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Abstract: The crystal structures of orthosilicate cathode materials play a critical role in
determining the physical and chemical properties of Li-ion batteries. Accurate predictions
of these crystal structures are essential for estimating key properties of cathode materials in
battery applications. In this study, we utilized crystal structure data from density functional
theory (DFT) calculations, sourced from the Materials Project, to predict monoclinic and
orthorhombic crystal systems in orthosilicate-based cathode-based materials with Li–Si–(Fe,
Mn, Co)–O compositions. An artificial neural network (ANN) model with a 6-22-22-22-1
architecture was trained on 85% of the data and tested on the remaining 15%, achieving an
impressive accuracy of 97.3%. The model demonstrated strong predictive capability, with
only seven misclassifications from 267 datasets, highlighting its robustness and reliability
in predicting the crystal structure of orthosilicate cathodes. To enhance interpretability and
model reliability, we employed the Index of Relative Importance (IRI) to identify critical
features influencing predictions. Additionally, a user-friendly graphical user interface was
also developed to facilitate rapid predictions, enabling researchers to explore structural
configurations efficiently and accelerating advancements in battery materials research.

Keywords: density functional theory; artificial neural network; crystal system; classification;
orthosilicate; Li-ion batteries

1. Introduction
Lithium-ion batteries have garnered significant attention as one of the most promising

next-generation power sources [1]. Among various materials, lithium-ion cathode materials
Li–Si–(Fe, Mn, Co)–O compositions are of particular research interest for Li-ion batteries due
to low cost, environmental safety, high energy density, and stability capacity [2]. The crystal
structure of cathode materials plays a crucial role in determining their physical and chemical
properties. Therefore, developing and applying suitable experimental and computational
methods for cathode material characterization is essential to improve understanding and
optimization of these properties [3].

Recent advancements in cathode materials, such as high-capacity layered oxides,
polyanionic compounds, and spinel-type structures, have significantly enhanced the per-
formance and stability of Li-ion batteries. Chaozhu Shu [4–6] developed physical and
chemical structural materials to boost the cycling stability of Li-ion batteries using Ni-rich
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cathodes. These developments underscore the need for a comprehensive approach com-
bining experimental techniques and computational modeling to explore and optimize the
physical and chemical properties of cathode materials. Such methods can provide deeper
insights into the mechanisms that govern their performance and stability.

The Materials Project [3] provides open, web-based access to calculate the chemical and
physical properties of identified and predicted materials using density functional theory
(DFT) calculations. Researchers can freely extract substantial data on the material properties
of the cathode. Advances in computational power have enabled rapid developments in
calculating the electronic structures of cathode materials, allowing for assessing the physical
and chemical properties of a wide range of novel and complex materials. DFT calculations
are a robust approach to estimating materials’ electron density and band structure [7].

The vast amount of data on materials must be effectively analyzed to improve un-
derstanding of their properties. Usually, the multifaceted correlations between different
physical properties are complex to learn using traditional statistical models. Typically, the
complex and multifaceted correlations between various physical and chemical properties
have been difficult to capture using conventional statistical models. However, recent ad-
vancements in machine learning have significantly improved our ability to identify and
model these intricate relationships. Machine learning techniques have been applied to
solve complex classification problems across various scientific fields, such as the prediction
of the state of health in Li-ion batteries [8], specific volumes [9], crystal structures [10], and
the prediction of battery cycle life [11]. These studies emphasize the need for robust models
to accurately represent and understand the relationships among these properties.

The crystal systems often exhibit overlapping structural and chemical characteristics,
such as similar unit cell volumes, bond angles, or energy levels, making accurate clas-
sification a challenging task. Traditional classification methods may struggle to capture
these nuanced similarities and differences, particularly when structural parameters fall
within overlapping ranges. For example, small variations in formation energy, density, or
bandgap might not be sufficient to clearly separate monoclinic from orthorhombic struc-
tures, leading to potential misclassifications since the crystal structure of cathode materials
plays a crucial role in determining the performance (i.e., lithium diffusion, structural and
chemical stability, potential prediction, etc.) of lithium-ion batteries. Thus, advancing and
refining computational and experimental techniques for orthosilicate cathode characteri-
zation is essential for gaining deeper insights into their physical and chemical attributes.
These challenges highlight the need for advanced predictive models, like artificial neural
networks (ANNs), which can effectively handle the complex, nonlinear relationships in-
herent in crystal structure data. Unlike conventional methods, ANNs can learn intricate
patterns from large datasets, adapting to subtle distinctions within overlapping features
and achieving higher classification accuracy. By leveraging advanced techniques such as
deep learning, feature extraction, and sensitivity analysis, these models can better identify
the unique properties that distinguish monoclinic and orthorhombic systems. This research
employs an ANN to predict the monoclinic and orthorhombic crystal systems of Li–Si–(Fe,
Mn, Co)–O cathode materials based on density functional theory calculations. The primary
objectives of this study include:

• To analyze the correlation between crystal structures determined by density functional
theory (DFT) calculations.

• To utilize an ANN model to predict crystal systems (monoclinic and orthorhombic) of
orthosilicate cathodes.

• To evaluate the performance of the ANN models using correlation coefficients.
• To develop user-friendly software for classifying crystal structures.
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2. Materials and Methods
2.1. Experimental Data

The data of the present work was collected from the Materials Project [3,12]. The
dataset contains the results of DFT calculations for 267 cathode materials with Li–Si-(Fe, Mn,
Co)–O compositions. The DFT calculations and optimizations are performed using VASP
software for crystal structure data [13]. The dataset includes monoclinic and orthorhombic
crystal structures of various compositions of cathode materials and respective constituents,
i.e., the formation of energy (Ef), energy above hull (EH), bandgap (Eg), number of sites (Ns),
density (D) and the volume of the unit cell (V). The 267 entries are split into 227 samples
for training and 40 for testing to optimize the model architecture and assess its accuracy.
The output values are encoded as 0 for monoclinic and 1 for orthorhombic. A statistical
overview of crystal structure data: minimum, mean, and maximum values and the input
data and ANN-predicted crystal structures for the six independent variables are available
in Supplementary Tables S1 and S2.

This flowchart outlines the process for developing an ANN model to predict crystal
structure properties using DFT data, as shown in Figure 1. After initial training, the model
undergoes optimization cycles to maximize classification accuracy and refine the correlation
between inputs and the predicted crystal structure. The finalized model offers predictions
on new data and analyzes the relative importance of input variables, providing insights
into how each property affects the output. Then, a graphical user interface (GUI) enables
users to input data, obtain predictions, and interpret variable impacts, making the model
practical and accessible for research and industry applications.
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Figure 1. Workflow for predicting crystal structures using machine learning and DFT data.

The pair plot presented in Figure 2 provides a comprehensive overview of the distri-
butions and pairwise relationships among several variables: formation energy (EF), energy
above the hull (EH), bandgap (Eg), number of sites (Ns), density (D), and volume of the unit
cell (V). Each variable’s distribution is displayed along the diagonal cells as histograms,
highlighting how values are spread for individual variables. For example, the variable
Ns has a fairly uniform distribution, while the volume of unit cells is skewed with higher
concentrations at lower values. The scatter plots in the off-diagonal cells illustrate the
relationships between each pair of variables, revealing insights into possible correlations.
A notable positive relationship appears between Ns and density, as indicated by a clear
upward trend in their scatter plot, suggesting that as Ns increases, density tends to increase
as well. Conversely, some pairs, such as EF and EH, exhibit more dispersed scatter patterns,
implying weaker or more complex interactions. Additionally, the scatter plots use vari-
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ous colors, which likely correspond to different categories or groups within the dataset,
adding a categorical dimension to the analysis. This pair plot effectively captures both
the individual characteristics and the interdependencies within the dataset, facilitating the
identification of patterns and possible correlations across variables.

Batteries 2025, 11, x FOR PEER REVIEW 4 of 15 
 

concentrations at lower values. The scatter plots in the off-diagonal cells illustrate the re-
lationships between each pair of variables, revealing insights into possible correlations. A 
notable positive relationship appears between Ns and density, as indicated by a clear up-
ward trend in their scatter plot, suggesting that as Ns increases, density tends to increase 
as well. Conversely, some pairs, such as EF and EH, exhibit more dispersed scatter patterns, 
implying weaker or more complex interactions. Additionally, the scatter plots use various 
colors, which likely correspond to different categories or groups within the dataset, add-
ing a categorical dimension to the analysis. This pair plot effectively captures both the 
individual characteristics and the interdependencies within the dataset, facilitating the 
identification of patterns and possible correlations across variables. 

 

Figure 2. Pair plot of lithium cathode properties for Si–(Mn, Fe, Co)–O systems extracted from the 
Materials Project database. 

2.2. ANN Model Development 

The ANN model consists of six input neurons, EF, EH, Eg, Ns, D, and V, and a single 
output neuron representing crystal structure types (monoclinic and orthorhombic), as il-
lustrated in Figure 1. We trained the feed-forward neural network with the backpropaga-
tion algorithm using the sigmoid function as an activation function [14]. During training, 
the model adjusts the connection weights to minimize the difference between the pre-
dicted and actual crystal structures for each input. By tuning the ANN’s hyperparameters, 
the best model for predicting crystal structure was selected based on the average error in 
test data. The optimal configuration, with three hidden layers containing twenty-two neu-
rons each, a momentum term of 0.3, a learning rate of 0.6, and 40,000 iterations, resulted 
in only seven misclassifications out of 40 test samples while achieving zero misclassifica-
tions in the training set. Adjusting the hyperparameters of the ANN model allowed for 
the selection of optimal architecture for estimating the crystal structures. When using 

Figure 2. Pair plot of lithium cathode properties for Si–(Mn, Fe, Co)–O systems extracted from the
Materials Project database.

2.2. ANN Model Development

The ANN model consists of six input neurons, EF, EH, Eg, Ns, D, and V, and a single
output neuron representing crystal structure types (monoclinic and orthorhombic), as illus-
trated in Figure 1. We trained the feed-forward neural network with the backpropagation
algorithm using the sigmoid function as an activation function [14]. During training, the
model adjusts the connection weights to minimize the difference between the predicted
and actual crystal structures for each input. By tuning the ANN’s hyperparameters, the
best model for predicting crystal structure was selected based on the average error in test
data. The optimal configuration, with three hidden layers containing twenty-two neurons
each, a momentum term of 0.3, a learning rate of 0.6, and 40,000 iterations, resulted in only
seven misclassifications out of 40 test samples while achieving zero misclassifications in the
training set. Adjusting the hyperparameters of the ANN model allowed for the selection of
optimal architecture for estimating the crystal structures. When using three hidden layers
with 22 neurons in each, the model achieved an accuracy of 91%. By varying the momentum
term and learning rate from 0.1 to 0.9 and at the values of 0.3 and 0.6, respectively, we
achieved an accuracy of 93%. Finally, by increasing the number of iterations to 40,000, the
model’s accuracy improved to 97%, as shown in Figure 3.
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(c) learning rate, and (d) iterations.

The graphs collectively illustrate the impact of various hyperparameters—hidden
neurons, momentum term, learning rate, and iterations—on the accuracy of the ANN
model for predicting crystal structures. Varying the hyperparameters of the ANN model
allows for the selection of the most optimal architecture for estimating crystal structures.
Figure 3a compares model accuracy with two versus three hidden layers as the number of
neurons per layer varies. Accuracy generally increases with more neurons, reaching a peak
of around 22 neurons for three hidden layers, achieving 91% accuracy indicating an effective
configuration. Figure 3b illustrates the effect of the momentum term, where accuracy is
highest at 0.3; increasing beyond this point leads to a decline, suggesting that a moderate
momentum value strikes a balance between training speed and stability. When both the
momentum term and learning rate were set at 0.3 and 0.6, respectively, accuracy improved
to 93%. In Figure 3c, the learning rate is varied, with accuracy peaking around a rate of
0.6; very low or very high learning rates result in decreased accuracy, underscoring the
need for a balanced rate for effective training. Finally, Figure 3d demonstrates that accuracy
improves with an increasing number of iterations, stabilizing around 40,000 iterations,
where the model achieved a high accuracy of 97%. These results highlight the importance
of fine-tuning each hyperparameter to achieve optimal model performance. The final
model configuration yielded only seven misclassifications in the test set, demonstrating the
robustness and reliability of the ANN model.
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3. Results and Discussion
3.1. Model Predictions for Crystal System Classification

We developed several ANN models using code written in the programming language
C to estimate the class of the crystal structures. The classification capabilities of the ANN
models were tested on a dataset of 267 samples, with 40 samples reserved for testing. We
obtained a minimum of seven misclassifications by varying ANN parameters with the
6-22-22-22-1 architecture, a momentum term of 0.3, and a learning rate of 0.6.

Figure 4 illustrates the weight distribution in the ANN model with a 6-22-22-22-1 archi-
tecture at both the initial and optimal stages of training. Initially, the weights are randomly
initialized within a narrow range of −0.5 to 0.5 (shown as light gray points), reflecting the
untrained state of the model. After 40,000 iterations, the final weights (depicted in red)
show a much broader range, spanning from −47.85 to 45.76. This significant expansion in-
dicates the adjustments made during training to capture the complex relationships between
input features and crystal structure classification. The wider distribution and increased
dispersion of the weights demonstrate the model’s enhanced complexity and optimization,
enabling improved classification performance and predictive accuracy.
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Figure 4. Weight distribution comparison in ANN model before and after training.

Monoclinic samples were labeled as 0, and orthorhombic samples as 1, with a cut-off
value of 0.5 used for classification. Figure 5 illustrates the ANN model’s classification
performance for monoclinic and orthorhombic crystal structures in both training and
testing datasets using distance metrics.

Figure 5a shows the distribution of 118 monoclinic samples from the training set,
which were clustered within a narrow distance range and resulted in zero misclassifications.
Similarly, Figure 5b shows the distribution of 109 orthorhombic samples, which were also
clustered within a narrow range and resulted in zero misclassifications.

For the testing dataset, slight classification challenges are observed. Figure 5c shows
the distribution of 21 monoclinic samples, with most correctly classified near the origin,
but four samples are misclassified because they fall outside the main cluster. Figure 5d
shows the distribution of 19 orthorhombic samples, with most correctly classified, although
three samples are misclassified because they deviate from the primary cluster.
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Figure 5. (a–d) Prediction of the class of crystal systems.

Overall, these graphs highlight the ANN model’s high classification accuracy in train-
ing data, with perfect classification for both monoclinic and orthorhombic crystal structures.
While minor misclassifications are observed in the testing data, they reveal areas for poten-
tial model refinement, as shown in Table 1. This classification performance is promising
and comparable to or better than the results reported in the literature, demonstrating the
robustness of the ANN model for crystal structure prediction.

In 40 test datasets, the seven bold datasets are indicated as misclassified data.
The structural and chemical similarities between monoclinic and orthorhombic crystal

systems make distinguishing them difficult. Minor inaccuracies or overlapping patterns
in the data can impact the model’s predictions. As ANNs are often considered “black
boxes”, it can be difficult to understand exactly how they make these distinctions. However,
sensitivity or feature importance analysis could help identify which features are most
influential in distinguishing between these two structures, potentially revealing areas for
data enhancement.

Table 2 highlights specific samples that illustrate these challenges. For instance, sam-
ples 5 and 12, both monoclinic, were misclassified as orthorhombic because their volumes
closely match the average volumes of orthorhombic structures. Similarly, sample 14 was
misclassified from monoclinic to orthorhombic due to its energy above the hull being close
to orthorhombic averages. In contrast, samples 33 and 35, which are orthorhombic, were
misclassified as monoclinic because their formation energy, site count, and density values
resemble those typically observed in monoclinic structures. Lastly, samples 34 and 39, both
orthorhombic, were misclassified as monoclinic due to similarities in bandgap and unit cell
volume, which are close to typical monoclinic values.
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Table 1. The testing data of the crystal systems with the cathode formula and space group.

S. No. Formula Space Group Experimental Ann Predicted

1 Li2MnSiO4 Pcmn Orthorhombic Orthorhombic
2 Li2MnSiO4 Pmnb Orthorhombic Orthorhombic
3 LiMn(SiO3)2 Pbca Orthorhombic Orthorhombic
4 LiMnSiO4 Pna21 Orthorhombic Orthorhombic
5 Li2MnSiO4 Pca21 Monoclinic Orthorhombic
6 Li4Mn2Si4O13 Pna21 Orthorhombic Orthorhombic
7 Li2Mn2(SiO3)3 Pnma Orthorhombic Orthorhombic
8 LiMnSiO4 Imma Orthorhombic Orthorhombic
9 Li2FeSiO4 Pcmn Orthorhombic Orthorhombic

10 Li2CoSiO4 Pcmn Orthorhombic Orthorhombic
11 Li2CoSiO4 C2221 Orthorhombic Orthorhombic
12 LiCoSiO4 P212121 Monoclinic Orthorhombic
13 LiCoSiO4 Imcm Orthorhombic Orthorhombic
14 LiMnSiO4 Pna21 Monoclinic Orthorhombic
15 Li2Co2Si2O7 C2cm Orthorhombic Orthorhombic
16 LiCoSiO4 Pb21a Orthorhombic Orthorhombic
17 Li2CoSiO4 Pca21 Orthorhombic Orthorhombic
18 Li3CoSiO5 P21nb Orthorhombic Orthorhombic
19 LiCoSiO4 Cmcm Orthorhombic Orthorhombic
20 Li2MnSiO4 P21/c Monoclinic Monoclinic
21 Li4MnSi2O7 Cc Monoclinic Monoclinic
22 Li4Mn2Si3O10 C2/c Monoclinic Monoclinic
23 Li2Mn3Si3O10 C2/c Monoclinic Monoclinic
24 Li4MnSi2O7 C2 Monoclinic Monoclinic
25 LiMnSiO4 P21 Monoclinic Monoclinic
26 Li2MnSiO4 P21/c Monoclinic Monoclinic
27 LiMn(SiO3)2 C2/c Monoclinic Monoclinic
28 Li2Mn(SiO3)2 Cc Monoclinic Monoclinic
29 Li2MnSiO4 P21/c Monoclinic Monoclinic
30 Li2Mn(SiO3)2 C2/c Monoclinic Monoclinic
31 Li2Mn2Si2O7 P21/c Monoclinic Monoclinic
32 Li10Mn(SiO5)2 C2/m Monoclinic Monoclinic
33 Li3MnSi2O7 P21 Orthorhombic Monoclinic
34 Li5Mn(SiO4)2 C2 Orthorhombic Monoclinic
35 Li2Mn(Si2O5)2 P21/c Orthorhombic Monoclinic
36 Li2Mn2Si3O10 Cc Monoclinic Monoclinic
37 Li2Mn2(SiO3)3 P21/c Monoclinic Monoclinic
38 LiMn(SiO3)2 C2/c Monoclinic Monoclinic
39 Li2MnSi3O8 P21 Orthorhombic Monoclinic
40 Li3Mn2(SiO4)2 P21 Monoclinic Monoclinic

Table 2. The misclassified data from the total datasets and input values of the crystal system.

S. No. Ef EH Eg Ns V D Exp ANN

241 −2.62 0.005 3.027 16 3.073 174.862 0 1
242 −2.619 0.007 3.407 32 3.005 357.648 0 1
243 −2.61 0.012 3.026 28 2.852 360.726 0 1
247 −2.887 0.04 3.144 52 2.69 679.10 0 1
253 −2.65 0.054 2.582 64 2.8 763.324 1 0
261 −2.291 0.144 0.511 14 4.15 126.395 1 0
263 −2.453 0.072 2.84 26 3.579 278.304 1 0

These misclassifications arise from overlapping structural and physical parameters
in volume, energy above the hull, formation energy, site density, and bandgap between
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monoclinic and orthorhombic systems. Such overlaps make it difficult for the ANN to
differentiate between the two structures accurately. Although ANNs identify complex
patterns well, they struggle with subtle, overlapping features. Thus, improving accuracy
may involve introducing discriminative features like interatomic distances, bond angles, or
symmetry-specific descriptors or applying ensemble methods and decision rules to address
overlaps in monoclinic and orthorhombic systems.

3.2. Evaluation of ANN Model Performance Using Confusion Matrix

Table 3 presents the confusion matrix for the ANN model’s predictions. This matrix
details the model’s performance, including true positives (TPs), false negatives (FNs), false
positives (FPs), and true negatives (TNs). The ANN correctly predicted the crystal structure
for 135 samples, classified as TPs, while four samples were misclassified as FNs despite
being correct according to DFT data. Additionally, there were three FPs, where the ANN
predicted a positive match incorrectly, and 125 TNs, where the model accurately identified
samples that did not match the specified class in the DFT data. In total, 139 samples were
predicted as positive (135 TPs + 4 FNs) and 128 as negative (3 FPs + 125 TNs).

Table 3. Confusion matrix for ANN predicted, and DFT calculated data.

n = 267 Actual Value

ANN model prediction

135 TPs 4 FNs 139

3 FPs 125 TNs 128

138 129 267

The confusion matrix demonstrates the ANN model’s high accuracy and reliability in
mirroring the DFT-calculated crystal structures, as reflected by the substantial number of
true positive and true negative classifications. Based on the confusion matrix in Table 3, we
calculated various performance metrics to evaluate the ANN model’s predictive accuracy.
These metrics include accuracy, which reflects the overall correctness of the model’s predic-
tions; Matthews correlation coefficient (MCC), which provides a balanced measure of the
quality of binary classifications; recall, which indicates the model’s ability to identify posi-
tive cases correctly; specificity, assesses the model’s effectiveness in recognizing negative
cases; F-score, which balances precision and recall to evaluate the model’s reliability. These
metrics provide a comprehensive understanding of the ANN model’s performance and its
capability to accurately distinguish between the crystal structures.

Accuracy =
TP + TN

(TP + TN + FP + FN)
= 0.973

MCC =
(TP × TN − FP × FN)

√
(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

= 0.951

Recall (RCC) =
TP

(TP + FN)
= 0.971

Specificity (precision (PRE)) =
TP

(TP + FP)
= 0.978

F-score (F) =
2 × RCC × PRE

REC + PRE
= 0.974
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Sensitivity (NPV) =
TN

(TN + FN)
= 0.970

The ANN model demonstrated strong performances across various evaluation metrics,
indicating its robustness and reliability in predicting the crystal structure. An accuracy of
0.973 shows that the model correctly predicted 97.3% of the instances. A specificity of 0.978
measures the proportion of true negatives correctly identified by the model. A specificity of
0.978 means that the model accurately identified 97.8% of the negative cases, demonstrating
its effectiveness in avoiding false positives.

A Matthews correlation coefficient of 0.951 is a comprehensive metric that considers
true and false positives and negatives. An MCC of 0.951 suggests a strong correlation
between the observed and predicted classifications, reflecting the model’s robustness and
balanced performance across all classes. The F-score is the harmonic mean of precision and
recall, providing a single metric that balances both. An F-score of 0.974 indicates that the
model maintains high precision (correctly identifying positive cases) and recall (correctly
identifying all relevant cases), making it highly effective overall. Recall (sensitivity) (0.971)
measures the proportion of true positive cases correctly identified by the model. A recall of
0.971 means the model successfully identified 97.1% of the actual positive cases, ensuring
minimal false negatives. Sensitivity (0.97), often used interchangeably with recall, also
measures the model’s ability to identify actual positive cases. A sensitivity of 0.97 confirms
the model’s high capability in detecting positive instances accurately. These metrics collec-
tively demonstrate the ANN model’s high reliability and effectiveness in predicting the
class of the crystal structures of materials.

The proposed ANN model achieved an impressive prediction accuracy of 97.3%,
as shown in Figure 6, significantly outperforming traditional machine learning methods
depicted in the comparative analysis. Meanwhile, models such as k-nearest neighbors
(kNN), neural network (NN), random forest (RF), and extremely randomized trees (ERTs)
demonstrated respectable accuracy levels ranging from 75% to 83% at 85% training data;
the performance of the ANN model highlights its ability to handle complex, nonlinear
relationships in the dataset effectively. This high accuracy underscores the robustness
and reliability of the 6-22-22-22-1 ANN architecture, optimized with a learning rate of
0.6 and a momentum term of 0.3. The ANN model’s superior classification capability
and minimal misclassifications demonstrate its potential as a powerful tool for predicting
crystal structures in orthosilicate cathode materials for lithium-ion batteries. Such excep-
tional performance makes it a valuable resource for accelerating advancements in battery
materials research and development.

While the proposed ANN model achieves high accuracy (97.3%) and demonstrates
superior capability in capturing nonlinear relationships in the dataset, it also has potential
disadvantages, including risks of overfitting and computational complexity. Overfitting
occurs when the model memorizes the training data but fails to generalize to new data.
Cross-validation was employed during model training to mitigate overfitting and ensure
robust performance. Regularization techniques, such as weight decay and dropout, are
additional strategies that can be incorporated to enhance model generalization further.

Another challenge is the computational complexity associated with the 6-22-22-22-
1 ANN architecture, which demands significant resources for training. However, this
is counterbalanced by the model’s ability to effectively handle complex datasets where
simpler models like kNN or RF may fall short. Future work will explore the use of
ensemble methods and lightweight architectures to reduce computational requirements
while maintaining high performance. These considerations present a fair assessment of the
model’s advantages and limitations, providing a pathway for its continued refinement and
application in material science research.
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3.3. Graphical User Interface Design Based on ANN Model Synaptic Weights

As shown in Figure 7, we have developed an intuitive graphical user interface (GUI)
powered by a carefully optimized 6-22-22-22-1 ANN model to facilitate crystal structure
predictions for the Li–Si–Fe–O system. By leveraging synaptic weights derived from exten-
sive training, the GUI provides users with a straightforward, interactive way to classify
crystal structures as monoclinic or orthorhombic. The underlying ANN model, ideal for
capturing complex patterns within DFT calculations, allows for precise structure identifica-
tion, effectively bridging advanced computation with user-friendly application. This tool
provides rapid, reliable predictions bypassing computationally demanding methods. Ac-
cessible format broadens predictive modeling, enabling researchers to explore the structural
tendencies within the Li–Si–Fe–O system efficiently.

3.4. Identification of Feature Importance

Figure 8 illustrates the Index of Relative Importance (IRI) [15,16] for input variables
in predicting crystal structures within the Li–Si–Fe–O system, distinguishing between
monoclinic and orthorhombic forms. Each input variable (V, D, NS, Eg, EH, EF) represents
a distinct property influencing structural configuration. The IRI values quantify each
variable’s influence, highlighting which factors dominate different structures.

Figure 8a presents IRI values for predicting the monoclinic structure, where NS and
EF show vital positive contributions essential for identifying monoclinic structures in this
system. Figure 8b also pertains to monoclinic classification but under a different condition,
where D and EF show notable negative contributions, indicating their inverse relationship
with this classification.

Figure 8c displays IRI values for orthorhombic structure predictions in the bottom
row. Here, EH and EF contribute notably, though with less consistency in direction than the
monoclinic classification. Figure 8d reveals a contrasting condition where EF has an over-
whelmingly positive IRI value, suggesting it is the primary determinant for orthorhombic
classification in this scenario. Overall, the figure highlights how EF, NS, and EH emerge as
highly influential variables, with impacts varying between monoclinic and orthorhombic
structures. This insight provides guidance on the critical atomic or electronic characteristics
in structural determinations within complex oxide systems.
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3.5. Study Limitations and Future Directions

While the ANN model effectively predicted crystal structures with an accuracy of
97.3%, certain limitations require attention. Overfitting remains a potential issue, particu-
larly with complex architectures. Although cross-validation mitigated this, future work
could explore regularization techniques to improve generalization. The computational
demands of the 6-22-22-22-1 architecture may limit scalability, suggesting the need for
lightweight models or ensemble approaches to balance performance and efficiency. Addi-
tionally, misclassifications due to overlapping material properties highlight the importance
of incorporating additional descriptors, such as interatomic distances or symmetry-specific
features, to enhance predictive accuracy. Expanding the dataset and applying the model
to other material systems could further improve its applicability and advance the use of
machine learning in material science.

4. Conclusions
We utilized an artificial neural network (ANN) model with a 6-22-22-22-1 architecture,

optimized for predicting two primary crystal systems (monoclinic and orthorhombic) in
orthosilicate cathodes with Li–Si–(Mn, Fe, Co)–O compositions. Our model achieved
impressive results with a learning rate of 0.6, a momentum term of 0.3, and 40,000 iterations.
Specifically, the ANN attained an accuracy of 97.3% and a Matthews correlation coefficient
(MCC) of 0.951, highlighting its predictive solid performance and robustness.

To enhance usability, we developed a GUI that allows researchers to input parameters
and obtain rapid predictions for crystal systems. This GUI enables researchers to explore
structural configurations efficiently, facilitating quick and reliable crystal system classification.
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and ANN-predicted crystal systems for six independent variables.
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