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Abstract: This paper examines the problem of modeling lithium–sulfur (Li-S) battery dis-
charge dynamics. The importance of this problem stems from the attractive specific energy
levels achievable by Li-S batteries, which can be particularly appealing for applications
such as aviation electrification. Previous research presents different Li-S battery models,
including “zero-dimensional” models that neglect diffusion while using the laws of elec-
trochemistry to represent reduction–oxidation (redox) rates. Zero-dimensional models
typically succeed in capturing key features of Li-S battery discharge, including the high
plateau, low plateau, and dip point visible in the discharge curves of certain Li-S battery
chemistries. However, these models’ use of one state variable to represent the mass of each
active species tends to furnish high-order models, with many state variables. This increases
the computational complexity of model-based estimation and optimal control. The main
contribution of this paper is to develop low-order state-space model of Li-S battery dis-
charge. Specifically, the paper starts with a seventh-order zero-dimensional model of Li-S
discharge dynamics, analyzes its discharge behavior, constructs phenomenological second-
and third-order models capable of replicating this behavior, and parameterizes these mod-
els. The proposed models succeed in capturing battery discharge behavior accurately over
a wide range of discharge rates. To the best of our knowledge, these are two of the simplest
published models capable of doing so.

Keywords: lithium–sulfur batteries; data-driven modeling; discharge dynamics

1. Introduction
This paper examines the problem of building simple, reduced-order models of lithium–

sulfur (Li-S) battery discharge dynamics. A typical Li-S battery cell uses a pure lithium
metal sheet or chip as a negative electrode, plus a sulfur–carbon composite material as
a positive electrode. Ions travel between these two electrodes through an electrolyte that
can be either solid or liquid [1,2]. Significant differences exist between the dynamics of
solid- versus liquid-electrolyte Li-S batteries. The focus of this paper is on modeling the
dynamics of liquid-electrolyte Li-S batteries.

Liquid-electrolyte Li-S batteries are very appealing for a number of different reasons.
First, they are capable of achieving much higher specific energies (i.e., energy storage
capacities per unit mass) than today’s commercial lithium-ion batteries [3,4]. Second, the
relative abundance of sulfur as a raw material, particularly compared to rare earth metals
such as cobalt, is potentially very appealing from both an environmental and economic cost
perspective [5]. Finally, the use of liquid electrolytes provides a reasonable balance between
the ability to deliver high levels of power versus the ability to store significant amounts of
energy. This is particularly important in light of the scientific community’s efforts to address
the limitations of liquid-electrolyte Li-S batteries, especially those limitations created by

Batteries 2025, 11, 15 https://doi.org/10.3390/batteries11010015

https://doi.org/10.3390/batteries11010015
https://doi.org/10.3390/batteries11010015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0000-0002-4714-2466
https://doi.org/10.3390/batteries11010015
https://www.mdpi.com/article/10.3390/batteries11010015?type=check_update&version=1


Batteries 2025, 11, 15 2 of 13

polysulfide shuttle [6]. Altogether, these advantages make liquid-electrolyte Li-S batteries
quite appealing for emerging applications such as aviation electrification.

There is a growing literature on the modeling, estimation, and control of liquid-
electrolyte Li-S battery dynamics [7–14]. Different Li-S battery models exist in the literature,
spanning different levels of model fidelity versus complexity. At the more complex extreme,
the literature presents models that capture the physics of both the diffusion of multiple
active species and the reactions between these species. At the simpler extreme, the literature
presents “zero-dimensional” Li-S battery models. These models neglect the diffusion
of ions in space (hence, the term “zero-dimensional”). However, they do utilize the
laws of electrochemistry to describe the rates of reduction–oxidation (redox) reactions
between different active species [15–17]. Moreover, it is possible within the context of
a zero-dimensional model to account for the underlying physics of species solubility and
precipitation, both of which play an important role in overall battery behavior. The zero-
dimensional approach typically furnishes dynamic models capable of capturing the key
features of battery charge and discharge. Modeling Li-S discharge behavior is particularly
important because of the complexity of this behavior as well as its impact on available
discharge power and energy.

Figure 1 presents experimental discharge results for a laboratory-fabricated Li-S battery
cell. The vertical axis in this figure shows the measured cell voltage, whereas the horizontal
axis shows discharge capacity, normalized with respect to the maximum discharge capacity
achieved in the cycling experiment. The cell was fabricated using the recipe employed in an
earlier work by the authors [16]. Moreover, the above discharge curve represents relatively
slow discharge, at a rate of C/9. The importance of this plot stems from the degree to which
it illustrates the typical phases seen during the discharge of certain liquid-electrolyte Li-S
cells. In particular, three distinct regions are visible in the plot: a high-voltage plateau,
a low plateau, and a “dip point” separating these two plateaus [18,19]. The existence of
these regions can be explained in terms of the multiplicity of active species involved in
battery charge/discharge behavior. In a fully charged cell, the two active species are pure
lithium in the negative electrode and sulfur in the positive electrode. As the battery is
discharged, lithium and sulfur react to form a sequence of active species—namely Li2S8aq,
Li2S6aq, Li2S4aq, and Li2Saq—and precipitated Li2S. The transition from the high plateau
to the low plateau involves the onset of the final reaction in a sequence of redox reactions
involving these species. This final reaction is a precipitation reaction, and is governed by
nucleation-growth dynamics [20,21]. A significant drop in voltage is required to trigger the
nucleation phase of this reaction, hence the existence of the “dip point”. Once nucleation
occurs, battery voltage rebounds as growth takes place, which brings about the low plateau
region. It is important to note that the above discharge behavior, particularly the existence
of the dip point (as well as its severity), depends on the specific battery chemistry under
examination, including the choice of electrolyte. Dip point behavior is especially visible for
the high-solubility DME/DOL electrolyte combination employed in the fabrication of the
battery cell used in Figure 1.

The literature presents a number of different models capable of capturing the above
Li-S battery discharge behavior accurately. Regardless of the type of model, one common
challenge is that practically all Li-S battery models in the literature suffer from significant
computational complexity. At least three reasons exist for this complexity:

• First, as explained above, the process of charging and discharging Li-S batteries
involves a sequence of reduction–oxidation reactions. Multiple chemical species are
involved in these reactions. This creates a need for higher-order models, where the
concentration of each chemical species is represented by a state variable. This can be
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particularly problematic for optimal control applications, given Bellman’s curse of
dimensionality [22].

• Second, the dynamics of Li-S batteries are highly nonlinear. One cause of this nonlin-
earity is the nucleation-growth process responsible for precipitation reactions in these
batteries. The dynamics of this nucleation-growth process play a very visible role in
overall battery discharge behavior, especially the existence of the above “dip point”.
This makes it important to model the nonlinearities of these batteries, and therefore
difficult to approximate their dynamics as linear.

• Third, the rates of different reactions in Li-S batteries are highly dependent on species
concentrations, in a manner that leads to numerical model stiffness.

Figure 1. Li-S battery discharge voltage characteristics.

Previous research in the literature attempts to address the above challenges through
model reduction and simplification [16,23]. However, even the simplest models of liquid-
electrolyte Li-S battery dynamics in the literature remain relatively complex compared
to simple lithium-ion battery models. The main contribution of this work is to show
that it is possible to build a low-order Li-S battery model that captures constant-current
discharge dynamics accurately, over a broad range of discharge currents. Towards this
goal, the paper begins by exploring a baseline seventh-order Li-S battery model from the
literature (Section 2). Simulating this model provides insights into the underlying behavior
of the battery’s state variables during discharge (Section 3). These insights motivate
the paper’s own model (Section 4). The model is constructed in a “phenomenological”
manner, meaning that its mathematical structure is designed to replicate the dynamic
behaviors seen in the higher-order baseline model from the literature. The paper fits
this reduced-order model to the simulation results from the higher-order baseline model
(Section 5). The quality of fit is quite appealing, across a broad range of discharge rates.
The end result is a model that captures the discharge dynamics of liquid-electrolyte Li-S
batteries accurately, over a broad range of constant discharge rates, while only containing
two to three state variables. In particular, a second-order version of this model achieves
excellent simulation accuracy for low C-rates, and reasonable accuracy at higher C-rates.
Moreover, a third-order version of this model achieves excellent simulation accuracy across
a very wide range of C-rates. To the best of the authors’ knowledge, these two variants
of the proposed model are some of the lowest-order models in the literature capable of
simulating Li-S battery discharge accurately. The primary limitation of such data-driven,
or “phenomenological”, reduced-order modeling is the fact that phenomenological models
need to be re-fitted for different battery chemistries. Physics-based models, in contrast, are
more easily transferable from one chemistry to another because of the generalizability of
the underlying fundamental laws of electrochemistry, but this often comes at the expense
of high computational complexity.
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2. Baseline Model
This section presents a baseline zero-dimensional model of Li-S battery discharge.

This model was originally developed by the electrochemistry community [15]. More
recent research by the authors and colleagues examined the parameterization of this
model from experimental data, as well as the simplification of this model for control
applications [16]. The model contains seven state variables. Five of these state variables
represent the masses of active species involved in Li-S battery redox reactions. The sixth
state variable represents the mass of the final precipitated species, and the seventh state
variable represents the porosity of the positive electrode material, which is influenced by
precipitation. The dynamics of the resulting seven state variables can be summarized using
the equations below.

First, let the masses of the various dissolved species in the Li-S battery be represented
by mi, where i = 1, . . . , q is the index of a given species and q is the total number of soluble
active species. Furthermore, let j be an index used for distinguishing between various
redox reactions in the Li-S battery, and let ij denote the effective current associated with
redox reaction j. Then, the law of conservation of mass can be used for expressing the rates
of change of all the dissolved active species not involved in the precipitation reaction, as
shown below (where all remaining terms in the equation are constant parameters):

ṁi = ∑
j

nSi Ms

njF
si,jij , for i = 1, . . . , q − 1 (1)

Next, the rate of change of the mass of the active species involved in the precipitation
reaction, as well as the rate of change of the mass of the precipitate, mSp , are governed by

ṁq =
nSq Ms

npF
sq,pip − ṁSp (2)

ṁSp = kpmSp(mq − Ssat) (3)

where Ssat is a saturation value of dissolved species mass, and all other terms in the above
state equations are constant. The use of the saturation value, Ssat, in this model, essentially
accounts for maximum species solubility.

Next, the rate of change of solid electrode porosity is related to the rate of precipitation
as follows:

ε̇ = −ωṁSp (4)

Next, the effective reaction currents appearing in the above state equations are gov-
erned by the Butler–Volmer equation, a fundamental law of electrochemistry:

ij = −avi0j {∏
i
(

mi

m0
i
)si,j e

F
2RT ηj − ∏

i
(

mi

m0
i
)−si,j e−

F
2RT ηj} (5)

where the rate of each reaction is related to porosity through the following equation for the
active reaction area:

av = a0
vεγ (6)

Next, the overpotentials driving the above Butler–Volmer equation can be expressed
in terms of the terminal battery voltage, V, and the reference potential for each reaction, Ej,
as follows:

V = ηj + Ej (7)

Next, the above reference potentials are related to species masses through the Nernst
equation, another fundamental law of electrochemistry:
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Ej = E0
j −

RT
njF

∑
i

si,j ln(
mi

nSi Msv
) (8)

Finally, the total battery current can be expressed as the sum of the individual reaction
currents as follows:

I = ∑
j

ij (9)

Altogether, the above equations form a differential algebraic equation (DAE) model
that can be used for simulating Li-S battery discharge behavior. More details of this model’s
equations and parameters can be found in the authors’ previous publications and earlier
work from the electrochemistry literature [15,16]. The use of this model for optimal control
studies is challenging because of its order, nonlinearity, numerical stiffness, and the fact
that, as a DAE model, it contains an algebraic loop as opposed to consisting solely of
explicit state equations.

3. Baseline Simulation
Figure 2 shows the results of simulating the above physics-based Li-S battery model

for a discharge rate of 1 C, assuming a 3 Ampere-hour cell. The horizontal axis repre-
sents normalized discharge capacity, whereas the vertical axis represents the values of
the model’s state variables. Six of the state variables represent the masses of either an
active or precipitated species, whereas the seventh state variable represents porosity. This
simulation is performed for the DAE model in section 2, reproducing earlier research by
the investigators [16].

Figure 2. Species mass histories for 1 C discharge.

The results in Figure 2 are particularly effective in explaining some of the complexities
associated with Li-S battery discharge modeling. As the figure clearly shows, battery discharge
involves a sequence of redox reaction, with each reaction causing a rise in the concentration
of a given active species before the next reaction depletes that concentration. The transition
between the high and low plateaus coincides with the onset of a precipitation reaction that
consumes a single active species, producing a precipitate that also influences porosity.

The discharge voltage profile corresponding to Figure 2 is shown in Figure 3. The fact
that this voltage profile shows a high plateau, low plateau, and dip point is consistent with
the degree to which zero-dimensional models are capable of capturing typical Li-S battery
discharge characteristics. The severity of dip point behavior depends at least partially on
the C-rate. Given the fact that this model is being simulated for a relatively large C-rate
of 1 C, it is not surprising to see significant dip behavior. The model is only simulated
until a low plateau voltage of approximately 1.95 V is reached. During laboratory cycling,
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liquid-electrolyte Li-S cells are often discharged down to voltage levels at the order of
1.7–1.8 V. However, as seen in Figure 1, once cell voltage drops to the 1.9–2 V range, the
remaining battery discharge capacity is typically very small. Therefore, the above DAE
model was designed in previous research to capture discharge characteristics down to
a voltage of roughly 1.9–2 V.

The goal of this paper is not to build a physics-based model capable of predicting
the above histories of the various active species masses. Rather, we seek a much simpler
model that can accurately capture the corresponding discharge voltage behavior, shown
in Figure 3. Ideally, such a model should consist of a small number of explicit ordinary
differential equations, and should be accurate over a broad range of discharge C-rates. This
is a challenging problem, given the degree to which Li-S battery discharge dynamics change
in nature with C-rate. Figures 4 and 5 illustrate this degree by showing different discharge
voltage curves, simulated for C-rates ranging from 0.02 C to 1 C. The plot in Figure 4 shows
time on the x-axis without scaling, whereas the plot in Figure 5 uses normalized discharge
capacity as its independent variable. The intent in showing the same results twice versus
time and discharge capacity is to emphasize the fact that Li-S battery discharge behavior
is strongly dependent on C-rate. Discharge time/rate is important when examining Li-S
battery discharge; it fundamentally affects the shape of the discharge characteristics curve.
For example, the severity of the dip point and the final battery discharge voltage both
show very strong variations with the C-rate. This adds complexity to the paper’s model
reduction goal. Section 4 proposes a model that addresses this complexity successfully.

Figure 3. Simulated discharge at a 1 C rate.

Figure 4. Li-S discharge voltage characteristics for different C-rates.
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Figure 5. Discharge characteristics versus scaled discharge capacity.

4. Proposed Model
The key idea behind the proposed model is to embrace a “phenomenological” mod-

eling approach, where different elements of the model reflect different battery discharge
behaviors. Three state variables are employed by the model to capture four specific behav-
iors. The first state variable, x1(t), captures (i) a relationship between open-circuit voltage
and state of charge for extremely slow discharge, with the dip point and the recovery from
this dip point both deliberately removed from the discharge characteristics. The second
state variable, x2(t), captures the dynamics of traversing the dip point. This includes
the dynamics associated with (ii) “dipping”, as well as the dynamics associated with (iii)
“recovery” from the dip point. Finally, the third state variable, x3(t), captures the dynamics
of (iv) voltage decay in the low plateau. Figure 5 shows that these dynamics are more
prominent at higher C-rates. This means that the state equation for x3(t) is more valuable
for modeling higher C-rate behavior. Given these choices of state variables, the proposed
model has the following structure:

ẋ1 =
−u
Q

(10)

ẋ2 = I1(x1)λ1x2 + I2(x1)λ2(x∗2 − x2) (11)

ẋ3 = I2(x1)λ3x3 (12)

y = g(x1)− x2 − x3 − Rsu (13)

where u(t) is discharge current, y(t) is discharge voltage, Rs is an effective Ohmic series
resistance, λ1,2,3 are the magnitudes of eigenvalues associated with different battery dynam-
ics, Q is battery charge capacity, and I1,2(x1) are indicator functions that equal unity during
dipping and recovery, respectively. In particular, these indicator functions are given by

I1(x1) = U (x1 − xd)(1 −U (x1 − xr))

I2(x1) = U (x1 − xr)
(14)

where U is the unit step function, xd is the state of charge associated with the onset of
dipping, and xr is the state of charge associated with the onset of recovery.

The structure of the above model is tailored in a manner that recognizes the fun-
damental change in battery behavior associated with the traversal of the dip point and
recovery from it. In particular, the model uses the function g(x1) to represent a low C-rate
open-circuit potential that depends solely on state of charge. Corrections are made to this
open-circuit potential through the dynamics of x2(t): a state variable that experiences rapid
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(in fact, dynamically unstable) growth at an eigenvalue λ1 during dipping, but recovers
to some value x∗2 in a manner governed by an eigenvalue −λ2 after dipping. Finally, an
additional correction is made during recovery from dipping by allowing an optional third
state variable, x3(t), to grow at an exponential rate governed by an eigenvalue λ3 in the
low plateau region. This third state variable is, therefore, intended to capture the curvature
of the voltage profile versus time in the low plateau region.

Intuitively, one expects the parameters of the above model to depend on discharge
C-rate. To appreciate this, examine the discharge voltage curves in Figures 4 and 5. Higher
C-rates translate to sharper dip points when the time axis is not scaled, meaning that the
“dipping” behavior occurs faster. Recovery from dipping at higher C-rates also occurs
faster, but to lower values of final voltage after recovery. Moreover, the curvature of the low
plateau region is more pronounced for higher C-rates, especially when examined versus
normalized/scaled discharge capacity. Altogether, these observations suggest that the
parameters of the proposed model need to be fitted differently for each C-rate. Cohesiveness
can still be achieved among different models associated with different C-rates by forcing
the function g(x1) to be the same regardless of C-rate. This motivates the model fitting
approach in Section V.

5. Model Fitting
To fit the above model to Li-S battery discharge behavior at multiple C-rates, we begin

by simulating discharge at a very low rate of 0.02 C. Then, we tailor the function g(x1) such
that it meets two criteria. First, the function g(x1) equals the discharge voltage at 0.02 C at
every state of charge outside a user-selected window that surrounds the dip point. Second,
inside the above user-selected window, the function g(x1) is a cubic function that merges
with the discharge voltage profile at the boundaries of the window with C1 continuity. In
other words, the values and slopes of the function g(x1) match the discharge voltage profile
at the edges of the above user-selected window.

Figure 6 shows the results of the above initial fitting exercise. The red curve represents
the function g(x1), which in turn represents open-circuit voltage (OCV) versus state of
charge (SOC). The blue curve, in contrast, represents discharge voltage versus state of
charge for a 0.02C discharge. Intuitively, the idea behind the above figure is to define an
OCV-SOC curve that reflects the traditional approach for measuring OCV versus SOC in
the laboratory, namely, the use of very slow cycling for such measurement. However, the
fitting process also accounts for the existence of the dip point, and for the fact that voltage
dipping behavior in Li-S cells is governed by transient dynamics, as opposed to steady-state
characteristics. Such transient dynamics exist even at very low C-rates, prompting the
above approach for extracting a representative OCV-SOC curve. One should note that
this curve is only an approximation of OCV-SOC behavior at infinitely slow discharge.
Moreover, one should note that the nonlinear nature of Li-S battery dynamics creates the
possibility that multiple OCV-SOC curves may exist for a given battery. The goal, in this
fitting exercise, is to use a “representative” slow discharge curve to construct the function
g(x1). This function is then used as a foundation for fitting other elements of the proposed
Li-S battery model, as discussed below. Forcing the function g(x1) to be the same for all
discharge rates ensures some degree of consistency and commonality among the different
battery models fitted for different C-rates.

Given the above OCV-SOC curve, we fitted the remaining elements of the proposed
model to the baseline higher-order Li-S battery model as follows. First, we selected a
representative set of six C-rates, namely, 0.02 C, 0.05 C, 0.1 C, 0.2 C, 0.5 C, and 1 C. Next,
for each C-rate, we simulated the baseline model to obtain discharge voltage versus time.
Next, keeping the function g(x1) fixed, we optimized a vector of eight model parameters
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independently for each C-rate. This vector included the following: (i,ii) the initial con-
ditions for x2(t) and x3(t) at the beginning of discharge; (iii,iv) the parameters xd and xr

governing the onset of dipping and recovery, respectively; (v) the parameter x∗2 affecting
the voltage at the end of recovery; and (vi,vii,viii) the parameters λ1,2,3 governing the rates
of dipping/recovery as well as the curvature of the low plateau. The optimization objective
was to minimize the sum of the squared differences between the discharge voltage profiles
associated with the baseline model versus the proposed model.

Figure 6. Results of fitting open-circuit voltage versus state of charge.

Figures 7 and 8 provide two snapshots of the optimization results associated with
the most extreme C-rates examined, namely, 1 C and 0.02 C. Both plots show discharge
voltage behavior versus time in order to emphasize the fact that the two plots correspond to
drastically different C-rates, and therefore significantly different discharge characteristics.
The quality of fit is excellent across the board, for all C-rates examined. Table 1 emphasizes
this conclusion by listing the root mean square (RMS) voltage deviations of the reduced-
order model from the benchmark model for each C-rate. Moreover, Table 2 lists the model
parameter values associated with this fitting.

Table 1. Accuracy of third-order model.

C-rate 0.02 0.05 0.1 0.2 0.5 1

RMSE (mV) 1.57 1.27 2.55 1.54 2.00 3.33

Figure 7. Discharge voltage at 1 C-rate.
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Figure 8. Discharge voltage at 0.02 C-rate.

The accuracy of the above fitting results is a direct consequence of the fact that there
are three state variables in the proposed model, with the third state variable representing
the curvature of the low plateau. This curvature matters most for higher C-rates, given
the higher-order dynamics excited by these C-rates. This presents an intriguing possibility
of fitting a second-order model, where the dynamics of x3(t) are neglected. Table 3 lists
the RMS voltage prediction errors obtained when a second-order version of the proposed
model is fitted to the results of the full-order model. Excellent accuracy levels are obtained
for low C-rates. However, significant deterioration in accuracy is visible at higher C-rates,
corresponding to the reduced ability of the model to capture the curvature of the high
plateau. Overall, the model continues to be reasonably accurate across all C-rates—a very
encouraging result given the fact that this is a second-order model. However, it is worth
noting that capturing battery dynamics accurately at higher C-rates requires a higher-order
model. This finding makes intuitive sense, considering the fact that higher C-rates do
trigger higher-order dynamics in electrochemical batteries. Figures 9 and 10 reinforce this
insight by showing the fitting results at both a low C-rate (namely, 0.02 C) and a high
C-rate (namely, 1 C). The second-order model clearly fits the lower C-rate better, with the
deterioration at the higher C-rate visually appearing in the form of poor capturing of the
curvature of the low plateau.

Table 2. Third -order model parameters.

C-rate 0.02 0.05 0.1 0.2 0.5 1

x2(0) (mV) 0.62 1.29 0.1 3.29 8.00 2.75

x3(0) (mV) 0.102 0.107 0.644 1.049 1.248 0.869

xd 0.70 0.69 0.72 0.68 0.67 0.68

xr 0.62 0.61 0.62 0.61 0.61 0.60

1000λ1 0.36 0.84 2.06 3.18 7.26 16.53

1000λ2 2.00 2.93 3.52 5.91 11.90 18.38

1000λ3 0.002 0.108 0.166 0.318 0.780 1.70

x∗2 (mV) 0.10 9.77 21.87 46.83 88.63 111.6

Rs (mΩ) 0.008 0.005 4.74 0.001 1.17 6.01

Table 3. Accuracy of second-order model.

C-rate 0.02 0.05 0.1 0.2 0.5 1

RMSE (mV) 1.45 2.75 5.14 6.97 7.61 7.37



Batteries 2025, 11, 15 11 of 13

Figure 9. Second-order model fitting results at 0.02 C.

Figure 10. Second-order model fitting results at 1 C.

6. Conclusions
The main contribution of this paper is to show that a pair of simple and intuitive

low-order models are capable of capturing the discharge behavior of a liquid-electrolyte
Li-S battery accurately over a broad range of C-rates. These models can be quite valuable for
battery estimation and control studies, given their low order. One particularly important
feature of these models is the fact that they enforce uniformity and consistency across
different C-rates by ensuring the adoption of a single representative OCV-SOC curve
across all these C-rates. A tradeoff exists between the computational simplicity of the
reduced-order models presented in this paper versus the inherent difficulty associated
with applying them to different battery chemistries. Specifically, because these models are
“phenomenological”, as opposed to physics-based, they may require re-fitting to different Li-
S battery chemistries. This makes it potentially harder to generalize the models to multiple
chemistries in comparison to physics-based modeling approaches—a sacrifice that may be
quite reasonable considering the associated significant reduction in model complexity.
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