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Abstract: Against the backdrop of automobile electrification, an increasing number of
battery-swapping stations for electric vehicles have been launched to address the issue of
slow battery charging under cold temperature conditions. However, due to the separation
of the discharging and charging processes for lithium-ion batteries (LIBs) at swapping
stations, and the circulation of batteries across different vehicles and stations, the operating
data become fragmented, making it difficult to accurately identify the battery state-of-health
(SOH). This study proposes a BiLSTM-Transformer framework that extracts the Constant
Voltage Time (CVT) feature using only charging data, enabling the precise estimation of
battery capacity degradation. Validation experiments conducted on battery samples under
different operating temperatures showed that the model achieved a normalized RMSE
of less than 1.6%. In ideal conditions, the normalized RMSE of the estimation reached
as low as 0.11%. This model enables SOH estimation without relying on discharge data,
contributing to the efficient and safe operation of battery swapping stations.

Keywords: lithium-ion battery; capacity estimation; transformer framework; swapping
stations; multi-feature analysis

1. Introduction
The electrification of vehicles is accelerating under the global wave of advancing

carbon neutrality targets. Governments in many countries and regions are actively pro-
moting the transition to low-carbon development in the public transportation sector, and
operational vehicles such as buses, cabs and internet taxis are being converted to purely
electric vehicles on a large scale. However, the problems of a long charging time and low
replenishment efficiency of operational vehicles are still restricting the promotion and
application of electric vehicles.

Solving the problem of slow charging of electric vehicles, power batteries adapted to
4C and 5C charging multipliers have come into being, compressing the replenishment time
to less than 20 min [1]. However, in cold regions, the application of fast charging technology
is greatly restricted. Studies have shown that battery aging is closely related to the use
of the environment, especially in cold regions, where a low temperature exacerbates the
internal aging side reactions of the battery, resulting in a significantly higher rate of capacity
degradation than in warmer regions [2,3]. In addition, the internal material diffusion
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capacity of the battery decreases under a low temperature, and when rapid charging, the
battery terminal voltage rises rapidly to reach the charging cut-off voltage, while also
increasing the risk of lithium metal deposition [4,5]. These factors seriously restrict the
application of fast charging technology in cold regions. In the electric vehicle power battery-
swapping technology, the batteries are rotated and have enough time for maintenance, and
each battery pack has enough time for charging and maintenance; therefore, it receives
special attention in the cold region [6–8].

For a shared power battery, its safety and reliability are especially important, and if a
battery fire accident occurs, the damage caused by it is often more serious. However, in the
application scenario of power batteries, LIBs are not fully depleted, which makes it difficult
to obtain the SOH through full charging/discharging. In addition, for electric vehicle
charged by means of battery swapping, the power battery data are fragmented between
the vehicle end and the swapping station. Moreover, a battery will rotate between different
vehicles and different swapping stations, which makes the estimation of the battery SOH
even more difficult. In the past, battery SOH estimations can be generally categorized
into two types: model-based methods and data-driven methods. Model-based methods
estimate battery capacity by updating parameters in a mathematical model of battery
aging, such as empirical exponential models and ensemble empirical models [9,10]. These
methods are usually combined with filtering algorithms to determine model parameters
and predict capacity. However, their accuracy is highly dependent on the fidelity of the
degradation model. In contrast, data-driven methods possess strong nonlinear mapping
capabilities. Early battery SOH data-driven techniques utilized tools such as support
vector machines [11] and neural networks [12–14]. With the advancement of artificial
intelligence, more complex architectural neural networks have demonstrated superior
performance in battery life prediction [15–17]. For example, the Bidirectional Long Short-
Term Memory (BiLSTM) neural network, which processes both forward and backward
information in a time series, is able to extract temporal features more comprehensively
than unidirectional LSTMs, and is more effective in discovering potential patterns in
battery capacity changes [18,19]. The Transformers framework, which incorporates a multi-
attention mechanism, has a strong feature extraction capability and achieves excellent
prediction on a variety of datasets [20,21].

Data-driven methods are usually inseparable from efficient characterization data. For
example, the Incremental Capacity Analysis (ICA) method uses the characteristic signals
related to the aging process of the negative electrode graphite to predict the capacity decay
phenomenon of the battery based on the amount of voltage and current changes over time
in the battery operation [22,23]. The Differential Thermal Voltammetry (DTV) method, on
the other hand, further takes into account the temperature evolution process in the aging
of the battery on the basis of the battery voltage and current data, and uses the battery
temperature and battery voltage data to track the capacity degradation of the battery [24,25].
However, all of the above features are constructed using a differential approach, which
tends to amplify the sensor error signal and reduce the accuracy and reliability of the SOH
estimation method [26].

The long battery maintenance session in the swapping station is more suitable for
battery capacity estimation, and the battery constant current and constant voltage (CC-CV)
charging is much more stable than the dynamic operation of the discharging. Therefore,
for battery capacity estimation in swapping stations, we construct the charging Constant
Voltage Time feature (CVT), which is the constant-voltage charging duration at the end of
the battery charging period. The CVT feature is not computed differentially, and it does not
involve the battery discharging session. In addition, we propose the BiLSTM-Transformer
deep learning framework based on the previous work, which combines the great processing
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capability of the BiLSTM for temporal signals and the powerful feature extraction capability
of the Transformer multi-head attention mechanism. In this research work, we only use the
signals captured during the battery charging to build IC and CVT features, and combine
the BiLSTM-Transformer deep learning technique to predict the capacity decay curve of
the battery. The main contributions of this work are as follows:

1. Using charging data to extract CVT features with high correlation to battery capacity;
2. Build a BiLSTM-Transformer framework to combine robust time-series processing

with feature extraction capability;
3. Battery aging experiments were designed to obtain aging datasets of batteries operat-

ing at room temperature and low temperature to validate the generalization ability of
the model;

4. The model was trained using data from the first 40% of the battery lifecycle, enabling
a highly accurate prediction of future capacity degradation trajectories.

2. Experiment and Feature Analysis
2.1. Experiment and Related Data

We selected 12 identical lithium-ion batteries (LIBs) for the cyclic aging experiment
under different operating conditions, and the performance parameters of the pouch battery
samples are shown in Table 1. Figure 1a shows the capacity decay trajectories of these
batteries during the experiment, revealing significant differences in the decay trends under
different conditions. Even if the batteries have the same operating conditions, e.g., #1,
#2, the difference in the number of cycles is observed, which is due to the inconsistency
between the batteries, and the inconsistency of the battery capacity decay trajectories poses
a challenge for the generalization of the SOH estimation model, which requires the neural
network to capture features with high correlation with the battery capacity decay.

Table 1. Battery sample parameters.

LIB Chemistry Nominal
Capacity

Standard
Charge/Discharge

Current

Maximum
Charge/Discharge

Current

Operational Voltage
Range

NCM-
Hard carbon 5000 mAh 3C (15 A) 10C (50 A) 2.8 V~4.2 V

The battery aging experiments were conducted at room temperature and low tem-
perature to simulate the low-temperature charging scenarios that may be encountered
by power batteries in power exchange stations in cold regions. All experimental groups
used high rate charging/discharging currents, and the detailed experimental parameters
are shown in Table 2. The initial capacities of the batteries at different temperatures are
significantly different. For example, the capacity is significantly lower than the nominal
5 Ah and only about 4.6 Ah in the low temperature environment (0 ◦C). The phenomenon
that this type of battery can discharge a decrease in capacity is attributed to the change
of lithium-ion diffusion kinetics, especially the sharp decrease of solid-phase diffusion
rate, which prevents the lithium-ions from embedding into the electrode material quickly.
In turn, the change in lithium-ion kinetics leads to a rapid drop in the terminal voltage
of the battery during the discharge process, as well as a premature termination of the
discharge session. To solve this problem, a constant voltage (CV) discharge step was added
to the low-temperature aging cycle to ensure that lithium-ions are fully embedded and
de-embedded in the electrode materials of the battery, resulting in a consistent depth of
charge and discharge of the battery for each experimental temperature condition. The
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battery capacity in this study is based on the charging charge of each cycle. The 0 ◦C
experimental group was also subjected to initial capacity calibration at 25 ◦C, whereas
the initial capacity would slightly exceed the nominal 5000 mAh due to the added CV
discharge step.
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Figure 1. Experimental results. (a) Battery aging curve. (b) Number of cycles to 80% SOH at different
temperatures. (c) Charging current and temperature curves at 0 ◦C vs. 25 ◦C.

Table 2. Experimental settings.

Label Temperature Charge
Current

Discharge
Current

Cut-Off
Current

Voltage
Range

#1 25 ◦C 5C (25 A)

3C (15 A) 3/20C
(750 mA) 2.8 V~4.2 V

#2 25 ◦C 5C (25 A)
#3 25 ◦C 4C (20 A)
#4 25 ◦C 4C (20 A)
#5 25 ◦C 3C (15 A)
#6 25 ◦C 3C (15 A)
#7 0 ◦C 5C (25 A)
#8 0 ◦C 5C (25 A)
#9 0 ◦C 4C (20 A)
#10 0 ◦C 4C (20 A)
#11 0 ◦C 3C (15 A)
#12 0 ◦C 3C (15 A)
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Studies have shown that battery operating conditions (e.g., temperature and current)
affect the battery capacity decay trajectory [27–29]. Table 3 demonstrates the number of
cycles required to age the battery to 80% SOH under different conditions. It can be found
that the number of cycles is significantly higher for batteries aged at room temperature
than at low temperature (0 ◦C). In order to avoid the effect of inconsistency in the initial
capacity of the battery on the number of cycles, the study proposes a single-cycle average
loss of battery capacity, which is obtained by dividing the difference between the end-of-life
(EoL) capacity of the battery and the initial capacity, by the number of cycles, as shown in
Figure 1b. From the figure, the difference in battery aging rates at different temperatures
can be clearly observed, and the accelerated aging of the battery at lower temperatures is
attributed to the decrease in the lithium-ion diffusion rate. During charging at low tempera-
tures, lithium-ions fail to embed in the anode in time, leading to elevated overpotential and
lithium metal deposition. This phenomenon rapidly depletes a large amount of recyclable
lithium-ions, leading to a rapid decay of the battery maximum capacity.

Table 3. Results of aging experiments.

Operation
Temperature Cells Charging

Rate
Cycles to

EoL SOH Calibration
Temperature Capacity

25 ◦C

#1 5C (25 A) 1947
100% 25 ◦C 5175 mAh
80% 25 ◦C 4095 mAh

#2 5C (25 A) 2330
100% 25 ◦C 5209 mAh
80% 25 ◦C 4095 mAh

#3 4C (20 A) 1252
100% 25 ◦C 5167 mAh
80% 25 ◦C 4095 mAh

#4 4C (20 A) 1870
100% 25 ◦C 5122 mAh
80% 25 ◦C 4095 mAh

#5 3C (15 A) 1921
100% 25 ◦C 5153 mAh
80% 25 ◦C 4095 mAh

#6 3C (15 A) 1979
100% 25 ◦C 5085 mAh
80% 25 ◦C 4095 mAh

0 ◦C

#7 5C (25 A) 1363
100% 25/0 ◦C 5019/5012 mAh
80% 25/0 ◦C 4624/3994 mAh

#8 5C (25 A) 1232
100% 25/0 ◦C 5047/5009 mAh
80% 25/0 ◦C 4693/3983 mAh

#9 4C (20 A) 975
100% 25/0 ◦C 4981/4904 mAh
80% 25/0 ◦C 4660/3985 mAh

#10 4C (20 A) 771
100% 25/0 ◦C 5013/4970 mAh
80% 25/0 ◦C 4793/3982 mAh

#11 3C (15 A) 1131
100% 25/0 ◦C 4996/4940 mAh
80% 25/0 ◦C 4762/3986 mAh

#12 3C (15 A) 1074
100% 25/0 ◦C 4834/4763 mAh
80% 25/0 ◦C 4715/3985 mAh

In addition, there is a significant correlation between the decay path of a battery
and its charging magnification. Previous studies have suggested that high current fast
charging leads to accelerated battery capacity degradation, but we have newer findings
in our experiments. The accelerated degradation due to fast charging at high current
multiplication rates can be explained by the inability of lithium-ions to embed in the
anode particles in a timely manner, leading to the precipitation of lithium metal or the
fragmentation of the particles. As for cells #5 and #6 operating at 3C at 0 ◦C, the rate
of capacity degradation is lower than that of cells #3 and #4 operating at 4C, as stated
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in the findings of previous studies. However, when the charging current multiplier is
further increased, a different phenomenon occurs, as the capacity decay rate of cells #1
and #2 operating at 5C is also lower than that of cells #3 and #4 operating at 4C, which is
believed to be due to the fact that the increase in cell temperature brought about by the
high current multiplier improves the lithium-ion diffusion performance and reduces the
probability of the occurrence of the aging side reactions inside the cells. Figure 1c gives
the curves of battery voltage and temperature over time in charging. In the figure, the
CC charging time of cell #7 working at 0 ◦C is short due to the limitation of lithium-ion
anode diffusion, and the battery terminal voltage rises rapidly to 4.2 V. However, when the
battery temperature rises, the current of the CV charging session of the battery decreases
slowly (100 s~750 s), and the change of temperature rise on the internal chemical reaction
conditions of the battery improves the rapid decay of the battery capacity induced by the
low temperature, so that the cells #7 and #8 (5C charge) have a lower aging rate than cells
#9 and #10 (4C charge).

The capacity degradation of most battery samples shows an obvious linear relationship.
However, the single-cycle capacity decay rate of #3 and #10 gradually increases with the
number of cycles (the slope of the capacity–cycle curve decreases), as shown in Figure 1a,
i.e., the phenomenon of “Knee” occurs [30]. The appearance of Knee greatly increases
the degree of nonlinearity of the aging process, prompting the battery to rapidly reach
the EoL [31]. Knee is not only related to the use of operating conditions, but also related
to the internal inconsistency of the battery. In Figure 1c, the capacity decay rate of the
battery charged at 4C at 0 ◦C is higher than that of the battery charged at 5C and 3C,
and the faster rate of capacity decay exacerbates the probability of the battery to develop
Knee. At 25 ◦C, there is almost no difference in the aging rate of the batteries under each
charging multiplication rate except for the #3 sample, but #3 shows an obvious accelerated
aging phenomenon. The inconsistency of cell #3 itself leads to the occurrence of the Knee
phenomenon. Whichever causes the Knee phenomenon, it will lead to an increase in
the nonlinearity of the battery capacity decay trajectory, which increases the difficulty of
estimating the SOH.

2.2. Multi-Feature Analysis

When lithium-ion batteries are used as on-board power batteries, pure electric vehicles
will not be fully depleted during driving, resulting in difficulty in obtaining the SOH of the
battery through full charge/discharge, which often needs to be estimated by using features
combined with neural network algorithms. For power batteries, by swapping to replenish
energy, the battery data are scattered between the vehicle and swapping station, and there
is a certain degree of missing data information, which increases the difficulty of estimating
the SOH of the battery. This requires that the selected features better reflect the battery
aging process.

Incremental Capacity Analysis (ICA) is an important feature analysis method for
battery SOH estimation [15], which is calculated by the following formula:

dQ
dV

=
I × dt

dV
= I × dt

dV
(1)

where Q, I, V and t denote the capacity, current, voltage and time of battery charging,
respectively.

When analyzing the charge/discharge voltage curves by traditional methods, it is
difficult to accurately identify the starting and ending points of the voltage plateau due to
the extremely small changes in the values, which makes it difficult to directly analyze the
internal electrochemical reactions of the battery. In contrast, the IC curve constructed by
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the ICA method is able to visualize the development of the voltage plateau and relate the
external characteristics of the battery to the internal electrochemical performance, as shown
in Figure 2a, where the peak position and height of the IC curve vary with the battery cycle
number. Taking the highest peak of IC as an example, it represents the transition point
where the phase transition occurs in the anode material of the battery, and the amount of
lithium-ion material that can be embedded in the anode material within the unit voltage
within this transition point is significantly elevated, so the IC curve shows a peak. As the
battery ages, the highest peak appears to move the voltage to the higher voltage range and
the peak value continues to decrease, indicating that the battery anode’s ability to hold
lithium-ions decreases. This characteristic is related to the growth of the solid electrolyte
passivation film at the negative electrode of the battery and can be used to monitor the
health of the battery and the aging process.
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When calculating the IC curves, fluctuations are introduced in the measured current
and voltage due to sensor noise, which affects the feature extraction. To mitigate this effect,
the Savitzky–Golay (SG) filtering method is used to smooth the IC curves. SG filtering is
a smoothing filtering algorithm, which is based on the principle of smoothing the data
by fitting a polynomial to the signal within a moving window while retaining the feature
information (e.g., peak position). The core idea is to find the optimal polynomial coefficients
within a sliding window of 2m + 1 to minimize the error, which is calculated as follows:

yi =
m

∑
k=−m

ck·yi+k (2)

where yi is the smoothed signal value. yi+k is the point of the original signal in the window.
ck is the coefficient associated with the window weights. m is the half-width of the window.
This series of weights ck is obtained by fitting a polynomial within the sliding window
using least squares.

Although ICA can effectively characterize battery aging, its computation involves
differentiation and filtering processes, and the differentiation process tends to amplify the
sensor noise, while the filtering may lead to the loss of key information, as well as a large
computational cost. In addition, batteries exhibit complex performance characteristics
under different operating conditions, which makes it difficult for a single feature to fully
reflect their health status [32]. To address this limitation, we introduce different features to
extract the internal information of the battery. This method improves the generalization
ability of the model and enables it to better adapt to multiple usage scenarios.

To address this limitation, we propose an important feature: Constant Voltage Time
(CVT). Due to the high dynamic uncertainty of the battery discharge condition, we extract
features from the relatively stable CC-CV charging condition. For batteries in the switching
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station, the SOC varies during incoming charging and maintenance, but the batteries in the
switching station have sufficient time for recharge, usually by a complete constant voltage
charging session. Figure 2b demonstrates the change of charging voltage curve during the
aging of cell #1, which is charged with a 5C current in time, and its constant current link
has not completely disappeared and has a complete constant voltage charging link. From
the figure, we can also find that the constant voltage charging duration of the battery is
increasing with the increase of the number of battery cycles, which indicates that it contains
rich information about the aging of the battery. We extract the constant voltage charging
time directly from the battery charging data without differentiation and filtering.

2.3. Deep Learning Approach

In this study we developed a deep learning framework for battery capacity estimation.
As shown in Figure 3, the framework integrates a BiLSTM module with a Transformer
module.
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LSTM networks excel in processing time-series data, especially in the field of predicting
the evolution of battery capacity over time. LSTM is able to capture long-term dependencies,
which are critical for predicting battery SOH decay. Each LSTM cell consists of three gates
(input, forgetting and output) and a cell state, which together regulate the information flow.

The role of the forgetting gate is to control what information is removed from the
previous state. Its mathematical expression is

ft = σ
(

W f xxt + W f Hht−1 + b f

)
(3)

where xt is the current input, ht−1 is the hidden state from the previous time step, W f x and
W f H are the weight matrices of the forgetting gate, σ is the Sigmoid activation function, b f

is the bias term and ft is the output of the forgetting gate.
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The input gate controls the effect of the current input and the previous hidden state
on the candidate cell state. It consists of two parts:

it = σ(Wixxt + WiHht−1 + bi) (4)

gt = tanh
(
Wgxxt + WgHht−1 + bg

)
(5)

where Wix, WiH are the weight matrices of the input gates, Wgx, WgH are the weight
matrices of the candidate neuron states, and bi and bg are the bias terms of the input gates
and candidate states.

The cell state is the core of the LSTM unit, which determines memory over long
periods of time. The neuron state is updated by merging the outputs of the forgetting gate
and the input gate:

ct = ct−1 ft + itgt (6)

where ct−1 is the cell state at the previous time step and ct is the neuron state at the current
time step.

The output gate determines the next hidden state and its mathematical expression is

ot = σ(Woxxt + WoHht−1 + bo) (7)

ht = ottanh(ct) (8)

where Wox and WoH are the weight matrices of the output gates, bo is the bias term, ot is the
output of the output gate and ht is the output of the LSTM cell.

BiLSTM is a bi-directional architecture based on LSTM, where sequences are processed
bi-directionally through two LSTM layers, forward and reverse, enabling the capture of
richer contextual information. The prediction results of the forward and reverse LSTMs are
merged and passed to the subsequent network layers. BiLSTM provides an improvement
over traditional LSTM networks in capturing long-term dependencies with improved
accuracy. For example, in the prediction of battery aging, the capacity decay process of the
battery is not only related to the current state but also to multiple time steps in the past,
and BiLSTM is able to consider these before and after dependencies simultaneously. In
this study, we incorporate a layer of the BiLSTM network before the Transformer encoder
to process the initial training features and generate more context-aware representations,
which then provide a richer input to the subsequent Transformer module.

Transformer is a deep learning model based on an attention mechanism, originally
used for natural language processing (NLP) tasks (e.g., machine translation), whose core
feature is that it does not rely on recurrent networks (e.g., RNNs or LSTMs) to process
sequential data, but instead uses self-attention and parallelized encoding–decoding archi-
tectures to achieve efficient modeling.

The architecture of Transformer consists of two main parts: the encoder and the
decoder, which are composed of multiple stacked layers, respectively. Each layer includes
the following main components: self-attention mechanism, feed-forward neural network
(FFN), residual connection and layer normalization.

The self-attention mechanism allows the model to capture global dependencies by
focusing on words at other positions in the sequence while encoding a word. The input
sequence {x1, x2, x3, · · · , xn} is mapped to an embedding vector with the addition of
positional encoding to form a matrix X ∈ Rn×d, where n is the length of the sequence and
d is the embedding dimension. The Attention mechanism maps the input to query, key and
value through three matrices:

Q = XWQ, K = XWK, V = XWV (9)
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where WQ, WK, WV are learnable weights.
To allow the model to capture different attention patterns, Transformer introduces the

Multi-Head Attention mechanism:

MultiHead(Q, K, V) = Concat(head1, · · · , headh)WO (10)

headi = Attention
(

QWi
Q, KWi

K, VWi
V

)
(11)

ttention(Q, K, V) = softmax

(
QKT
√

dk

)
V (12)

where h is the number of attention heads, WO is the output transformation matrix, QKT is
the similarity matrix,

√
dk is a scaling factor that prevents the gradient from being too large

and softmax is used to normalize the similarity values to probabilities.
After each attention mechanism, Transformer applies a position-independent feedfor-

ward neural network with two fully connected layers:

FFN(X) = ReLU(XW1 + b1)W2 + b2 (13)

where W1, W2 are weights.
Each sub-layer (self-attention mechanism or FFN) is followed by residual connectivity

and layer normalization, where residual connectivity helps gradient flow to avoid gradient
vanishing, and layer normalization accelerates training and improves stability with the
following expression:

Output = LayerNorm(X + SubLayer(X)) (14)

The Transformer encoder consists of N layers of stacked submodules. The encoder
output is a context-dependent representation of the sequence. The Transformer decoder is
similar to the encoder, but its multi-head attention is hidden to prevent the decoder from
viewing information about future locations. The decoder takes information from the output
of the encoder. The Transformer total output formula can be expressed as follows: the
encoder generates a contextual representation of the sequence Hencoder and the decoder
generates the prediction Youtput based on the target input Y, Hencoder.

Youtput = Decoder(Y, Hencoder) (15)

The specific steps of Transformer can be simplified as follows: compute the self-
attention of the battery aging feature information transmitted from BiLSTM, weight the
encoder outputs with attention and apply the feed-forward neural network to generate the
final battery SOH estimation results. The hyperparameters of the model in this study are
shown in Table 4.

Table 4. Configurations of the hyper-parameters range.

Hyper-Parameters Value

look_back 100
output_sequence_length 1

epochs 100
num_features 3
embed_dim 4
dense_dim 8
num_heads 1
num_blocks 1
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Table 4. Cont.

Hyper-Parameters Value

dropout_rate 0.5
learn_rate 0.0002
batch_size 64

lstm_hidden_dim 4

3. Results and Discussions
3.1. Results of Feature Analysis

Considering the complexity of battery capacity degradation under different operating
conditions, we first analyzed the correlation between three selected features and battery
capacity. In this study, we used the Pearson correlation coefficient to quantify the previous
correlation between the features and battery capacity. The Pearson correlation coefficient
is a widely used measure of linear relationship, which defines the correlation coefficient
between two variables X and Y as

ρxy =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(16)

where x and y denote the mean of the eigenvalues and battery capacity values, respectively,
and n denotes the sample size. The correlation coefficient ρxy ranges from −1 to 1, where
values close to 1 or −1 indicate a strong relationship and values close to 0 indicate a
weak relationship.

Figure 4 shows the correlation coefficients between the features extracted using the two
methods and the battery capacity. The IC Peak Voltage as well as the CVT features extracted
from the IC Analysis and CVT methods show high correlation coefficients, indicating that
they are effective in capturing battery aging features, while the IC Peak Value correlation
is somewhat lower. In this study, we select the above three features as input features for
predicting battery capacity.
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3.2. Model Performance

In this study, we use the charging process data from the first 40% of the battery life
cycle as a training set for model training, and 20% of the data as a validation set to reduce
the risk of training overfitting. The capacity curve is estimated for the second 40% of the
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battery lifecycle. The proposed model in this study estimates the capacity decay curves of
12 experimental sample batteries and characterizes the model performance by the RMSE
between the real and estimated values, and the results are shown in Figure 5.
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The proposed framework performs well in battery capacity estimation, with an RMSE
below 0.04 Ah in most conditions, with the best case #5 achieving an estimation re-
sult of RMSE = 0.0053 Ah (normalized RMSE 0.11%) and the worst case #3 estimation
RMSE = 0.078 Ah (normalized RMSE 1.6%). This result validates the effectiveness of the
selected aging features and the robustness of the model training process.

Figure 5a,c shows the battery capacity decay curves, with the estimated values in
orange and the real values in blue. For cell #5 with a high degree of linearity in the
capacity curve, the model has a very high estimation accuracy, as shown in Figure 5b. Even
if accelerated aging occurs at the EoL, as shown in Figure 5c, the model can accurately
identify the accelerated decay of cell #8 under 0 ◦C. In addition, if the battery shows capacity
diving, as shown in Figure 5a, the model also captures the capacity diving behavior.

We estimate the capacity curve for each battery sample four times and plot the results in
Figure 5d. The horizontal coordinate represents the real values and the vertical coordinate
represents the estimated values, with colors closer to yellow representing denser data
points and colors closer to purple representing sparser data points. It is noteworthy
that the model still maintains high accuracy on the battery samples aged under multiple
conditions, demonstrating its generalization ability in complex scenarios. This validates
the effectiveness of the proposed CVT features and BiLSTM-Transformer-based framework
in battery capacity degradation estimation.
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3.3. Model Comparison

In order to evaluate the performance of the proposed BiLSTM-Transformer framework
more rigorously, we conducted comparative experiments and RMSE error analyses of
different types of models, as shown in Table 5. Support Vector Regression (SVR), a machine
learning algorithm commonly used for regression problems, was often applied to battery
SOH prediction in the past, and we chose SVR as a comparative model for estimating
the effect. In addition, we selected the LSTM network in the BiLSTM-Transformer fusion
framework as well as the Transformer framework as the control group. We use the above
four networks/frameworks to estimate the battery with a high degree of SOH linearity (#5)
and the battery with a low degree of SOH linearity (#2), respectively. So, the experimental
groups all use the same features and are trained with the first 40% capacity curve of the
battery, the 20% capacity curve is used as a validation set and the remaining 40% capacity
curve is estimated.

Table 5. RMSE results of different models.

Method #2 #5

SVR 0.0691 Ah 0.0222 Ah
LSTM 0.0589 Ah 0.0588 Ah

Transformer 0.0438 Ah 0.0162 Ah
BiLSTM-Transformer 0.0206 Ah 0.0053 Ah

The SVR and LSTM models achieved different prediction results on the two batteries;
SVR predicts better than LSTM for batteries with a higher degree of linearity, but is slightly
inferior on batteries with capacity jumps, as shown in Figure 6. The core idea of SVR is to
regress the prediction by mapping the input data to a high-dimensional feature space and
finding an optimal hyperplane in the high-dimensional space. For small and medium-sized
datasets, SVR performs stably and with high computational efficiency. However, for large
datasets, the training process of SVR may become more time-consuming. Since SVR is
less capable of handling time-series data, especially when it needs to capture long-term
dependencies, the performance of SVR is not as good as that of LSTM, so the prediction
error of SVR is significantly lower than that of the highly nonlinear capacity decay curve
(#2) for the simpler capacity decay curve (#5).

By applying the memory cells, LSTM can effectively capture long-term dependencies
in sequences and is suitable for modeling complex time-series data, such as battery capacity
trends (#2). This is the reason why LSTM models are increasingly used in battery state
estimation compared to SVR models. Even though the LSTM model is capable of capturing
the capacity dips, however, it still shows a large error at the end of the battery life, as shown
in Figure 6a. Because LSTM requires a large amount of training data and computational
resources, the training process is more complicated. For the prediction target with better
linearity (#5), its prediction effect may not be as good as SVR.

The wide applicability and robustness demonstrated by Transformer and its derived
models provide new ideas for battery capacity estimation. The results show that the best
battery capacity estimation is obtained using the BiLSTM-Transformer framework, and the
Transformer framework results are close to it, but the estimation error is slightly higher
than the former. This indicates that the network fusion approach improves the framework
performance, and the estimation accuracy is high regardless of the degree of linearity of
battery capacity decay. The fusion method effectively combines the advantages of different
features and reflects the aging characteristics of batteries more comprehensively.
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4. Conclusions and Outlook
4.1. Research Conclusions

This study presents a BiLSTM-Transformer framework for accurately estimating the
capacity trajectory of LIBs under different operating conditions. The model adds a layer
of BiLSTM network before the Transformer, which functions like an encoder, and utilizes
the excellent ability of BiLSTM network to process time-series data to obtain the battery
aging evolution characteristics over time and improve the framework estimation accuracy.
Meanwhile, the Transformer, which combines the multi-attention mechanism, can learn
the potential mapping relationship between the input data well to capture the key aging
features from the voltage and current data. Meanwhile, in order to cope with the problem
of missing battery discharge data for the swapping station, this study is based entirely on
battery charging data. Capacity estimation operated under multi-temperature conditions is
performed by extracting CVT features in combination with IC features traditionally used
for battery capacity estimation.

Through correlation analysis, the CVT feature has a high correlation between capacity
degradation and outperforms the classical IC feature. By combining the CVT features with
the IC features, this study estimates the capacity of LIBs under 0 ◦C and 25 ◦C operating
environments, both of which achieve good results. The BiLSTM-Transformer framework
was used to estimate the capacity of the latter 40% of the battery under the condition of
using 40% of the data as the training set and 20% of the data as the validation set. Most of the
samples resulted in RMSE values below 0.04 Ah (normalized RMSE = 0.8%), and the worst
estimate resulted in RMSE = 0.078 Ah (normalized RMSE = 1.6%). The estimation accuracy
of the BiLSTM-Transformer framework is significantly higher than the LSTM model, as
well as the Transformer. These results highlight the high accuracy, strong generalization
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ability and adaptability of the framework proposed in this study. It provides a reliable
and promising method for battery life estimation in power battery swapping stations to
improve the operational efficiency and guarantee the safety and reliability of LIBs.

4.2. Future and Outlook

The proposed BiLSTM-Transformer framework marks a further development in the
field of battery capacity estimation, especially under multiple battery operating conditions.
However, further exploration is still needed in the following areas to enhance its robustness,
generalization capability and practical applications.

During the peak battery swapping period, the short battery maintenance step at the
swapping station may not allow full charging. It is difficult to obtain the CVT characteristics
of the battery in the above cases. In the future, we can try to use the duration of the current
change within the CV as a feature, such as the time when the current decreases from 0.5C
to 0.1C, in order to cope with these kinds of small probability events, and to enhance the
practicality of the framework.

The Transformer framework itself has a high complexity and powerful learning capa-
bility, but it is prone to overfitting and the robustness of the model is lacking in the case of
a small training data size. Future research can use a multi-feature approach to increase its
training data size, and further improve the model generalization ability by incorporating
physical information features containing electrochemical principles, while reducing the
risk of model training overfitting.

In addition, the adaptability to dynamic, real-time operating environments deserves
further investigation. A lightweight model architecture is essential for integration into
an embedded battery management system (BMS). The generalization of the model to
solid-state batteries also warrants further investigation.
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