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Abstract: As lithium-ion batteries become increasingly popular worldwide, accurately
determining their capacity is crucial for various devices that rely on them. Numerous
data-driven methods have been applied to evaluate battery-related parameters. In the
application of these methods, input features play a critical role. Most researchers often use
the same input features to compare the performance of various neural network models.
However, because most models are regarded as black-box models, different methods may
show different dependencies on specific features given the inherent differences in their
internal structures. And the corresponding optimal inputs of different neural network
models should be different. Therefore, comparing the differences in optimized input
features for different neural networks is essential. This paper extracts 11 types of lithium
battery-related health features, and experiments are conducted on two traditional machine
learning networks and three advanced deep learning networks in three aspects of input
differences. The experiment aims to systematically evaluate how changes in health feature
types, dimensions, and data volume affect the performance of different methods and find
the optimal input for each method. The results demonstrate that each network has its
own optimal input in the aspects of health feature types, dimensions, and data volume.
Moreover, under the premise of obtaining more accurate prediction accuracy, different
networks have different requirements for input data. Therefore, in the process of using
different types of neural networks for battery capacity prediction, it is very important
to determine the type, dimension, and number of input health features according to the
structure, category, and actual application requirements of the network. Different inputs
will lead to larger differences in results. The optimization degree of mean absolute error
(MAE) can be improved by 10–50%, and other indicators can also be optimized to varying
degrees. Therefore, it is very important to optimize the network in a targeted manner.

Keywords: neural networks; SVM; PSO-BP; CNN; LSTM; GRU; input; self-attention

1. Introduction
As human society pays more attention to climate and the environment, the use of

lithium-ion batteries has grown significantly. Lithium-ion batteries themselves have ad-
vantages such as high energy density and long life cycles [1], and are widely used in
various electric devices, including electric vehicles. With the popularization of lithium-ion
battery applications, research on the state of lithium-ion batteries and related parameters
has gained attention. With the popularization of lithium-ion battery applications, research
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on the state of lithium-ion batteries and related parameters has gained attention. Take the
health status of lithium-ion batteries as an example, As the mileage continues to increase,
the number of charge and discharge cycles also increases, repeating electrochemical reac-
tions inside the battery. These reactions will lead to irreversible loss of materials, resulting
in gradual performance degradation, most notably reflected in the reduction of maximum
available capacity. The state of health (SOH) of a battery is typically defined as the ratio
between the current maximum available capacity to that of a new battery. This ratio reflects
the potential output power of the battery. Therefore, an accurate assessment of the battery
status is of great significance to ensure the safety and stability of its operation [2]. Research
on battery SOH has gone through different stages of development. There are currently
three primary ways to estimate battery SOH, namely experimental method, model building,
and data-driven method.

The experimental method involves conducting tests on lithium-ion batteries under
specific conditions, typically charge-discharge and pulse experiments, and obtaining the
battery capacity through experimental data [3]. While this method is applicable across vari-
ous battery types, it is constrained by the limitations of the experimental environment [4].
For instance, Scipioni et al. [5] obtained the aging process of lithium-ion batteries by ana-
lyzing the battery structure including a positive electrode, negative electrode, electrolyte,
etc. Liu et al. [6] studied the measurement of battery SOH under conditions that do not
affect the integrity of lithium-ion batteries.

Model-based methods for estimating battery SOH typically involve equivalent circuit
models [7] and electrochemical models [8]. These models simulate the chemical changes,
current, and voltage changes during the operation of lithium batteries. They are used to
studying the relationship between key factors such as material concentration and reaction
rate and battery SOH. In this process, optimization methods such as Kalman filtering are
openly applied to improve the robustness of prediction and reduce data noise. Lüders
et al. [9] conducted in-depth research on the process of lithium plating and lithium stripping
and built models based on this process. Lai et al. [10] analyzed a variety of equivalent circuit
models and performed global optimization based on different parameter identification.
Yang et al. [11] used constant voltage charging current measurement to assess battery SOH
online. Eddahech et al. [12] used impedance spectroscopy measurement combined with
recurrent neural networks to monitor the health status of lithium-ion batteries. Although
model-based methods offer explainability of battery behavior, it is difficult to construct
itself, the calculation is relatively complex, and it has high requirements for data accuracy
and quality. Consequently, their practical implementation can be challenging.

Data-driven methods have received extensive attention and research due to their
simplicity and accuracy. Since a series of historical data related to battery recycling includes
the entire battery degradation process, a series of health features extracted from them are
used as neural network inputs to predict the battery SOH through neural networks. These
health features are generally categorized into direct features and introductory features [13].

Traditional machine learning methods for battery SOH include Backpropagation (BP)
neural networks [14], Support Vector Machine (SVM), extreme learning machines, random
forests and annealing algorithms, etc. Building on these approaches, deep learning methods
such as Convolutional Neural Network (CNN) [15], Long Short-Term Memory (LSTM) [16,17],
Gated Recurrent Unit (GRU) [18], etc. have been combined to achieve more accurate
predictions of battery SOH. Weng et al. [19] used support vector regression for incre-
mental capacity analysis to predict the health status of vehicle batteries. Dong et al. [20]
introduced particle filters into support vector regression to predict battery health status.
Sbarufatti et al. [21] introduced particle filters into radial basis functions to predict battery
SOH. Lipu et al. [22] conducted a comprehensive analysis of deep learning for battery state
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estimation in a battery management system (BMS). Chen et al. [23] focused on the relevant
features of the constant voltage stage and combined features to complete the health status
assessment of lithium-ion batteries. Raman et al. [24] studied recurrent neural networks
(RNNs) and their variants to predict the battery SOH. Bao et al. [25] employed swarm
intelligence optimization techniques to improve the accuracy of prediction.

Different studies vary significantly in the selection of input health features for battery
parameter prediction. Li et al. [26] extracted features such as voltage change differences at
the same time as input based on the charge and discharge curves. Jia et al. [27] introduced
indirect features for Gaussian process regression to improve the accuracy of prediction.
Lu et al. [28] extracted health features with slope as the main object as input. In the process
of using neural networks, many different health feature extraction methods are employed.

As more and more methods are proposed and improved in the data-driven field,
researchers will verify the performance of the methods by comparing the accuracy of the
final prediction results. Data-driven methods have become prevalent in various fields due
to their impressive predictive capabilities. A comprehensive review of previous studies on
battery-related parameters reveals a common trend among data-driven research: despite
employing novel algorithms or optimization methods, such studies frequently rely on
identical input data when conducting comparative analyses with other methods. For
example, Zhang et al. [29] demonstrated their findings on battery State of Health (SOH)
prediction, as shown in Table 1. Similarly, Lin et al. [30] reported their results on battery
capacity prediction, which are summarized in Table 2.

Table 1. Battery SOH prediction comparison.

Method MAE RMSE R2

KAN-LSTM 0.2043 0.2896 97.21
LSTM 0.2368 0.3368 96.23

CNN-LSTM 0.5045 0.6249 87.01

BILSTM 0.2810 0.3538 95.84

CNN-BILSTM 0.3480 0.4475 93.34

Table 2. Comparison of battery capacity predictions.

Method RMSE MSE MAE MAPE

LSTM 0.04473 0.00200 0.04080 0.03947
BiLSTM 0.03237 0.00105 0.03035 0.02964

CNN-BiLSTM 0.02874 0.00083 0.02543 0.02463

SSA-CNN-BiLSTM 0.02555 0.00065 0.02216 0.02143

Despite their success, these models often have low interpretability, leading to their
categorization as “black box” approaches. These characteristics highlight the importance
of understanding how different network architectures interact with input data. Given the
inherent differences in their internal structures, different machine learning models and
neural networks exhibit varying dependencies on specific features, This implies that the
optimal input configuration for different networks may vary, and the best input setup
for one model may not align with the requirements of another. Therefore, comparing the
performance of different networks under identical input conditions may lead to biased or
incomplete conclusions. However, there has been a lack of comprehensive comparative
studies addressing this issue. In previous research, almost all papers on algorithm opti-
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mization have employed identical input conditions, including the types of input features,
their dimensionality, and data volume, among other factors.

For instance, from the perspective of input dimensionality, certain networks may
exhibit overfitting as the dimensionality increases, whereas others demonstrate greater
adaptability to higher-dimensional input data, achieving more accurate results as the
dimensionality grows.

From the perspective of health indicator categories, most researchers rely on Pearson
correlation coefficients to assess the strength of the relationship between health features
and the target parameter, implicitly assuming a linear correlation. Some researchers employ
Grey Relational Analysis (GRA) for feature evaluation, with the common goal of identifying
features most closely related to the predicted parameter. Nonetheless, such criteria may not
be universally applicable to all networks, underscoring the need for differentiated studies.
This study investigates the dependency of different networks on correlation coefficients,
aiming to determine the most suitable correlation criterion for each type of network.

From the perspective of input data volume, some networks are expected to achieve
relatively accurate experimental results with a smaller amount of data, provided that a cer-
tain application standard is met. Investigating and analyzing the performance differences
of various networks under different data input volumes can provide valuable insights into
optimizing the time and process of data collection in practical applications.

Battery capacity can be used to calculate the battery health status and can intuitively
reflect the relevant physical characteristics of the battery. This study explores the battery
capacity prediction problem by comparing the performance differences of various networks
when selecting different input features. The focus of the research lies in identifying the
optimal input configuration for each type of network, with an emphasis on three key
influencing factors: the correlation of input features, input dimensionality, and input
data volume.

This study represents an investigation into input variability. So we selected both
classical machine learning algorithms and advanced deep learning models. This will give
a more representative result. For machine learning, the Particle Swarm Optimization
Backpropagation (PSO-BP) algorithm and the Support Vector Machine (SVM) algorithm
were selected, representing well-established approaches known for their effectiveness in
handling structured and moderately sized datasets. PSO-BP leverages particle swarm
optimization to enhance the convergence and accuracy of the backpropagation network,
while SVM excels in solving classification and regression problems with clear boundaries.

On the deep learning front, the study utilized several hybrid architectures designed to
capture complex relationships in high-dimensional data. These included the CNN-LSTM-
Attention network, the CNN-GRU-Attention model, and the CNN-BiLSTM-Attention
network. The CNN layers in these models extract spatial features from raw data, while the
LSTM and BiLSTM layers specialize in processing temporal sequences, capturing long-term
dependencies. The Attention mechanism further refines the models by assigning dynamic
weights to input features, enabling the networks to focus on the most relevant aspects of
the data. This combination of feature extraction, sequence modeling, and attention-based
optimization allows the deep-learning models to achieve enhanced accuracy and robustness
in capacity estimation.

The main contributions of this paper are as follows:

(1) The input health features were divided into three different categories. The classifica-
tion was based on data availability and computational complexity. The Person and
Spearman correlations between each health feature and the battery capacity were cal-
culated and used to create various input groups with varying correlation coefficients.
Study the dependency differences of different networks on various correlation coefficients.
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(2) Study the dependency of different networks on input dimensions and identify the op-
timal input dimensions for different networks. Investigate the changes in results caused
by variations in input dimensions across different networks. This analysis demonstrates
that different networks have differences in their optimal input dimensions.

(3) Evaluate the input training data requirements for different networks, focusing on the
amount of data needed to achieve a specified level of predictive accuracy. Study the
dependency of different networks on input data volume.

2. Database
This data set performs cyclic charging, discharging, and impedance experiments on

four groups of batteries at an ambient temperature of 4 degrees Celsius. The database
is from the National Aeronautics and Space Administration (NASA) [31]. The charging
process uses a constant current-constant voltage (CC-CV) mode, first charging with a
constant current of 1.5A, and then changing to constant voltage charging when the battery
voltage reaches 4.2 V until the charging current decreases to 20 mA. The discharge process is
conducted at a fixed load current level of 1 A and stops when the discharge voltage reaches
a fixed value. The electrochemical impedance spectroscopy (EIS) experiment involves a
frequency scan from 0.1 Hz to 5 kHz. The experimental protocol continues until the capacity
of the battery drops to 1.4 Ahr, representing 30% of the initial capacity. The dataset’s cycle
curve is shown in Figure 1. The maximum capacity of the battery will decrease as the
number of cycles increases. In order to increase the accuracy of the conclusions. Two sets
of experiments were conducted using different battery data from the NASA dataset. The
B5 battery dataset was designated as the experimental group, while the B18 battery dataset
served as the control group.
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Figure 1. Dataset cycle curve.

To calculate the battery capacity and each health characteristic, it is important to
note that the SOH of the battery decreases from 100% to between 70% and 80% over its
operational lifespan, ultimately reaching what is termed the end-of-life (EOL). Therefore,
the remaining capacity of the battery during each cycle can represent the battery SOH.

SOH =
Qcycle

Qinitial
× 100%, (1)

where, Qcycle represents the maximum capacity of the battery in each charge and discharge
cycle, and Qinitial represents the initial capacity of the battery.
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Therefore, the health status of the battery can be obtained from the maximum capacity
of the battery during different cycles. Maximum capacity has many uses in different aspects,
so the experiment studies the maximum capacity of the battery during the cycle.

3. Methodology
3.1. Feature Extraction

The extraction of the health index (HI) is essential in the data-driven method for battery
capacity estimation, which can convert raw data into meaningful features for machine
learning. Since the capacity estimation model needs to input multi-dimensional features,
the constructed HI needs to accurately describe the battery capacity.

Regarding the classification of health features, researchers have adopted various
classification criteria, most of which are based on physical characteristics such as time,
current, voltage, and temperature. In this study, the classification criterion is based on
the practicality and the complexity of the feature extraction process. Features that can be
directly obtained or computed with simple calculations are categorized as the first type.
Features requiring more complex calculations, such as integration operations, are classified
as the second type. Features that involve deeper extraction of data like the IC curve are
grouped into the third type.

The first category of data is the following five types, constant voltage rise
time (3.9–4.1 V) (HF1), maximum temperature during discharge (HF2), constant current
charging time (HF3), constant voltage charging time (HF4), and constant voltage drop
discharge time (HF5) as shown in Figure 2.
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The second category of data is the following four types, the proportion of constant
current charging time to total charging time (HF6), extracting the area enclosed by the
current-time curve of the charging process (HF7), extracting the area enclosed by the con-
stant current charging current-time curve (HF8), extract the area enclosed by the constant
voltage charging current-time curve (HF9) as shown in Figure 3.

The third category of data related to the IC curve: Extract the peak value of the IC
curve (HF10) Extract the voltage corresponding to the peak value of the IC curve (HF11) as
shown in Figure 4. The IC curve requires the calculation of the battery capacity change and
the battery terminal voltage change, which are calculated using the following formula:

dQ
dV
≈ ∆Q

∆V
=

Qk −Qk−N
Vk −Vk−N

=

∫ tk
tk−N

idt

Vk −Vk−N
, (2)
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where, Qk, Vk, tk are the amount of charge stored in the battery at K sampling points, the
battery terminal voltage and time [32]. When the sampling frequency is fixed, the following
formula can be obtained:

dQ
dV
≈

∫ tk
tk−N

idt

Vk −Vk−N
≈ I·(tk − tk−N)

Vk −Vk−N
= i·∆t· N

Vk −Vk−N
, (3)

where, i is the current in the current charging period, and ∆t is the sampling interval.
When the voltage rises faster, a peak will appear in the curve, and when the voltage rises
slowly, a trough will appear in the curve. The IC curve can well reflect the characteristics of
voltage change.
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3.2. Feature Preprocessing

In the research of battery SOH or capacity prediction, comprehensive analysis of
statistical metrics and data preprocessing are crucial steps. These steps help replace outliers,
reduce errors, and make the input data more scientifically robust. Chen and Xia et al. [33]
developed an online two-dimensional filtering framework and applied it to both incremen-
tal capacity analysis and differential thermal voltammetry. To better utilize the extracted
data, this study implements the following data preprocessing procedures:

For the first and second types of features, outlier detection and attribution methods
were employed. The mean, standard deviation, minimum, maximum, 25th percentile
(Q1), and 75th percentile (Q3) of each feature category were calculated. The interquartile
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range (IQR) was defined as Q3 − Q1, and outliers were identified as data points falling
outside the range [Q1 − K × IQR, Q3 + K × IQR], The initial value of K is selected as 1.5
and adjusted according to the data range. Upon identifying outliers, values exceeding
the boundaries were replaced with the nearest boundary value. This method preserves
the overall structure of the data and minimizes the introduction of new biases caused by
measurement errors during data collection.

For the third type of feature, Gaussian Smoothing (GS), was applied. This technique
reduces high-frequency noise, resulting in smoother signals or data. While reducing
noise, the method aims to retain the overall trends and characteristics of the data as much
as possible.

In this experiment, the Pearson and Spearman correlation coefficients of each charac-
teristic parameter and the maximum capacity of the battery per cycle were calculated. The
Pearson Correlation Heatmap of all features is shown in Figure 5.
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3.3. Methods Introduction

Different types of health features, varying dimensions of these health features, and the
amount of input data can all impact the performance of different networks. The experiment
in this paper selected two classic machine learning methods, PSO-BP and SVM, as well as
three deep learning methods, CNN-LSTM-Attention network, CNN-LSTM-Attention, and
CNN-BiLSTM-Attention network.

3.3.1. PSO-BP

The BP neural network is among the most used models in neural networks, utilizing
the error back propagation algorithm for training. It is based on the principles of gradient
descent and gradient search, aiming to reduce the mean square error between the network’s
actual output and its expected output.

Typically, a BP neural network comprises three layers: an input layer, an output layer,
and one or more hidden layers in between. While the hidden layers do not interact directly
with external inputs or outputs, their state changes influence the relationship between the
input and output. Each layer contains multiple nodes.

The BP algorithm operates through two phases: signal forward propagation and error
back propagation. In the forward phase, the network processes the input to generate output,
while in the backward phase, errors are propagated from the output layer back to the input



Batteries 2025, 11, 26 9 of 27

layer, guiding the adjustment of weights and thresholds to improve performance. The
formula for forward propagation is as follows:

an = σ(zn) = σ
(

Wnan−1 + bn
)

, (4)

where, an is the output matrix of layer n. Wn and bn are the weights and biases between
different nodes in different layers, and σ(·) represents the activation function.

By adjusting the weights and thresholds between the input layer and the hidden layer,
as well as between the hidden layer and the output layer, the error is reduced along the
gradient direction, and the loss function is expressed as follows:

J(W, b, x, y) =
1
2
∥ aL − y ∥2

2 =
1
2
∥ σ
(

zL
)
− y ∥

2

2
, (5)

where aL represents the output of the last layer, y represents the sample, and ∥ C ∥2
represents the L2 norm of C.

The calculation formula of the loss function for the weight and error of the Lth layer is
as follows:

∂J
∂bL =

∂J
∂zL

∂zL

∂bL =
∂J

∂zL =
(

aL − y
)
⊙ σ′

(
zL
)

, (6)

∂J
∂WL =

∂J
∂zL

∂zL

∂WL =
∂J

∂bL

(
aL−1

)T
, (7)

The gradients of the loss function at different layers are calculated as follows, where m
represents any number of layers:

∂J
∂bm = ∂J

∂zm
∂zm

∂bm = ∂J
∂zm = ∂J

∂zm+1
∂zm+1

∂zm

= ∂J
∂hm+1 ⊙ σ′(zm)

(
Wm+1)T , (8)

∂J
∂Wm =

∂J
∂zm

∂zm

∂Wm =
∂J

∂bm

(
am−1

)T
, (9)

After multiple iterations, the training process is stopped after the weight matrix W
and the deviation matrix b corresponding to the minimum error are determined. At this
point, the trained neural network can process the input information of similar samples and
output the information with the minimum error after nonlinear transformation.

After several iterations, the training process halts once the weight matrix W and the
bias matrix b corresponding to the minimum error are identified. At this stage, the trained
neural network is capable of processing input data from similar samples and producing
outputs with minimal error through nonlinear transformations.

At present, there are many optimization methods for BP networks, and particle swarm
optimization (PSO) is a commonly used method as shown in Figure 6. The PSO algorithm
simulates biological populations through particles, in which particles have two basic
properties: speed and position. Speed represents the speed of movement, and position
represents the direction of movement. Each particle moves freely in the solution space to
seek the optimal solution. In the process of seeking the optimal solution, each particle has
individual behavior and group behavior. Each particle will learn from two values, one is
the individual’s historical optimal solution pbest, and the other is the group’s historical
optimal solution gbest. The particle will continuously adjust its speed and position through
this learning process, and the quality of each position is determined by fitness. The fitness
function serves as the objective function for the optimization process.
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The PSO-BP network in this study has three hidden layers, the maximum number of
training epochs is 1500, with a target error of 1 × 10−6, a learning rate of 0.01, a population
size of 35, and a maximum number of iterations set to 35. The velocity boundaries are
defined as a maximum of 1.0 and a minimum of −1.0, while the search range boundaries
are set to a maximum of 1.0 and a minimum of −1.0. The learning factors are c1 is 0.01 and
C2 is 0.01.

3.3.2. SVM

An SVM is a machine-learning technique used for both classification and regression
tasks. It is capable of handling both linearly separable and non-linearly separable problems
by constructing an optimal decision boundary in a high-dimensional space.

The key idea behind SVM is to identify a hyperplane that divides different classes of
sample points. This hyperplane, known as the maximum margin hyperplane, maximizes
the distance between the closest sample points from each class. By mapping samples into a
higher-dimensional space, SVM makes it possible to separate data that may not be linearly
separable in the original space. To manage computational complexity in high-dimensional
spaces, SVM employs kernel functions, such as linear kernels, polynomial kernels, and
Gaussian kernels, which allow complex transformations to be performed in the original
input space.

During the optimization, SVM primarily focuses on the critical sample points near the
decision boundary, referred to as support vectors, which play a crucial role in determining
the model’s final classification.

The SVM network in this study is configured with a penalty factor c is 4.0, a kernel
function parameter of 0.8, and an epsilon-loss function precision of 0.01.

3.3.3. 1D CNN

CNN is widely used for data extraction in the modern deep learning process. For the
processing of health features in the process of battery capacity estimation, one-dimensional
to three-dimensional CNN layers can be selected for convolution operations. After the
CNN layer completes the feature extraction, a richer feature input will be obtained. CNN
layers are usually composed of input layers, convolution layers, activation layers, pooling
layers, fully connected layers, and output layers.
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Convolution is the most important operation in a CNN. The process of convolution
operation is to slide a convolution kernel of set specifications on the processed input data,
multiply the local area features and the kernel over which the convolution kernel slides,
and combine all the results obtained in this process. This process effectively expands and
captures the features of the input data. The calculation formula can be described as:

Ol = f

(
N

∑
t=1

X× Kt + bl
t

)
, (10)

The input data is denoted as X, where Kt represents the convolution kernel, and f (·)
symbolizes the activation function. N refers to the total number of convolution kernels
utilized in the convolution layer. bl

t is the bias term corresponding to the feature map in
the 1st layer, and the symbol ∗ denotes the convolution operation. The activation function
typically employed in this process is the ReLU (Rectified Linear Unit) function.

Because the expansion and extraction of data by the convolution layer greatly increases
the amount of data obtained, resulting in a complex calculation process, a pooling layer is
usually added to simplify the obtained features and discard some features. There are also
many pooling methods.

CNN has a wide range of applications, the formula for calculating CNN feature
extraction can be expressed as follows:

Ol(j) = max
(j−1)w≤t≤ f w

{
Xl−1(t)

}
, (11)

where Ol(j) represents the output of the j-th pooled region in the l-th layer, the variable w
refers to the width of the pooling area, and

{
Xl−1(t)

}
denotes the corresponding region

from the previous layer (l − 1) that is being pooled.

3.3.4. Channel Self-Attention Module

The introduction of the attention mechanism can weigh features or feature channels,
allowing the model to focus on more meaningful or relevant features for the current task or
the stronger correlation within the data. This significantly improves the model’s emphasis
on important information, thereby improving the model’s performance and the accuracy of
the results. It also reduces the impact of noise and increases the robustness of the model.

Cout = BN(Ctn) = γ
Ctn − µC√

σ2
C + ϵ

+ β, (12)

where µC and σC represent the mean and standard deviation, β is the shift parameter,
BN is the batch normalization operation, Ctn is the input of the attention module, and
ϵ is a hyperparameter to prevent the denominator of the formula from being zero [34],
respectively. The formulas for the weight and output steps of the self-attention module are
as follows:

ωt =
γ0

∑
j=0

γ f
, (13)

Mc = tanh(ωt(BN(Ctn))), (14)

where ωt is the weight, γ is the channel scaling factor, and tanh represents the
activation function.
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3.3.5. BiLSTM Layer

The feature maps extracted by the CNN from the original data are input into the
subsequent long short-term memory (LSTM) layer to achieve capacity prediction. LSTM
can achieve better prediction for time-related features by learning short-term and long-term
dependencies. The basic structure of LSTM is illustrated in Figure 7.
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In the LSTM neural network, information transmission is completed through the
forget gate, input gate, and output gate. LSTM can save information in a long sequence.
These different types of gates work together to realize the memory and forgetting functions
of past and current information.

These gates include sigmoid and tanh activation functions, which can realize the
passing, filtering, and control operations of information flow. The process of information
transmission can be described as follows:

1. Memory and forgetting of information: The input information and stored informa-
tion are multiplied by the corresponding weights, combined with the bias, and then passed
through the sigmoid function for normalization. The process results for the next step are
shown below.

ft = sigmoid
(

W f ,xxt + W f ,hht−1 + b f

)
, (15)

2. The data is first processed by the weight matrix, then multiplied by the activation
matrix to extract the relevant information as it moves from the input to the memory unit

∼
s t = tanh

(
W∼

s ,x
xt + W∼

s ,h
ht−1 + b∼

s

)
, (16)

it = sigmoid(Wi,xxt + Wi,hht−1 + bi), (17)

where b∼
s

and bi represent the bias, W∼
s ,x

, W∼
s ,h

, Wi,x, Wi,h represent the weight matrix,
∼
s t is

the candidate value for new information, and it refers to the activation matrix of the input
gate. These elements are used to control the flow of information into the memory unit,
determining what new information should be stored based on the current input.

3. Update of unit state and information output: Through the calculation of the previous
two processes, the unit state is updated. The updated unit state and the output matrix are
calculated to obtain the updated output:

st = ft·st−1 + it·
∼
s t, (18)

ot = sigmoid(Wo,xxt + Wo,hht−1 + bo), (19)

ht = ot × tanh(st), (20)

where bo is the bias vector, Wo,h represent the weight matrix, ot is the activation matrix
of the output gate, and st refers to the unit state. These components are responsible for
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controlling how much of the information in the memory unit is passed through the output
gate at each time step, ultimately influencing the final output of the network. The principle
is shown in Figure 7.

Bidirectional Long Short-Term Memory (BiLSTM) is an advanced variation of LSTM.
By combining LSTM components in two directions, the BiLSTM network can capture
bidirectional dependencies and consider the information before and after the sequence at
the same time. It has been widely used in many natural language processing (NLP) and
time series prediction tasks. The output order of the generated network is as follows:

→
h t = f

(
xt,
→
h t−1

)
, (21)

←
h t = f

(
xt,
←
h t−1

)
, (22)

ht =
→
wt
→
h t +

←
wt
←
h t + bt, (23)

where,
→
wt
←
wt represents the output weights of the hidden layers in two directions, and

→
h t

represents the states of the hidden layers in two directions.
The network structures of CNN-LSTM-Attention, CNN-GRU-Attention, and CNN-

BILSTM-Attention used in this study are illustrated in the Figure 8 below:
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(c) CNN-BILSTM-Attention.

In these networks, the number of channels in the first convolutional layer is 32, and
the second convolutional layer has 64 channels. The fully connected layers in the attention
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mechanism produce outputs of 16 and 64. All three networks share the same maximum
number of iterations, set to 1500, with an initial learning rate of 0.01. The learning rate
follows a piecewise strategy, with a decay factor of 0.1 and a decay period of 500 iterations.
During training, data shuffling is applied to enhance the robustness of the models.

3.3.6. Evaluation Criteria

The evaluation criteria for the experiment will be based on the following indicators.
The mean error (MAE) determines the average error between the true value and the
predicted value. The mean square error (MSE) squares the error value before averaging it.
The root mean square error (RMSE) calculates the square root of the MSE to gain insight
into the accuracy of the results. The percentage of variance in a dependent variable’s actual
values that can be accounted for by the projected values of a regression model is expressed
as the R-squared (R2) value. yt is the predicted value of the experiment, ŷ represents the
actual battery capacity, and y is the average value.

MAE =
1
n∑ n

t=1 |yt − ŷ|, (24)

MSE =
1
n

n

∑
t=1

(yt − ŷ)2, (25)

RMSE =

√
1
n∑ n

t=1 (yt − ŷ)2, (26)

R2 = 1− ∑
(
yt − ŷ)2

∑(yt − y)2 (27)

4. Experiment
This part constructs three different types of experiments to study the impact of different

inputs on different neural networks and determine the optimal input for different networks.

4.1. Correlation Experiment

Now in the field of battery parameter prediction, almost all studies use the
Pearson correlation coefficient of health features as the main reference for evaluating
health characteristics.

This article employs both the Pearson correlation coefficient and the Spearman corre-
lation coefficient to evaluate each health feature. Pearson correlation coefficient assesses
the linear correlation between two data sets, while Spearman correlation coefficient does
not care whether the two data sets are linearly correlated but monotonically correlated.
Spearman correlation coefficient is also called rank correlation or rank correlation. Pear-
son correlation coefficient requires that the statistical data must be continuous variables
and conform to normal distribution, while the Spearman correlation coefficient does not
have this requirement; Pearson correlation coefficient has poor stability and is not very
reliable when singular values or long-tail distribution appear, while Spearman is relatively
more robust.

In this experiment, the input data was first grouped based on Pearson and Spearman
correlation coefficients, respectively. The study then analyzed whether the impact of
different input groups on various networks was consistent. This approach aims to identify
the dependency differences of different networks on correlation coefficients, serving as the
basis for subsequent experiments.

The experiment groups the experimental data according to two different correlation
coefficients of battery capacity, and first studies the difference in the performance of different
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network models for different input groups. Obtain the dependence of different networks
on different correlation coefficients. The following table is the correlation coefficient data:

From Table 3, it is evident that the Pearson correlation of each health feature is HF5,
HF2, HF6, HF3, HF8, and HF1 from high to low, and the Spearman correlation is HF5,
HF9, HF7, HF8, HF3, and HF1 from high to low. Figure 9 shows the coefficient differences
between different plots.

Table 3. Correlation coefficient table.

Category Coefficient HF1 HF2 HF3 HF4 HF5

1Category Pearson 0.9067 −0.9353 0.9151 −0.8021 0.9905
Spearman 0.9566 −0.8900 0.9612 −0.8897 0.9954

Category Coefficient HF6 HF7 HF8 HF9

2Category Pearson 0.9250 0.7860 0.9135 −0.8266
Spearman 0.9488 0.9623 0.9609 −0.9728

Category Coefficient HF10 HF11

3Category Pearson 0.7842 −0.4181
Spearman 0.9013 −0.6260
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To verify the degree of dependence on different networks with different correlations of
health features. This step of the experiment divides the input data into two groups, one group
is the three health features with the highest Pearson correlation, and the other group is the
three health features with the highest Spearman correlation. These two groups of data are
used to train PSO-BP, SVM, CNN-LSTM-Attention network, CNN-LSTM-Attention, and CNN-
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BILSTM-Attention respectively. The training set accounts for 80% and the test set accounts for
20%. All experiments are completed on Matlab2022 [35]. All the experiments were conducted
on a Dell G16 7630 laptop, equipped with a 13th Gen Intel® Core™ i7-13650HX processor
operating at 2.60 GHz. The graphics card utilized is an Nvidia GeForce RTX 4060 Laptop GPU.

Because the machine learning algorithm is relatively simple, MAE and MSE are
selected for analysis. B5 is the experimental group and B18 is the control group. The results
are presented in Tables 4 and 5.

Table 4. Machine learning experiment results (B5).

PSO-BP MAE RMSE

Pearson 0.0063839 0.0081825
Sperman

√
0.0045212 0.0055251

SVM MAE RMSE

Pearson 0.010132 0.011728
Spearman

√
0.0096875 0.011095

Table 5. Machine learning experiment results (B18).

PSO-BP MAE RMSE

Pearson 0.031932 0.038874
Sperman

√
0.016178 0.018226

SVM MAE RMSE

Pearson 0.042804 0.05041
Spearman

√
0.023332 0.023332

Then, the deep learning algorithm experiment was conducted and selected MAE,
MSE, RMSE, and R2 for evaluation of the experimental results and obtained the following
experimental Tables 6 and 7. B5 is the experimental group and B18 is the control group.

Table 6. Deep learning experiment results (B5).

CNN-LSTM MAE MSE RMSE R2

Person 0.0055257 6.26 × 10−05 0.007911 0.99801
Spearman

√
0.0046942 3.02 × 10−05 0.0055 0.99904

CNN-GRU MAE MSE RMSE R2

Person
√

0.0056249 6.60 × 10−05 0.008126 0.99833
Spearman 0.0083583 0.00013731 0.011718 0.99652

CNN-BiLSTM MAE MSE RMSE R2

Person 0.0066974 6.46 × 10−05 0.008039 0.99821
Spearman

√
0.0057694 5.36 × 10−05 0.007324 0.99865

Through the analysis of experimental results from Tables 4–7, for PSO-BP, SVM, CNN-
LSTM, and CNN-BiLSTM networks, the input of health features with high Spearman
correlation coefficients can obtain more accurate results. For CNN-GRU networks, the
input of health features with relatively high person coefficients can obtain more accurate
results. And this influence has different degrees of influence on different networks. It has
a greater impact on the PSO-BP and CNN-GRU networks, with a 45% reduction in MAE,
while it has a smaller impact on other networks. The SVM network has the least impact,
with an MAE deviation of about 10%. The results can be clearly shown in Figure 10. The
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construction of neural networks has different algorithmic logic for processing different
tasks. Therefore, different networks have different correlation emphases on the input health
features, which has a greater impact on the accuracy of the results. In practical applications,
selecting an appropriate correlation coefficient based on the characteristics of the network
can enhance the accuracy of the results.

Table 7. Deep learning experiment results (B18).

CNN-LSTM MAE MSE RMSE R2

Person 0.009469 1.29 × 10−04 0.011345 0.99753
Spearman

√
0.008062 1.05 × 10−04 0.010262 0.99798

CNN-GRU MAE MSE RMSE R2

Person
√

0.012533 0.000266 0.016319 0.99584
Spearman 0.016539 0.000644 0.025381 0.99001

CNN-BiLSTM MAE MSE RMSE R2

Person 0.010401 1.51 × 10−04 0.012268 0.99691
Spearman

√
0.009494 1.63 × 10−04 0.012766 0.99741
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4.2. Input Dimension Experiment

In current research in related fields, researchers often compare the performance of dif-
ferent neural networks using the same input features. However, different neural networks
may have different optimal input dimensions.
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Building on the first experiment, a second experiment was conducted by gradually
increasing the number of input features for each network. This step is aimed at observing
the relationship between the degree of overfitting and the increased input numbers for
different algorithms and obtaining the following table. In terms of the order of increasing
the dimension, when increasing to the sixth dimension, the difference in type was intro-
duced, and the first, second, and third types of features were added respectively. B5 is the
experimental group and B18 is the control group. The results of BSO-BP and SVM were
obtained in Tables 8–11.

Table 8. BSP-BO dimensional experiment result (B5).

Input Size Number MAE RMSE

3 0.0045212 0.0055251
4 0.0074008 0.0084692
5 0.03395 0.038234

Table 9. BSP-BO dimensional experiment result (B18).

Input Size Number MAE RMSE

3 0.016178 0.018226
4 0.021651 0.025713
5 0.035144 0.041175

Table 10. SVM dimensional experiment result (B5).

Input Size Number MAE RMSE

3 0.0096875 0.011095
4 0.014118 0.016002
5 0.018886 0.021408

Table 11. SVM dimensional experiment result (B18).

Input Size Number MAE RMSE

3 0.023332 0.023332
4 0.027322 0.035099
5 0.033324 0.042639

The B5 results of BSO-BP and SVM were obtained in Figure 11. The comparison results
show that the overfitting phenomenon of the PSO-BP network and the SVM network is the
smallest when the input health feature is three, and the MAE and RMSE values are also
the smallest. The accuracy of these two networks decreases as the input dimensionality
increases. Therefore, in practical applications, it is recommended to select three features as
input to achieve optimal performance.

For the PSO network, the results caused by the input of different dimensions are
relatively different, and the MAE even has a difference of about 30%, while the input
deviation of different dimensions of the SVM network is small, and the deviation of MAE
is about 10%.

The experimental results analyzed using the CNN-GRU network showed that the
optimal input dimensionality for these networks is also three, this is similar to the PSO-BP
and SVM networks. The experimental results are presented in Tables 12 and 13. Under
which the results achieve the highest accuracy. The comparison results of the three networks
are shown in Figure 12.
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Then the experiment of deep learning network was carried out, and the number of
health features was gradually increased to study the relationship between the degree of
overfitting and the increased dimension. In terms of the order of increasing the dimension,
when the input size number is 6, the first, second, and third types of features that were
previously classified are used differentially when the sixth input feature is added. B5 is the
experimental group and B18 is the control group.

For the CNN-LSTM network, the experimental results are obtained in Tables 14 and 15,
and the multi-dimensional CNN-LSTM network experiment results are displayed with a
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line chart, as shown in Figure 13. The analysis of the experimental results for the multi-
dimensional CNN-LSTM network reveals that accurate results can be obtained when the
number of input health features is 4. However, as the input dimensionality gradually
increases from 6, significant overfitting becomes apparent. Comparing the results of the
experimental group and the control group, the optimal outcomes in both cases were
observed when the input dimensionality was 6.

Table 14. CNN-LSTM dimensional experiment result (B5).

Input Size Number MAE MSE RMSE R2

3 0.0055257 6.26 × 10−05 0.007911 0.99801
4 0.0046942 3.02 × 10−05 0.0055 0.99904
5 0.0047624 3.06 × 10−05 0.005533 0.99903

6 Category 1 0.0049245 3.29 × 10−05 0.005739 0.99895
6 Category 2 0.0043307 2.87 × 10−05 0.005359 0.99909
6 Category 3 0.0049479 3.56 × 10−05 0.00597 0.99887

7 0.0053568 3.90 × 10−05 0.006242 0.99876
8 0.0053192 4.11 × 10−05 0.006413 0.99869

Table 15. CNN-LSTM dimensional experiment result (B18).

Input Size Number MAE MSE RMSE R2

3 0.009469 1.29 × 10−04 0.011345 0.99753
4 0.008062 1.05 × 10−04 0.010262 0.99798
5 0.008061 1.09 × 10−04 0.010438 0.99791

6 Category 1 0.007584 1.01 × 10−04 0.010076 0.99805
6 Category 2 0.007421 9.48 × 10−05 0.009736 0.99818
6 Category 3 0.007734 1.09 × 10−04 0.010443 0.9979

7 0.007971 1.03 × 10−04 0.010157 0.99802
8 0.008141 9.97 × 10−05 0.009987 0.99808
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For 6-dimensional input, the variations among the three types of features were mini-
mal, indicating that under multi-dimensional input conditions, reasonably accurate results
can be achieved by adding features that are easier to obtain. In both groups, the highest
accuracy was achieved when the input dimensionality was 6 and the sixth input feature
belonged to the second type.

The specific fitting graph for the experimental group is shown in Figure 14. There-
fore, in practical applications, using either 4-dimensional or 6-dimensional input for the
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CNN-LSTM network is recommended to achieve the most accurate results. This differs
significantly from the PSO-BP and SVM networks.
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The dimensionality experiment results for the CNN-biLSTM network are presented
in Tables 16 and 17 and Figure 15. The specific fitting graph for the experimental group
is shown in Figure 16. When the number of the input health features ranges from 3 to 5,
there is no significant overfitting phenomenon observed. When the input dimensionality
ranges from 3 to 5, the differences in results are not significant. However, when the input
health features become 6, The accuracy of the results decreased significantly, with the MAE
value increasing by 34% compared to the input size of 3 and by 35% compared to the input
size of 5. The optimal input dimensionality lies between 3 and 5, where variations in input
within this range have minimal impact on result accuracy. Therefore, the best input choice
for the CNN-biLSTM network should be between three and five dimensions, and it is
recommended not to exceed this range.

Table 16. CNN-BiLSTM dimensional experiment result (B5).

Input Size Number MAE MSE RMSE R2

3 0.0057694 5.36 × 10−05 0.007324 0.99865
4 0.006398 5.55 × 10−05 0.007447 0.9983
5 0.0056866 6.52 × 10−05 0.008078 0.99805

6 Category 1 0.0059355 6.36 × 10−05 0.007973 0.99805
6 Category 2 0.0066371 1.40 × 10−04 0.011847 0.99589
6 Category 3 0.0070514 1.10 × 10−04 0.010012 0.99747

Table 17. CNN-BiLSTM dimensional experiment result (B18).

Input Size Number MAE MSE RMSE R2

3 0.009494 1.63 × 10−04 0.012766 0.99741
4 0.011392 0.000367 0.019156 0.9922
5 0.010866 0.000228 0.015115 0.99739

6 Category 1 0.017546 0.000897 0.02995 0.98606
6 Category 2 0.012294 0.000405 0.020131 0.99471
6 Category 3 0.013993 5.78 × 10−04 0.025319 0.99397



Batteries 2025, 11, 26 22 of 27Batteries 2025, 11, x FOR PEER REVIEW 22 of 26 
 

(a) (b) 

Figure 15. CNN-biLSTM performance metrics for different input sizes. (a) B5 result; (b)B18 result. 

 
(a) (b) 

Figure 16. CNN-biLSTM 5D input experiment result. (a) Test set fitting plot; (b) Error graph. 

The second experiment demonstrates that the optimal input dimensionality varies 
among different networks, and the dimensionality of health features significantly 
influences the prediction accuracy of the results. Hence, in practical applications, it is 
essential to determine the most suitable input dimensionality for the selected network to 
improve the accuracy of prediction outcomes. 

4.3. Input Data Volume Experiment 

All previous experiments were conducted under the condition that the input data set 
accounted for 80% and the test set accounted for 20%. Because the algorithm needs to be 
fully analyzed during the training process, the data set should be shuffled before the 
training data set is divided. The experiment conducted partial tests on the shuffled data 
set and the non-shuffled data set, and the results also proved that the prediction accuracy 
after the shuffled data set was the highest. Building on these findings, the third step of the 
experiment was completed. For different networks, the training set proportion was 
gradually adjusted to 70%, 60%, and 30%, respectively, to observe the dependency of each 
network on the input data volume. The conclusions drawn from the experiment are 
presented in Tables 18–21. The drawn image is shown in Figure 17. 

  

Figure 15. CNN-biLSTM performance metrics for different input sizes. (a) B5 result; (b)B18 result.

Batteries 2025, 11, x FOR PEER REVIEW 22 of 26 
 

(a) (b) 

Figure 15. CNN-biLSTM performance metrics for different input sizes. (a) B5 result; (b)B18 result. 

 
(a) (b) 

Figure 16. CNN-biLSTM 5D input experiment result. (a) Test set fitting plot; (b) Error graph. 

The second experiment demonstrates that the optimal input dimensionality varies 
among different networks, and the dimensionality of health features significantly 
influences the prediction accuracy of the results. Hence, in practical applications, it is 
essential to determine the most suitable input dimensionality for the selected network to 
improve the accuracy of prediction outcomes. 

4.3. Input Data Volume Experiment 

All previous experiments were conducted under the condition that the input data set 
accounted for 80% and the test set accounted for 20%. Because the algorithm needs to be 
fully analyzed during the training process, the data set should be shuffled before the 
training data set is divided. The experiment conducted partial tests on the shuffled data 
set and the non-shuffled data set, and the results also proved that the prediction accuracy 
after the shuffled data set was the highest. Building on these findings, the third step of the 
experiment was completed. For different networks, the training set proportion was 
gradually adjusted to 70%, 60%, and 30%, respectively, to observe the dependency of each 
network on the input data volume. The conclusions drawn from the experiment are 
presented in Tables 18–21. The drawn image is shown in Figure 17. 

  

Figure 16. CNN-biLSTM 5D input experiment result. (a) Test set fitting plot; (b) Error graph.

The second experiment demonstrates that the optimal input dimensionality varies
among different networks, and the dimensionality of health features significantly influences
the prediction accuracy of the results. Hence, in practical applications, it is essential to
determine the most suitable input dimensionality for the selected network to improve the
accuracy of prediction outcomes.

4.3. Input Data Volume Experiment

All previous experiments were conducted under the condition that the input data
set accounted for 80% and the test set accounted for 20%. Because the algorithm needs
to be fully analyzed during the training process, the data set should be shuffled before
the training data set is divided. The experiment conducted partial tests on the shuffled
data set and the non-shuffled data set, and the results also proved that the prediction
accuracy after the shuffled data set was the highest. Building on these findings, the third
step of the experiment was completed. For different networks, the training set proportion
was gradually adjusted to 70%, 60%, and 30%, respectively, to observe the dependency of
each network on the input data volume. The conclusions drawn from the experiment are
presented in Tables 18–21. The drawn image is shown in Figure 17.
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Table 18. CNN-GRU input volume test (B5).

Dataset Percentage MAE MSE RMSE R2

0.8 0.0056249 6.60 × 10−05 0.008126 0.99833
0.7 0.0069969 8.44 × 10−05 0.0091876 0.99778
0.6 0.0077245 1.49 × 10−04 0.01222 0.99575
0.3 0.007948 1.05 × 10−04 0.01028 0.99708

Table 19. CNN-GRU input volume test (B18).

Dataset Percentage MAE MSE RMSE R2

0.8 0.012096 2.52 × 10−04 0.015881 0.99627
0.7 0.012533 2.66 × 10−04 0.016319 0.99584
0.6 0.01305 3.49 × 10−04 0.018691 0.99468
0.3 0.013333 3.28 × 10−04 0.018131 0.9946

Table 20. CNN-BiLSTM input volume test (B5).

Dataset
Percentage MAE MSE RMSE R2

0.8 0.005769 5.36 × 10−05 0.007324 0.99865
0.7 0.0063117 9.16 × 10−05 0.0095717 0.99749
0.6 0.0067016 1.29 × 10−04 0.011383 0.99639
0.3 0.0079478 1.43 × 10−04 0.011991 0.99567

Table 21. CNN-BiLSTM input volume test (B18).

Dataset
Percentage MAE MSE RMSE R2

0.8 0.009494 1.63 × 10−04 0.012766 0.99741
0.7 0.011424 2.23 × 10−04 0.014944 0.99687
0.6 0.010827 2.60 × 10−04 0.016121 0.99583
0.3 0.014252 4.39 × 10−04 0.020944 0.99355

From the data in the tables, it can be observed that when the total input data volume
exceeds 60%, the reduction in input data has a relatively smaller impact on the CNN-
BiLSTM network compared to the GRU algorithm. This indicates that the CNN-BiLSTM
network requires less data to achieve a certain level of accuracy.

When the total number of samples is sufficient, it is unnecessary to input all the data
to obtain relatively accurate conclusions. In practical applications, controlling the input
sample size within a specific accuracy threshold can significantly reduce processing time
while maintaining prediction accuracy. This not only improves efficiency but also simplifies
the data management process.

Although the training time of different networks fluctuates, the specific calculation
time range is shown in Table 22.
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Table 22. Calculation time.

Network Training Time Range

PSO-BP 1–1.2 s
SVM 0.5–1 s

CNN-LSTM-Attention 15–19 s

CNN-GRU-Attention 15–27 s
CNN-BILSTM-Attention 17–23 s

5. Discussion
This paper uses comparative experiments of machine learning and deep learning

methods to confirm that in the research of battery capacity prediction, different neural
networks have optimal inputs corresponding to their network characteristics. There are
some differences between these inputs. The specific differences include the category of
input features, the dimensions of input features, and the capacity of input data. Therefore,
when comparing the performance of different neural networks, in addition to factors such
as the complexity of their structure and the time required for calculation, it is also necessary
to consider the differences in the requirements of different networks for input features. The
experimental results show that:

1. Different networks have their own optimal data input types and optimal input sizes.
CNN-GRU has a strong dependence on features with high Person correlation. SVM,
PSO-BP, CNN-LSTM, and CNN-BiLSTM have a strong dependence on features with
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high Spearman correlation. The PSO-BP, SVM, and CNN-GRU networks have the
least overfitting phenomenon when the input health feature is 3, and the CNN-
LSTM network has the most accurate results and the least overfitting when the input
dimension is 6. This demonstrates that the CNN-BiLSTM network exhibits strong
adaptability to input dimensionality. When the number of health feature inputs for the
CNN-BiLSTM network increases to 6, the prediction accuracy significantly decreases.
The optimal input dimensionality for the CNN-BiLSTM network lies between 3 and 5,
with minimal differences within this range.

2. Additionally, while achieving high prediction accuracy, different networks exhibit
varying requirements for input data. The reduction in input data has a relatively
smaller impact on CNN-BiLSTM compared to the GRU algorithm. However, differ-
ences in input data volume have a significant effect on the prediction accuracy of
different networks.

Therefore, when using different types of neural networks for battery capacity pre-
diction, it is essential to determine the type, dimensionality, and quantity of input health
features based on the specific structure and category of the network, as well as the re-
quirements of practical applications. These factors are critical to the final results. Selecting
optimized inputs tailored to the characteristics of each network can significantly improve
the accuracy of the results.

In future research, efforts will focus on the availability of input features and the struc-
tural complexity of networks. Combined with IoT technology, the study will explore how
to perform online battery parameter evaluation using the most easily accessible features.
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