have constant porosity, compared to the gradient electrodes that have a varied
porosity throughout their thickness.

(a) (b)

(c) (d)

Figure 2. Effect of the direction of the porosity gradient profile on energy density. (a) Profile with
a low active material next to the separator, (b) profile with a high active material ratio next to the
current collector, (c) comparison of the effect of the two profiles on energy density, (d) an example of
the effect of gradient profiles on energy density with low active material next to the separator.

In Figure 2a, the active material distribution is considered to be the highest close to
the current collectors; conversely, in Figure 2b, it is considered to be the highest close to the
separator. Figure 2c illustrates the effect of these two profiles on the Ragone plots. While



Batteries 2024, 10, 336 9 of 21

the first combination improves the Ragone plot, the second profile decreases the energy
level significantly at all C-rates. However, not all the profiles with the right direction lead to
an improved energy level. In Figure 2d, all the points are displayed with all the generated
profiles with a low to high direction; however, there are some points that fall below the
base energy level. It is also possible that a profile improves the energy at a high C-rate and
reduces it at low C-rates. This indicates the need for optimization to find the best active
material profile that can result in the highest improvement at all C-rates.

2.2. Neural Network Model Development

Artificial neural networks (ANNs) are data-driven algorithms modeled after the
structure of biological neurons in the human brain [32]. These models comprise a network of
interconnected neurons designed to learn complex patterns within a dataset [33]. A neural
network consists of an input layer, an output layer, and one or more hidden layers. When
a network contains two or more hidden layers, it is referred to as a deep neural network
(DNN) [34]. ANNs are versatile tools applicable to both supervised and unsupervised
learning, as well as classification and regression tasks.

In a neural network (NN) model, information is transmitted from the input layer
to the hidden layers through weight coefficients, bias terms, and activation functions.
[35]. The weights show the importance of each feature, the bias is the intercept, and
the activation function is a mathematical equation that adds non-linearity to the model,
therefore enabling it to capture patterns. The weights and biases are randomly selected
initially and then adjusted during the training procedure to minimize a loss function,
defined as the discrepancy between the model predictions and actual targets in regression
tasks [36].

In the first hidden layer, a weighted sum of input features is passed through the
activation function to produce the output of each neuron of the hidden layer. A weighted
sum of these outputs is then be fed to the neurons of the next hidden layer to pass through
the activation function of that layer and generate the inputs to the next hidden layer. This
forward procedure continues until reaching the output layer.

The non-linear output of each hidden layer can be shown as al and defined as

zl = W lal−1 + bl (10)

al = fh(zl) (11)

where l = 1, 2, . . . , N − 1, W l and bl are the weight matrix and bias term of the ith hidden
layer, and the input layer is defined as a0 = x. The final prediction of the NN can be
shown as

zN = W N aN−1 + bN (12)

f (x) = fo(zN) (13)

where fo is the activation function of the output layer.
In this study, a feed-forward DNN was developed to map the porosity distributions

and positive electrode thickness to the specific energy at each operating C-rate, as shown
in Figure 3. The model was developed in Python using TensorFlow and Keras libraries.
The inputs to the model include the following: 10 points from the porosity profiles of
the positive electrode (εpos,1, εpos,2, . . . , εpos,10), 10 points from the porosity profiles of the
negative electrode (εneg,1, εneg,2, . . . , εneg,10), average active material value of the positive
and negative electrodes (εpos,avg, εneg,avg), positive electrode thickness (Lpos), and C-rate
(24 inputs). The specific energy is the target of the NN model. The reason for not considering
power density as another target is that our analysis showed that the power density is
primarily influenced by the C-rate rather than any other design parameter. Thus, regardless
of variations in electrode thicknesses, average active material ratios, and gradient profiles,
the power density would remain nearly constant at each C-rate. Considering that the C-rate
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is already considered as an input feature, considering the power density as a second target
would be redundant.

The training dataset was generated using 11 profiles for each electrode (10 gradient and
one constant) for thicknesses of Lpos = 120, 130, 140, 150, and 160 µm; C-rate = 1, 2, 3, 4, 5;
and an average active material of 0.7 and 0.65 for each electrode (overall resulting in
12,100 data points). Since the dataset was generated using a physics-based model, it did
not contain outliers resulting from sensor errors, which are common in the measured data
of experimental works. However, as shown in Figure 2, some profiles may cause a sudden
drop in energy density at certain C-rates. These data points were not removed from the
training dataset, and all the generated data were used for training the NN model. This
approach allowed the model to learn how to discriminate the profiles that have the potential
to increase the energy density level from those that lead to a reduction in energy density. A
histogram of the train and test data is presented in Figure A3.

The model had two hidden layers, each with 1024 neurons and with the Sigmoid
activation function for both hidden layers, defined as

fh(zl) =
1

1 + e−zl
(14)

and a linear activation function for the output layer. The train and test split ratio was
(70:30) and 20% of the training data were kept for hold-out validation. Both stochastic
gradient descent (SGD) and adaptive moment estimation (Adam) optimizers were tested
for weight optimization. Similarly to SGD, the Adam optimizer also updates the weights,
utilizing the gradient of the loss function. However, it also incorporates the first and
second moments of the gradient to calculate an adaptive learning rate for each individual
weight and bias [37]. This adaptive learning rate can lead to a more efficient training
procedure and faster convergence [38]. Due to its superior performance during training,
the Adam optimizer was used as the final optimization method for the model. The dropout
method was employed as the regularization technique to prevent overfitting. This method
was applied to both the first and second hidden layers with different rates. Through this
experimentation, it was observed that implementing this method solely on the first hidden
layer and with a rate of 0.5 yielded better performance compared to the other configurations.
The model had a sufficiently complex structure, was trained for a considerable number of
epochs, and utilized an adaptive learning rate through the Adam optimizer. These methods
were implemented to mitigate the occurrence of underfitting (Table 3).

Table 3. Summary of the structure of the NN model and utilized techniques.

Component Details

Input layer 24 input features
Hidden layer 2 Dense layers, 1024 neurons

Activation function (Hidden layer) Sigmoid
output layer 1 output

Activation function (Output layer) Linear
Optimizer Adam

Regularization Dropout (after the first hidden layer)
Validation method Hold-out

The training history of the model is shown in Figure 4a by considering the mean
squared error (MSE) as the loss function, defined as

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (15)

The MSE is a large value at the beginning of training (around 7000), but it quickly
reduces to low values after the first few epochs (around 100 after 20 epochs) and then gradu-
ally decreases from then on. The MSE value is presented in a logarithmic scale to provide a
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clearer representation of the training process. Figure 4b shows the performance of the model
on the test data, indicating the generalizability of the model to unseen data. The model’s
generalizability is further tested in the next section by comparing the ML predictions to
new porosity profiles with physics-based simulations of the electrochemical model.

Figure 3. Architecture of the NN used in this study, outlining the input features, input layer, hidden
layers, and the specific energy prediction in the output layer.

(a) (b)

Figure 4. The NN model performance plotted as the (a) loss history throughout 1000 epochs,
and (b) the performance of the developed model on the test data. The blue line indicates the perfect
fit (y = x).

3. Results

The developed NN model could quickly calculate the effect of the active material
profiles on energy density within the selected range of positive electrode thicknesses at
each C-rate. Therefore, a substantial dataset of candidate active material distributions was
generated for four different case studies, where

• Case 1: εpos,avg = 0.7 and, εneg,avg = 0.7,
• Case 2: εpos,avg = 0.7 and, εneg,avg = 0.65,
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• Case 3: εpos,avg = 0.65 and, εneg,avg = 0.7,
• Case 4: εpos,avg = 0.65 and, εneg,avg = 0.65

In each case study, a total of 50 distinct profiles were generated for the positive and
negative electrodes. The combination of these profiles yielded 2500 different combinations.
The trained neural network systematically evaluated all 2500 combinations to determine the
most optimal choice. The optimum choice was determined by finding the active material
distributions for both electrodes that resulted in the greatest total energy difference. The
energy difference at each C-rate is defined as

∆Ei,j = Ei,j − Ei,Base (16)

where Ei,j is the specific energy of the jth profile combination (j = 1, 2, . . . , 2500) at ith
C-rate (i = 1, 2, . . . , 5) and Ei,Base is the energy density value of the same C-rate with the
uniform electrodes, and ∆Ei,j is the difference caused by applying the profiles compared to
the uniform electrode. The optimization criterion is defined as

max(Sj =
5

∑
i=1

∆Ei,j) (17)

where Sj is the total summation of the energy difference for the jth profile combination,
and the combination that yields the maximum value of Sj is the frontier solution.

An exhaustive search was conducted across the entire design space, rather than
employing a structured optimization method. This is because the NN model is highly
efficient, allowing for rapid calculation of the effect of the candidate profiles. Furthermore,
due to the random generation of the profiles, it was not possible to start the optimization
procedure from a specific starting point in the design space and gradually move forward to
achieve an optimum. A similar method was adopted in reference [27], demonstrating the
reliability of such strategies.

When performing the optimization task, three of the profile combinations with the
highest amount of total energy difference values were selected for five positive electrode
thicknesses (Lpos = 120, 130, 140, 150, and 160 µm) in each case. The results indicated that
some of the optimal distributions were common across the different thicknesses in each
case. Therefore, it can be concluded that the optimal active material distribution profiles
were independent of the electrode thickness and mostly related to the amount of average
active material. Among all the distributions found for the five different thicknesses, two of
the most repeated distributions were selected as the representatives of each case study.
These distributions are shown in the Figure 5. The exact value of each point shown in
Figure 5 is represented in Tables A4 and A5 in Appendix B.

The two representative distributions were then applied to the electrodes and the
resulting Ragone plots were obtained from the physics-based model simulation, as can be
seen in Figure 6. For the sake of simplicity, only three positive electrode thicknesses of 120,
140, and 160 µm are shown in the figure.

The two distributions had a very close effect on all thicknesses for Case 1, while there
was a slight difference between the resulting energy levels in the other cases, especially Case 3.
It can be seen that the effect of gradient profiles was more obvious as the electrodes became
thicker and as the C-rate increased. In order to demonstrate that the profiles did not result in
an energy drop at lower C-rates, C-rates of 0.2C and 0.5C are also shown in the plots.
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(a) (b)

(c) (d)

Figure 5. The two most repeated distributions for all the selected electrode thicknesses in each case
study. These case studies are (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4.

Table 4 shows the energy density at 5C in each case and the percentage improvement
compared to the uniform electrodes. In Case 1 and Case 2, the theoretical capacity of the
cells was equal for each positive electrode thickness. However, in Case 2, the average active
material of the negative electrode was slightly lower than in Case 1. Consequently, the
negative electrode thickness was higher to maintain the same electrode areal capacity based
on Equation (5). This lower active material ratio yielded a higher relative improvement and
also a higher energy density value across all the thicknesses. Comparing Case 3 and Case 4, it
can be seen that a lower negative active material ratio also yielded a higher energy, but the
percentage improvement was not necessarily higher. This shows that a slight reduction in the
average active material ratio of the negative electrode, together with applying a profile, can be
more helpful in enhancing the energy level, while having the same theoretical cell capacity.

As can be seen from Figure 6, the power density was fairly consistent across the four dif-
ferent cases and electrode thicknesses at each C-rate. There was a slight difference between
cases 1 and 2, compared to cases 3 and 4. This implies that the average active material ratio
had a small impact on the power density. However, the disparity in power density among the
three thicknesses was insignificant, indicating that the electrode thickness had minimal impact
on the power density. For each electrode thickness and at each C-rate, the difference in power
density between the uniform and gradient profiles was also negligible. The only obvious
observed difference was for the thickness of 160 µm at 5C for Case 1 and Case 2. This was
due to an extremely short discharge time at these two points, leading to a small denominator
in Equation (8). By applying the gradient profiles, the discharge time considerably increased,
resulting in a small power density decrease, but a substantial energy density enhancement. For
other thicknesses and C-rates, the power density difference between the uniform and gradient
electrodes was insignificant. Given that during the optimization task, the focus was solely on
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the energy difference between the uniform and gradient electrodes, it can be concluded that
disregarding the power density as a secondary objective was a valid assumption.

(a) (b)

(c) (d)

Figure 6. Improved Ragone plots by applying the two selected distributions for C-rates between 0.2C
and 5C for (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4. Square and triangle symbols represent the
effect of distribution number 1 and number 2, respectively.

Table 4. Comparison of energy levels of gradient electrodes and uniform electrodes at 5C.

Specific Energy (Wh/kg)

Lpos (µm) Distribution Case 1 Case 2 Case 3 Case 4

120
Uniform 92.79 98.39 125.39 147.60

no. 1 126.89 (36.75%) 138.46 (40.73%) 137.78 (9.88%) 157.86 (6.95%)
no. 2 126.74 (36.59%) 136.24 (38.47%) 139.51 (11.26%) 156.02 (5.70%)

140
Uniform 60.36 62.50 88.15 103.65

no. 1 96.78 (60.34%) 109.48 (75.17%) 107.16 (21.57%) 126.99 (22.52%)
no. 2 97.14 (60.93%) 104.10 (66.56%) 115.03 (30.49%) 131.32 (26.70%)

160
Uniform 22.01 18.20 53.01 61.72

no. 1 63.13 (186.82%) 77.37 (325.11%) 78.24 (47.59%) 97.31 (57.66%)
no. 2 65.10 (195.77%) 69.85 (283.79%) 87.03 (64.18%) 100.49 (62.82%)

The effect of the gradient profiles on the capacity of the cell is represented in Figure 7.
In all cases, the gradient profiles resulted in a higher deliverable capacity, and the improve-
ment was clearer as the applied current was increased. In Case 1, a relative loss of 88.74% in
capacity at 5C compared to the capacity at 1C was seen for the uniform electrodes. This rel-
ative capacity loss was 65.56% for the gradient electrodes. In Case 2, the capacity reduction
was improved from 90.72% to 58.55%, showing a higher improvement compared to Case 1.
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The capacity improvement was also higher in Case 4 compared to Case 3, improving from
71.56% to 54.22% in Case 3, and from 66.09% to 46.41% in Case 4.

(a) (b)

(c) (d)

Figure 7. Discharge voltage vs. cell capacity for C-rate between 1C and 5C for Lpos = 160 µm
considering (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4. Square and triangle symbols represent
the effect of distribution number 1 and number 2, respectively.

Figure 8 represents a comparison between the physics-based model simulations and
NN predictions for the three most optimal distributions identified during the optimization
process. The results indicate that the NN could predict the energy values with a high level
of accuracy for all four case studies. However, the error was slightly higher for the cases
where the positive electrode active material was 0.65, especially at lower energy levels
(high C-rates). This could have been because, for thinner electrodes, the active material
profiles generated very close energy levels; therefore, it would be more difficult for the NN
model to learn the relations.

The primary benefit of using a NN as a substitute for electrochemical–thermal simu-
lation for this optimization task is its low computational cost. The time required for each
dataset (121 profiles, one thickness, and 5 C-rates) to be generated using the electrochemical–
thermal model was about 2.5 h. Considering the same computational time, if the 2500 pro-
files were evaluated using the electrochemical–thermal model, the time required for cal-
culation would have been about 2.15 days. Alternatively, the time required for the ML
model to process the 2500 profiles was about 2 min. Therefore, if the parametric analysis
for all thicknesses and four cases was directly performed using the physics-based model,
it would have required about 43 days. In contrast, performing such an analysis using the
NN model was completed in just 40 min. Since the ML model performed well on unseen
datasets, it can be considered to be a viable option for such parametric analysis, making the
calculations much lighter compared to the physics-based model simulation.
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(a) (b)

(c) (d)

Figure 8. Comparison of physics-based model simulations and NN predictions for (a) Case 1,
(b) Case 2, (c) Case 3, and (d) Case 4. The blue line indicates the perfect fit (y = x).

4. Conclusions

This study presented a NN surrogate model to investigate the impact of gradient active
material profiles on the energy density of lithium-ion batteries. The model learned the
relationship between the energy density and the profiles, electrode thickness, and C-rates
by utilizing a dataset from an electrochemical–thermal model. The NN showed an accuracy
comparable to that of the physics-based model, with a substantially reduced computation
time, enabling it to evaluate a large number of profiles within minutes. Using this method,
we investigated the relationship between electrode thicknesses and porosity profiles, and
determined profiles that could cause energy improvement at 1C to 5C without reducing
the energy at low C-rates. The efficiency of the NN model facilitated the optimization of
the gradient profiles for both positive and negative electrodes across four different case
studies. The randomly generated profiles provided a combination of layered and gradual
variations in the active material throughout the electrodes’ thickness. This offered greater
flexibility compared to the layered structures, enabling the generation of various profiles
leading to a considerable energy density enhancement at high C-rates.

The drawback of this method is the need for a substantial dataset to train the NN model.
Implementing ensemble methods or employing alternative machine learning techniques
such as linear models, support vector machines, and Gaussian process regression, which
usually perform better on small datasets could help resolve this issue.

The surrogate model could be used to investigate other optimization criteria, such as
the highest energy at each C-rate and high energy at high C-rates, while allowing a certain
energy decrease at lower C-rates. Furthermore, the surrogate model could be employed
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for inverse design applications, where a performance requirement is defined and then the
thickness, porosity, and electrode structures can be optimized simultaneously.
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Appendix A

Figure A1. Equilibrium potential vs. state of lithiation for positive and negative electrodes [39].

Figure A2. Temperature derivative of equilibrium potential vs. state of lithiation for positive and
negative electrodes, from COMSOL library.
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Table A1. Parameters used in the P2D model.

Property LixC6 Electrolyte/Separator NMC(111)

Separator thickness 1, Lsep (µm) - 20 -
Electrolyte volume fraction in separator 2,
εe, sep - 0.4 -
Binder volume fraction 1, εbinder 0.1 - 0.1
Particle radius 1, rp (µm) 8 - 5
Bruggeman coefficient 1, p 1.5 1.5 1.5
Solid electrical conductivity 2,
σs

(
S m−1) 100 - 0.1

Solid diffusivity, Ds
(
m2 s−1) 1.45 × 10−13 3,4 - 1 × 10−14 3

Max Li+ concentration in solid 3,
cs,max

(
mol m−3) 31,507 - 49,000

Initial Li+ concentration in electrolyte 2,
ce,0

(
mol m−3) - 1200 -

Reaction rate constant 2,
k0

(
m2.5 mol−0.5 s−1

)
6.15 × 10−11 - 6.15 × 10−11

Initial state of lithiation 5, soli 0.89 - 0.25
Final state of lithiation 5, sol f 0.022 - 0.728

Electrolyte ionic conductivity 3, κe
(
S m−1) κ(ce, T) = ce × 102[−10.5 + 0.074T − 6.96 × 10−5T2

+ 668ce − 17.8ceT + 0.028ceT2

+ 4.94 × 105c2
e −886c2

e T
)2

]
Electrolyte diffusivity 3, De

(
m2 s−1) De(ce, T) = 10

−4−
(

4.43+ 54
T−5·ce×103−229

+0.22×103 ·ce

)

Molar activity 3, 1 + ∂ ln f±
∂ ln ce

1 +
∂ ln f±
∂ ln ce

= (0.601 − 7.59 · c0.5
e

+31000[2.53 − 0.0052T)] · c1.5
e )/

(
1 − t0

+

)
1 Assumed based on common values in the literature. 2 Reference [23]. 3 COMSOL material properties library.
4 Reference [25]. 5 Trial and error within the commonly used range in the literature was employed to set the open
circuit voltage between 4.3 and 2.5 V.

Table A2. Electrolyte-filled thermal properties of different cell parts [23].

Property (Unit) Negative Electrode Separator Positive Electrode

Heat capacity,

Cp

(
J kg−1 K−1

) 1437 1978 900

Thermal conductivity,

K
(

W m−1 K−1
) 5 1 5

Table A3. Density values of cell parts [23].

Cell Part Density Value (kg m−3)

NMC111 4210
Graphite 2200

Electrolyte 1324
Separator 855

Al current collector 2707
Cu current collector 8954
Binder and additive 1800
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Appendix B

Figure A3. Distribution of the train and test data.

Table A4. Positive electrode points.

Case 1 Case 2 Case 3 Case 4

Points No. 1 No. 2 No. 1 No. 2 No. 1 No. 2 No. 1 No. 2

εpos,1 0.6053 0.6053 0.601 0.601 0.3097 0.5069 0.5231 0.5231

εpos,2 0.6053 0.6053 0.601 0.601 0.5339 0.5069 0.5231 0.5231

εpos,3 0.6053 0.6053 0.601 0.601 0.5339 0.5069 0.5231 0.5231

εpos,4 0.6053 0.6053 0.601 0.601 0.5339 0.5069 0.5231 0.5231

εpos,5 0.6053 0.6053 0.601 0.601 0.5339 0.5069 0.5231 0.5231

εpos,6 0.7966 0.7966 0.7999 0.7999 0.7837 0.7905 0.7783 0.7783

εpos,7 0.7966 0.7966 0.7999 0.7999 0.7837 0.7905 0.7783 0.7783

εpos,8 0.7966 0.7966 0.7999 0.7999 0.7837 0.7939 0.7783 0.7783

εpos,9 0.7966 0.7966 0.7999 0.7999 0.7837 0.7939 0.7783 0.7783

εpos,10 0.7966 0.7966 0.7999 0.7999 0.7837 0.7939 0.7783 0.7783

Table A5. Negative electrode points.

Case 1 Case 2 Case 3 Case 4

Points No. 1 No. 2 No. 1 No. 2 No. 1 No. 2 No. 1 No. 2

εneg,1 0.6582 0.6183 0.5583 0.4329 0.6913 0.6608 0.6 0.606

εneg,2 0.6582 0.6326 0.5583 0.6301 0.6913 0.6608 0.6091 0.606

εneg,3 0.6582 0.6746 0.5583 0.6301 0.6913 0.6608 0.6091 0.606

εneg,4 0.6582 0.6746 0.5823 0.6301 0.6913 0.6608 0.6437 0.606

εneg,5 0.6582 0.6746 0.6749 0.6301 0.6913 0.6608 0.6437 0.606

εneg,6 0.6582 0.6746 0.6749 0.6301 0.6913 0.6608 0.6554 0.606

εneg,7 0.7675 0.7585 0.6785 0.6301 0.6913 0.7594 0.6554 0.606

εneg,8 0.7675 0.7585 0.6865 0.6301 0.7181 0.7594 0.6554 0.7504

εneg,9 0.7675 0.7585 0.7704 0.7963 0.7181 0.7594 0.7192 0.7772

εneg,10 0.7675 0.7585 0.7704 0.7963 0.7703 0.7594 0.7192 0.7772



Batteries 2024, 10, 336 20 of 21

References
1. Khan, F.; Rasul, M.; Sayem, A.; Mandal, N. Design and optimization of lithium-ion battery as an efficient energy storage device

for electric vehicles: A comprehensive review. J. Energy Storage 2023, 71, 108033. [CrossRef]
2. Park, K.; Park, J.; Seong, W.; Yoon, K.; Hwang, T.; Ko, K.; Han, J.; Jaedong, Y.; Kang, K. Understanding capacity fading mechanism

of thick electrodes for lithium-ion rechargeable batteries. J. Power Sources 2020, 468, 228369. [CrossRef]
3. Gao, X.; Liu, X.; He, R.; Wang, M.; Xie, W.; Brandon, N.; Wu, B.; Ling, H.; Yang, S. Designed high-performance lithium-ion battery

electrodes using a novel hybrid model-data driven approach. Energy Storage Mater. 2021, 36, 435–458. [CrossRef]
4. Chen, Y.; Zhao, B.; Yang, Y.; Cao, A. Toward high-areal-capacity electrodes for lithium and sodium ion batteries. Adv. Energy

Mater. 2022, 12, 2201834. [CrossRef]
5. Zhang, X.; Ju, Z.; Zhu, Y.; Takeuchi, K.; Takeuchi, E.; Marschilok, A.; Yu, G. Multiscale understanding and architecture design of

high energy/power lithium-ion battery electrodes. Adv. Energy Mater. 2021, 11, 2000808. [CrossRef]
6. Appiah, W.; Park, J.; Song, S.; Byun, S.; Ryou, M.; Lee, Y. Design optimization of LiNi0.6Co0.2Mn0.2O2/graphite lithium-ion cells

based on simulation and experimental data. J. Power Sources 2016, 319, 147–158. [CrossRef]
7. Guo, W.; Sun, Z.; Vilsen, S.; Meng, J.; Stroe, D. Review of “grey box” lifetime modeling for lithium-ion battery: Combining physics

and data-driven methods. J. Energy Storage 2022, 56, 105992. [CrossRef]
8. Zhang, H.; Ren, D.; Ming, H.; Zhang, W.; Cao, G.; Liu, J.; Wang, L.; Song, J.; Qiu, J.; Wang, J.; et al. Digital Twin Enables Rational

Design of Ultrahigh-Power Lithium-Ion Batteries. Adv. Energy Mater. 2023, 13, 2202660. [CrossRef]
9. Liu, C.; Liu, L. Optimal design of Li-ion batteries through multi-physics modeling and multi-objective optimization. J. Electrochem.

Soc. 2017, 164, E3254. [CrossRef]
10. Xue, N.; Du, W.; Gupta, A.; Shyy, W.; Sastry, A.; Martins, J. Optimization of a single lithium-ion battery cell with a gradient-based

algorithm. J. Electrochem. Soc. 2013, 160, A1071. [CrossRef]
11. De, S.; Northrop, P.; Ramadesigan, V.; Subramanian, V. Model-based simultaneous optimization of multiple design parameters

for lithium-ion batteries for maximization of energy density. J. Power Sources 2013, 227, 161–170. [CrossRef]
12. Wu, J.; Ju, Z.; Zhang, X.; Marschilok, A.; Takeuchi, K.; Wang, H.; Takeuchi, E.; Yu, G. Gradient design for high-energy and

high-power batteries. Adv. Mater. 2022, 34, 2202780. [CrossRef] [PubMed]
13. Yang, J.; Li, Y.; Mijailovic, A.; Wang, G.; Xiong, J.; Mathew, K.; Lu, W.; Sheldon, B.; Wu, Q. Gradient porosity electrodes for fast

charging lithium-ion batteries. J. Mater. Chem. 2022, 10, 12114–12124. [CrossRef]
14. Liu, L.; Guan, P.; Liu, C. Experimental and simulation investigations of porosity graded cathodes in mitigating battery degradation

of high voltage lithium-ion batteries. J. Electrochem. Soc. 2017, 164, A3163. [CrossRef]
15. Cao, W.; Liu, M.; Song, W.; Li, Z.; Li, B.; Wang, P.; Fisher, A.; Niu, J.; Wang, F. Regulating Sodium Deposition Behavior by a

Triple-Gradient Framework for High-Performance Sodium Metal Batteries. Adv. Sci. 2024, 11, 2402321. [CrossRef]
16. Ramadesigan, V.; Methekar, R.; Latinwo, F.; Braatz, R.; Subramanian, V. Optimal porosity distribution for minimized ohmic drop

across a porous electrode. J. Electrochem. Soc. 2010, 157, A1328. [CrossRef]
17. Golmon, S.; Maute, K.; Dunn, M. Multiscale design optimization of lithium ion batteries using adjoint sensitivity analysis. Int. J.

Numer. Methods Eng. 2012, 92, 475–494. [CrossRef]
18. Hosseinzadeh, E.; Marco, J.; Jennings, P. The impact of multi-layered porosity distribution on the performance of a lithium ion

battery. Appl. Math. Model. 2018, 61, 107–123. [CrossRef]
19. Zhou, H.; Gao, L.; Li, Y.; Lyu, Y.; Guo, Z. Electrochemical performance of lithium-ion batteries with two-layer gradient electrode

architectures. Electrochim. Acta 2024, 476, 143656. [CrossRef]
20. Du, Z.; Wood, D.; Daniel, C.; Kalnaus, S.; Li, J. Understanding limiting factors in thick electrode performance as applied to high

energy density Li-ion batteries. J. Appl. Electrochem. 2017, 47, 405–415. [CrossRef]
21. Yu, R.; Li, P.; Wang, K.; Zhang, H. Numerical Investigation on the Impact of Linear Variation of Positive Electrode Porosity upon

the Performance of Lithium-Ion Batteries. J. Electrochem. Soc. 2023, 170, 050502. [CrossRef]
22. Amiri, M.; Håkansson, A.; Burheim, O.; Lamb, J. Lithium-ion battery digitalization: Combining physics-based models and

machine learning. Renew. Sustain. Energy Rev. 2024, 200, 114577. [CrossRef]
23. Wu, B.; Han, S.; Shin, K.; Lu, W. Application of artificial neural networks in design of lithium-ion batteries. J. Power Sources. 2018,

395, 128–136. [CrossRef]
24. Quartulli, M.; Gil, A.; Florez-Tapia, A.; Cereijo, P.; Ayerbe, E.; Olaizola, I. Ensemble surrogate models for fast LIB performance

predictions. Energies 2021, 14, 4115. [CrossRef]
25. Gao, T.; Lu, W. Physical model and machine learning enabled electrolyte channel design for fast charging. J. Electrochem. Soc.

2020, 167, 110519. [CrossRef]
26. Sui, C.; Li, Y.; Li, X.; Higueros, G.; Wang, K.; Xie, W.; Hsu, P. Bio-Inspired Computational Design of Vascularized Electrodes for

High-Performance Fast-Charging Batteries Optimized by Deep Learning. Adv. Energy Mater. 2022, 12, 2103044. [CrossRef]
27. Miyamoto, K.; Broderick, S.; Rajan, K. Three-dimensional microbattery design via an automatic geometry generator and

machine-learning-based performance simulator. Cell Rep. Phys. Sci. 2021, 2, 100504. [CrossRef]
28. Bryntesen, S.N.; Strømman, A.H.; Tolstorebrov, I.; Shearing, P.R.; Lamb, J.J.; Burheim, O.S. Opportunities for the state-of-the-art

production of lib electrodes—A review. Energies 2021, 14, 1406. [CrossRef]

http://doi.org/10.1016/j.est.2023.108033
http://dx.doi.org/10.1016/j.jpowsour.2020.228369
http://dx.doi.org/10.1016/j.ensm.2021.01.007
http://dx.doi.org/10.1002/aenm.202201834
http://dx.doi.org/10.1002/aenm.202000808
http://dx.doi.org/10.1016/j.jpowsour.2016.04.052
http://dx.doi.org/10.1016/j.est.2022.105992
http://dx.doi.org/10.1002/aenm.202202660
http://dx.doi.org/10.1149/2.0291711jes
http://dx.doi.org/10.1149/2.036308jes
http://dx.doi.org/10.1016/j.jpowsour.2012.11.035
http://dx.doi.org/10.1002/adma.202202780
http://www.ncbi.nlm.nih.gov/pubmed/35644837
http://dx.doi.org/10.1039/D2TA01707E
http://dx.doi.org/10.1149/2.1021713jes
http://dx.doi.org/10.1002/advs.202402321
http://dx.doi.org/10.1149/1.3495992
http://dx.doi.org/10.1002/nme.4347
http://dx.doi.org/10.1016/j.apm.2018.04.001
http://dx.doi.org/10.1016/j.electacta.2023.143656
http://dx.doi.org/10.1007/s10800-017-1047-4
http://dx.doi.org/10.1149/1945-7111/acd083
http://dx.doi.org/10.1016/j.rser.2024.114577
http://dx.doi.org/10.1016/j.jpowsour.2018.05.040
http://dx.doi.org/10.3390/en14144115
http://dx.doi.org/10.1149/1945-7111/aba096
http://dx.doi.org/10.1002/aenm.202103044
http://dx.doi.org/10.1016/j.xcrp.2021.100504
http://dx.doi.org/10.3390/en14051406


Batteries 2024, 10, 336 21 of 21

29. Bryntesen, S.N.; Finne, P.H.; Svensson, A.M.; Shearing, P.R.; Tolstik, N.; Sorokina, I.T.; Vinje, J.; Lamb, J.J.; Burheim, O.S. Structured
aqueous processed lignin-based NMC cathodes for energy-dense LIBs with improved rate capability. J. Mater. Chem. A 2023,
11, 6483. [CrossRef]

30. Chen, Z.; Danilov, D.; Eichel, R.; Notten, P. Porous electrode modeling and its applications to Li-ion batteries. Adv. Energy Mater.
2022, 12, 2201506. [CrossRef]

31. Plett, G. Battery Management Systems, Volume I: Battery Modeling; Artech House: Norwood, MA, USA, 2015.
32. Ren, Z.; Du, C. A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries.

Energy Rep. 2023, 9, 2993–3021. [CrossRef]
33. Wei, Z.; He, Q.; Zhao, Y. Machine learning for battery research. J. Power Sources 2022, 549, 232125. [CrossRef]
34. Gao, T.; Lu, W. Machine learning toward advanced energy storage devices and systems. Iscience 2021, 24, 101936. [CrossRef]

[PubMed]
35. Sui, X.; He, S.; Vilsen, S.; Meng, J.; Teodorescu, R.; Stroe, D. A review of non-probabilistic machine learning-based state of health

estimation techniques for Lithium-ion battery. Appl. Energy 2021, 300, 117346. [CrossRef]
36. Ye, J.; Xie, Q.; Lin, M.; Wu, J. A method for estimating the state of health of lithium-ion batteries based on physics-informed

neural network. Energy 2024, 294, 130828. [CrossRef]
37. Kinga, D.; Adam J.B. A method for stochastic optimization. In Proceedings of the International Conference on Learning

Representations, San Diego, CA, USA, 7–9 May 2015; Volume 5.
38. Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the 2018 IEEE/ACM 26th International

Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–2.
39. Han, S.; Tang, Y.; Rahimian, S. A numerically efficient method of solving the full-order pseudo-2-dimensional (P2D) Li-ion cell

model. J. Power Sources 2021, 490, 229571.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1039/D2TA08606A
http://dx.doi.org/10.1002/aenm.202201506
http://dx.doi.org/10.1016/j.egyr.2023.01.108
http://dx.doi.org/10.1016/j.jpowsour.2022.232125
http://dx.doi.org/10.1016/j.isci.2020.101936
http://www.ncbi.nlm.nih.gov/pubmed/33458608
http://dx.doi.org/10.1016/j.apenergy.2021.117346
http://dx.doi.org/10.1016/j.energy.2024.130828

	Introduction
	Materials and Methods
	Electrochemical–Thermal Model
	Neural Network Model Development

	Results
	Conclusions
	Appendix A
	Appendix B
	References

