
Academic Editors: Dongliang Chao

and Harry E. Hoster

Received: 1 December 2024

Revised: 2 January 2025

Accepted: 13 January 2025

Published: 17 January 2025

Citation: Soyoye, B.D.;

Bhattacharya, I.; Anthony Dhason,

M.V.; Banik, T. State of Charge and

State of Health Estimation in Electric

Vehicles: Challenges, Approaches

and Future Directions. Batteries 2025,

11, 32. https://doi.org/10.3390/

batteries11010032

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Review

State of Charge and State of Health Estimation in Electric
Vehicles: Challenges, Approaches and Future Directions
Babatunde D. Soyoye , Indranil Bhattacharya * , Mary Vinolisha Anthony Dhason and Trapa Banik

Electrical and Computer Engineering Department, Tennessee Technological University, Cookeville, TN 38505,
USA; bdsoyoye42@tntech.edu (B.D.S.); mantonydh42@tntech.edu (M.V.A.D.); tbanik42@tntech.edu (T.B.)
* Correspondence: ibhattacharya@tntech.edu

Abstract: This critical review paper delves into the complex and evolving landscape of
the state of health (SOH) and state of charge (SOC) in electric vehicles (EVs), highlight‑
ing the pressing need for accurate battery management to enhance safety, efficiency, and
longevity. With the global shift towards EVs, understanding and improving battery per‑
formance has become crucial. The paper systematically explores various SOC estimation
techniques, emphasizing their importance akin to that of a fuel gauge in traditional vehi‑
cles, and addresses the challenges in accurately determining SOC given the intricate elec‑
trochemical nature of batteries. It also discusses the imperative of SOH estimation, a less
defined but critical parameter reflecting battery health and longevity. The review presents
a comprehensive taxonomy of current SOC estimation methods in EVs, detailing the op‑
eration of each type and succinctly discussing the advantages and disadvantages of these
methods. Furthermore, it scrutinizes the difficulties in applying different SOC techniques
to battery packs, offering insights into the challenges posed by battery aging, tempera‑
ture variations, and charge–discharge cycles. By examining an array of approaches—from
traditional methods such as look‑up tables and direct measurements to advanced model‑
based and data‑driven techniques—the paper provides a holistic view of the current state
and potential future of battery management systems (BMS) in EVs. It concludes with rec‑
ommendations and future directions, aiming to bridge the gap for researchers, scientists,
and automotive manufacturers in selecting optimal battery management and energy man‑
agement strategies.

Keywords: electric vehicles; state of charge; state of health; battery management systems;
electrochemical models; data‑driven methods; machine learning

1. Introduction
Battery technology is a key challenge in the development of electric vehicles (EVs).

Many countries, including the United States, have initiated special programs to increase
battery performance to produce a battery system that can meet the criteria of EVs [1]. Bat‑
tery cell performance has improved significantly thanks to the Several Year Plan like Bat‑
tery500 Consortium and EV Everywhere Grand Challenge. Lithium‑ion batteries (LiBs)
and nickel metal hydride (Ni–MH) have been used in a wide range of EVs.

Effective battery management is critical for ensuring safe usage, extending opera‑
tional longevity, increasing driving distance, fine‑tuning power management strategies,
and lowering battery costs.

A battery management system is made up of several types of communication lines,
actuators, controllers, and sensors. Ensuring the safe and efficient utilization of battery
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energy and furnishing precise battery status data to the vehicle energy management sys‑
tem constitute the fundamental functions of a BMS. It should also be able to provide the
necessary interventions for the battery system if it is operating abnormally. Charging and
discharging batteries are observed and managed for this purpose. Measuring current, volt‑
age, and temperature by the gating signal received from the control circuit is the primary
function of the sample circuit. With measurements of battery current, voltage, and tem‑
perature converted from the analog signal, the control circuit’s primary job is to estimate
the batteries’ states of charge (SOC), health (SOH), available power capability (SOP), and
life (SOL) using sophisticated algorithms. The vehicle controller receives these data, which
include crucial decision‑making elements for power distribution and energy management
for vehicles [2,3].

The percentage of a battery’s maximum possible capacity that remains is known as its
state of charge or SOC. Battery SOC performs a function akin to that of a gasoline‑powered
vehicle’s fuel gauge, indicating the remaining energy in a battery that powers an electric
vehicle. Precise calculation of the battery, in addition to offering information about the bat‑
tery’s current energy and capacity, ensures a dependable and secure driving experience.
However, estimating the state of charge (SOC) of batteries with some accuracy is a difficult
process due to their complicated electrochemical nature, which exhibits diverse nonlinear
behavior based on both external and internal factors. To meet the needs of electric vehicles
(EVs), thousands of cells must be connected in corresponding series and in parallel due to
the low voltage and energy of a single cell. Given the heterogeneous cell properties of op‑
eration and performance within each battery pack, predictions of the cells’ inner occupied
states continue to pose significant challenges. Furthermore, aging, temperature changes,
and charge–discharge cycles all have a significant impact on battery performance, making
it extremely difficult to estimate an exact state of charge [4].

Given the critical role that battery SOC plays in battery management, numerous ap‑
proaches have been put forth to precisely determine the SOC. Scientists, researchers, and
academics have been conducting in‑depth studies since the early 1960s [5]. Nevertheless,
there are not many publications that offer a thorough explanation of the main challenges
in estimating battery SOC. Despite over fifty years of work, the problem of estimating the
state of charge in batteries accurately has not been effectively resolved [6–8]. A thorough
SOC estimation, including information on general research progress, future development
patterns, and the origins of SOC estimation, has been provided by [7,9]. Nonetheless, a
methodical explanation of the SOC computation procedure, algorithm selection, and han‑
dling of unpredictable environmental conditions and battery system grouping in electric
vehicles is lacking. By examining various current approaches and addressing the major
problems and difficulties for the SOC estimate of battery packs—rather than concentrat‑
ing just on the battery cells—this research seeks to close the gap. Selecting the best battery
management and energy management technique will be highly beneficial for the scientist,
researcher, and car maker.

A taxonomy of the current SOC estimate techniques is presented in this research. It
describes battery SOC estimate techniques in EV applications in a methodical manner, in‑
cluding every step of each type’s operation. Comprehensive information about up‑to‑date
SOC estimation techniques and difficulties is succinctly explained in Section 2. In Section 3,
the techniques and difficulties associated with SOH techniques for battery packs are dis‑
cussed. Section 4 discusses the key challenges faced in battery state estimation. Section 5
present the conclusion and recommendations.
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2. SOC Estimation
As stated in the beginning, a battery management system’s determination of its SOC

is always a crucial component. The optimal design of the control system and vehicle en‑
ergy management can be facilitated by a precise and dependable SOC estimation of a bat‑
tery. As a result, SOC estimation is done in real‑time using various techniques. We have
divided these approaches into four groups to compare them in further detail: Figure 1
shows this division.
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Figure 1. Classification of SOC estimation methods.

2.1. Look‑Up‑Table‑Based SOC Estimation

This technique looks up the battery’s terminal voltage on an “SOC versus open‑circuit
voltage (OCV)” curve after monitoring it when it is under load. This technique is based
on the assumption that a cell model’s terminal voltage equals the sum of the OCV and the
voltage drop brought on by internal resistance and current. It finds the value on the “SOC
versus OCV” curve after calculating OCV as a function of time. Although this is a step
above the straightforward voltage‑based approach, there are still several drawbacks [10],
such as internal resistance (R0) losses, diffusion voltages, and hysteresis among others that
impact the accuracy of SOC estimations in batteries. The OCV curve may include some flat
areas, as shown in Figure 2, in which it is challenging to calculate SOC with any degree
of accuracy.
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It has been established that a nonlinear relationship exists between the SOC and OCV
of a battery; as a result, estimating battery SOC by OCV after sufficient resting has grown
in popularity and effectiveness and has been used in numerous applications [11,12].

The OCV approach can estimate battery SOC with excellent accuracy; however, a ma‑
jor drawback of OCV‑based SOC estimation is the resting time. After cutting off the load
current, it usually takes a while to regain equilibrium. Furthermore, changes in tempera‑
ture affect the relationship between the SOC and OCV of a battery.

Due to its shortcomings, the open‑circuit voltage (OCV) approach is not as appro‑
priate for broad application in electric vehicles (EVs). Its impracticality for application in
real‑time scenarios, such as when the car is moving, is one of the main problems. The
state of charge (SOC) of the EV battery might be estimated if it were possible to obtain the
OCV data in real time while driving. This refers to being aware of the battery’s remaining
charge while operating the car, which is essential for organizing and arranging one’s driv‑
ing range [13]. The technique, like the voltage‑based method, might not take hysteresis
and diffusion voltages into full consideration.

In some circumstances, this approach may yield noisy SOC estimates, which reduces
its accuracy.

Filtering can be used to increase estimate accuracy, but it may cause delays that should
be considered for real‑time applications.

Another challenging element that may impair the precision of SOC estimation is hys‑
teresis, which is the reliance of a system’s state on its past.

Notwithstanding these drawbacks, there are still situations where moderately noisy
SOC estimates are appropriate or can be refined further to increase accuracy when using
the look‑up‑table‑based technique. When applying this approach to SOC estimation, it is
critical to understand its limitations and possible causes of mistakes [10].

2.2. Direct‑Based Method
2.2.1. Ampere‑Hour Integral Method

This technique is used to determine a battery’s state of charge. SOC stands for a bat‑
tery’s current state of charge, which is usually stated as a percentage.

SOC(k) = SOC(ko) +
∫ k

ko
η I(t)dt/Cn (1)

SOC(k) denotes state of charge at time ‘k’, while SOC(ko) denotes initial SOC (known esti‑
mate), η represents the efficiency of charging or discharging the battery, Cn is its nominal
capacity, and I(t) is the current being supplied to or drawn from the battery.

According to the formula, the starting SOC, current measurements, battery efficiency,
and nominal capacity may all be used to determine the SOC at any given time ‘k’. Efficiency
factor η represents how efficiently a battery charges or discharges. This factor accounts
for energy conversion efficiency losses that occur when the battery is being charged and
discharged. Because it takes energy losses into account, it is a crucial parameter in SOC
estimation. Cn is the battery’s nominal capacity, which is the amount the manufacturer
states it can hold. It serves as a benchmark for SOC computations. The technique depends
on determining the amount of current (I) entering or leaving the battery. Charging is rep‑
resented by positive current values, whereas negative values represent discharging. The
accuracy of SOC estimation depends critically on the precision of current measurements.

Several difficulties with the ampere‑hour (Ah) method of SOC estimation are men‑
tioned in this paragraph. These difficulties consist of:
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• Dependence on Current Measurements: The precision of current measurements has
a significant impact on SOC estimation when utilizing the ampere‑hour method. In‑
accuracies in SOC estimates may result from current measurement mistakes.

• Error Accumulation: The accuracy of SOC estimates may be considerably impacted
over time by inaccuracies in current measurements that accumulate.

• Difficulty in Determining Initial SOC: Accurately determining the initial state of
charge (SOC) can be difficult in real‑time applications, particularly if the battery is
not fully charged or depleted. Precise SOC estimation requires accurate initial SOC.

• Calibration Challenges: Using the Ah technique for SOC estimation can present cali‑
bration challenges for both the original SOC and current readings. To take into con‑
sideration errors and variances in the system, calibrations are required.

In conclusion, the Ah method for estimating SOC is a simple technique that depends
on current measurements; yet, it has issues with accuracy, accumulation of errors, and
determining the initial SOC. Improving the accuracy of SOC estimates while utilizing this
method requires addressing these issues.

2.2.2. Discharge Test Method

This approach is thought to be the most accurate for estimating SOC. The discharge
test method is reliable [14,15]. The battery must be discharged at a constant current, and
the product of the discharge current and time yields the SOC. This is a flexible approach
that works with different kinds of batteries. It is frequently used in scientific settings to
investigate battery charging, discharging characteristics, and maintenance as well as to
define a benchmark for SOC accuracy.

The limitations of the discharge test approach are that it is time‑consuming and not
appropriate for determining SOC while a vehicle is in motion, despite its excellent accuracy.
It therefore constitutes requires a laboratory process.

In conclusion, the classic direct‑based method of estimation has the benefit of an al‑
gorithm that is straightforward to implement; however, due to the greater hardware re‑
quirements, a significant amount of experimental investment is required, and the method’s
performance is limited to estimating SOC.

The voltage‑based method’s accuracy rises with the battery’s standby period, mean‑
ing that the test duration will be increased correspondingly, based on the features and
accuracy of each method. The initial state‑of‑charge estimation is the primary application
for the ampere‑hour (Ah) integral approach. However, as test times increase, the accuracy
of this method declines due to the continual changes in internal resistance caused by var‑
ious factors. Although the discharge test method is quite precise, it can only be used in a
laboratory setting and is not appropriate for use on actual automobiles.

2.3. Model‑Based State Estimation

It is necessary to carefully create a good battery model for the model‑based techniques.
Battery equivalent circuit models [16] and electrochemical models [17,18] are typically used
to estimate SOC in a battery, using state space. Subsequently, a range of state observers,
including the sliding mode observer, Kalman filter (KF), and the extended, adaptive, and
unscented Kalman filter are employed for online SOC estimation [19–22]. Training the
battery models, selecting the right tools to monitor them, making important model settings,
and fine‑tuning the way we observe them using a particular method called the Kalman
filter all have a significant impact on how accurate these model‑based techniques are. It
is presumed that the system has a mathematical model, as shown in Figure 3. The same
input is spread throughout the model and real systems.
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Comparison of measured and expected outputs, use of error to update the model’s
estimation of the actual state measurement, and model mistakes can cause output errors.
Careful updating is required to account for each of these. Furthermore, a trustworthy
confidence zone is typically difficult to achieve, and the observer performance test of the
SOC is done under given conditions. Consequently, it is impossible to guarantee the
estimation performance under time‑varied real‑world circumstances that differ from the
test conditions.

A generic flowchart of model‑based SOC estimate techniques is displayed in Figure 4.
These techniques are a subset of fusion techniques which involve the integration of differ‑
ent approaches with the OCV using the look‑up table. It is observed that between the look‑
up table and ampere‑hour methods, the SOC of batteries serves as a bridge. An erroneous
battery OCV is caused by an inaccurate SOC estimate determined by the ampere‑hour inte‑
gral approach, which also raises the terminal voltage forecast inaccuracy. Thus, only after
obtaining the optimal SOC can the battery terminal voltage prediction error be as low as
possible. Stated differently, the estimation error can be corrected using the OCV.
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A particular example of sequential probabilistic inference is the Kalman filter, which
provides the best state estimate under certain circumstances.

Linear Kalman filter and variations
Sequential Probabilistic Inference.

We start by assuming a general, possibly nonlinear model:

xk = f (xk−1, uk−1, wk−1) (2)

yk = h (xk, uk, vk), (3)

where uk, wk, and vk are a measured input, process random, and sensor random input,
respectively. We note that f (.) and h (.) are time‑varying. Estimating the present state
xk of a dynamic system using Yk = {y0, y1 . . . yk}, we can “peep” at what is going on
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in the actual system thanks to the observations. We estimate the state based on our model
and observations, but randomness in process noise and sensor noise prevents us from ever
being able to calculate the state exactly [23].

Review of probability

Noise is by definition random in some way; it is not deterministic. Hence, to dis‑
cuss how noise affects system dynamics, it is necessary to comprehend “random vari‑
ables” (RVs).

We are unable to precisely forecast the results of each measurement or sample of the
random variable, but we can use the “probability density function” (PDF) to describe the
probability of each sample value. Random vector X and sample vector x0 are defined as:

X =


X1

X2
...

Xn

, x0 =


x1

x2
...

xn

, (4)

where X1 through Xn are scalar random variables, and x1 through xn are scalar constants.
X described by (scalar function) joint PDF fX(x) of vector X.
fX (x0) means fX (X1 = x1, X2 = x2, …, Xn = xn). That is, fX (x0) dx1 dx2 … dxn is the

probability that X is between x0 and x0 + dx.
There is an unlimited range of PDFs; however, while creating the Kalman filter, only

the (multivariable) Gaussian PDF is utilized. It is assumed that all sounds and the state
vector are Gaussian random vectors.

The Gaussian or normal PDF as presented in Figure 5 is defined as:

X ∼ N
(

x, ∑
∼
X
)

(5)

FX(x) =
1√

(2π)n|∑ X|
exp

(
−1

2
(x − x)̂T∑−1

∼
X

(x − x)
)

(6)

where n is the dimensionality of the random variable X, |∑ X| is the determinant of the
covariance ∑ X, and (x − x)̂T∑−1

∼
X

(x − x) is the Mahalanobis distance measuring how far
x is from the mean in terms of the variance.
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Linear Kalman Filtering

Kalman filtering theory was introduced in 1960 [24]. Consider the linear discrete‑
time system in Figure 6. The unit‑delay operator is z−1I, and the matrices Ak, Bk, and Ck
are (possibly) time‑varying. The system’s deterministic input is uk, and its output is yk.
Additionally, there are two stochastic inputs: measurement noise vk, which does not affect
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the state xk, and process noise wk, which does. Inferred, the system state, xk, is an internal
(hidden) signal.
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The foundation of Kalman’s theory is the idea of the state. A system’s state is the
smallest possible collection of information needed to accurately characterize its unforced
dynamics [25]. Stated differently, it is the minimum amount of historical behavior data
needed to forecast future behavior. The status is usually unknown and might not be quan‑
tifiable. We must use observations on yk to determine its value.

We may mathematically describe the system in Figure 6 with two equations. The state
equation is:

xk+1 = Ak xk + Bkuk + wk (7)

The zero mean and covariance matrix is as follows:

E
[
wnwT

k

]
=

{
∑ w n = k

0 n ̸= k
(8)

Assuming that wk is additive, white, and Gaussian.
The system’s varying dynamic nature is captured by the state equation. This equa‑

tion, for instance, can be used to determine system stability, dynamic controllability, and
sensitivity to disturbance.

The second equation describing the system is the measurement equation:

yk = Ckxk + vk (9)

A linear combination of states is the output of the system at discrete‑time k. Measure‑
ment noise also contributed to this output. Once more, measurement noise vk is assumed
by Kalman filter theory to be additive, white, and Gaussian, with zero mean and covari‑
ance matrix:

E
[
vnvT

k

]
=

{
∑ v n = k
0 n ̸= k

(10)

The Kalman filter problem is then: Use all of the observed data {u1, u2, · · · , uk} and
{y1, y2, · · · , yk} to find the minimum mean squared error estimate x̂k of the true state xk.
That is, solve:

x̂k = argminE
[
(xk − x̂k )̂

T(xk − x̂k) ∥ u1, u2, · · · , uk, y1, y2, · · · , yk

]
(11)
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This problem has a well‑known solution, which is shown in Equations (12)–(26) be‑
low. A series of recursive relationships that incorporate the covariance and an estimate of
the state itself form the basis of the solution and the covariance matrix ∑ e, k of the state
estimate error xk − x̂k. The uncertainty of the covariance matrix is shown by the state es‑
timation, and it might be applied to provide estimate error bounds. A “large” ∑ e, k (one
with large singular values) suggests a high level of uncertainty in the estimate; a “small”
∑ e, k (one with small singular values) implies a significant level of confidence in the state
estimate [26].

Summary of the Kalman filter from reference [27]:
State‑space model:

xk+1 = Ak xk + Bkuk + wk (12)

vk = Ckxk + vk (13)

where Ck is the measurement matrix, and wk and vk are independent, zero‑mean, Gaussian
noise processes of covariance matrices ∑ w and ∑ v respectively.

Initialization: for k = 0, set
ˆ

x(+)
0 = E[x0] (14)

∑(+)

e,k ∗ = E
[
(x0 − E[x0])(x0 − E[x0])

T
]

(15)

Computation: For k = 1, 2, … compute:
State estimate propagation:

ˆ
x(−)

k = Ak−1 x̂k−1 (+) + Bk−1uk−1 (16)

Error covariance propagation:

∑(−)

e,k ∗ = Ak−1∑e,k−1(+)AT
k−1 + ∑ w (17)

Kalman gain matrix:

Lk = ∑(−)

e,k ∗CT
k

[
Ck∑(−)

e,k ∗CT
k + ∑

]̂
−1 (18)

State estimate update:

ˆ
x(+)

k =
ˆ

x(−)
k + Lk

[
vk − Ck

ˆ
x(−)

k

]
(19)

Error covariance update:

the ∑(+)

e,k ∗ = (I − LkCk)∑(−)

e,k ∗ (20)

The Kalman filter is initialized with the best available information on the state and
error covariance.

ˆ
x(+)

0 = E[x0] (21)

∑(+)

x,0 ∗ = E
[
(x0 − E[x0])(x0 − E[x0])

T
]

(22)

Although this initialization must frequently be done on the fly, the Kalman filter
rapidly converges on the correct values as it operates.

After initialization, the Kalman filter repeats two actions. Initially, it predicts the er‑
ror covariance, system output, and the value of the subsequent state. Second, it corrects

the present state estimate based on a measurement of the system output ˆ
x(−)

k and ∑
(−)
e,k ∗,
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respectively, representing the estimated error covariance and predicted state at time index
k but before the measurement. Following the measurement, the corrected estimations are

indicated by ˆ
x(+)

k and ∑
(+)
e,k ∗.

The prediction step is accomplished by propagating the system through the system
dynamics:

ˆ
x(−)

k+1 = Ak x(+)
k + Bkuk (23)

The state uncertainty is also updated:

∑(−)

e,k+1 ∗ = Ak∑(+)

e,k ∗AT
k + ∑ w (24)

If the system is stable, the first term is contractive, reducing uncertainty. The process
noise always increases the uncertainty ∑ w.

The state correction step is:

ˆ
x(+)

k =
ˆ

x(−)
k + Lk

[
vk − Ck

ˆ
x(−)

k

]
(25)

In other words, the predicted state estimate plus a weighted correction factor equals
the new state estimate. Subtracting the expected cell voltage from the measured cell volt‑
age equals the term enclosed in square brackets [28].

Due to measurement noise, an erroneous state estimate ˆ
x(−)

k , or an imprecise cell
model, this term might not be zero. It is frequently referred to as the “innovation” process,
as it symbolizes the “new information” in the measurement. A major innovation usually
results in a large state update. A tiny innovation usually results in a small state update.

The innovation is weighted by the Kalman gain Lk:

Lk = ∑(−)

e,k ∗CT
k

[
Ck∑(−)

e,k ∗CT
k + ∑ v

]
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A significant update is required if the present state estimate is highly uncertain, as
indicated by large values of the ∑ e, k and Lk. Lk is tiny, and the state‑estimate update is
minimal if the current state estimate is certain. Furthermore, a considerable amount of
sensor noise results in a large ∑ v, which in turn causes a small Lk and a small update.

The covariance correction step is:

∑(+)

e,k ∗ = (I − LkCk)∑(−)

e,k ∗ (27)

The state uncertainty always decreases due to the new information provided by the
measurement.

In Figure 7, the left‑hand graph, titled ‘Kalman filter in action’, compares the true state
of a system (solid line) against the estimated state provided by the Kalman filter (dashed
line) across iterations. The magenta bounds represent the estimated uncertainty or con‑
fidence interval. The right‑hand graph, titled ‘Error with bounds’, shows the estimation
error (solid blue line) and its bounds (dashed magenta line), which likely represent the ex‑
pected range of error, across the same iterations. These plots are instrumental in evaluating
the accuracy and reliability of Kalman filter predictions over time.
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Extended Kalman Filtering

The Kalman filter is the best state estimator. In a nonlinear system, we can approxi‑
mate the nonlinear system with a linear time‑varying (LTV) system by using a linearization
procedure at each time step. The extended Kalman filter (EKF) on the real nonlinear sys‑
tem is produced by using this LTV system in the Kalman filter. Keep in mind that while
EKF is not always the best option, it frequently functions more effectively than others [28].

The nonlinear system may be modeled as:

xk+1 = f (xk, uk) + wk (28)

yk = g(xk, uk) + vk (29)

As before, wk and vk are zero mean white Gaussian stochastic processes with covari‑
ance matrices ∑ v and ∑ w, respectively. Now, f (.) is a nonlinear transition matrix function,
and g (.) is a nonlinear measurement matrix.

At each time step, f (.) and g (.) are linearized by a Taylor‑series expansion.

f (xk, uk) ≈ f (x̂k, uk) +
∂ f (xk, uk)

∂x
∥ .xk=x̂k (xk − x̂k) (30)

g (xk, uk) ≈ g(x̂k, uk) +
∂g(xk, uk)

∂x
∥ .xk=x̂k (xk − x̂k) (31)

So, we have the linearized system:
State‑space model:

xk+1 = f (xk, uk) + wk (32)

yk = gxyk = g(xk, uk) + vk, yk = g(xk, uk) + vk (33)

where wk and vk are independent, zero‑mean, Gaussian noise processes of covariance ma‑
trices ∑ v and ∑ w, respectively.

Definitions:
Ak =

∂ f (xk, uk)

∂x
∥ xk =

ˆ
x(+)

k (34)

Ck =
∂g(xk, uk)

∂x
∥ xk =

ˆ
x(−)

k (35)

Initialization: For k = 0, set
ˆ

x(+)
k = E[x0] (36)

∑(+)

x0
∗ = E[(x0 − E[x0])(x0 − E[x0])̂T] (37)

Computation: For k = 1, 2, K, compute:
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State estimate propagation:

ˆ
x(−)

k = f
(

ˆ
x(+)

k−1, uk−1

)
(38)

Error covariance propagation:

∑(−)

e,k ∗ = Ak∑(+)

e,k−1 ∗AT
k + ∑ w (39)

Kalman gain matrix:

Lk = ∑(−)

e,k ∗CT
k

[
Ck∑(−)

e,k ∗CT
k + ∑ v

]
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State estimate update:

ˆ
x(+)

k =
ˆ

x(−)
k + Lk

[
yk − g

(
ˆ

x(−)
k , uk

)]
(41)

Error covariance update:

∑(+)

e,k ∗ = (I − LkCk)∑(−)

e,k ∗ (42)

xk+1 ≈ Akxk + [ f (x̂k, uk)− Ak x̂k] + wk (43)

yk ≈ Ckxk + [g(x̂k, uk)− Ck x̂k] + vk (44)

Equations (32)–(44) give a summary of the extended Kalman filter from reference [27].

2.3.1. Electrochemical Model

The electrochemical model [29–31], reduced‑order model [32–34], equivalent circuit
model [35–37], and data‑driven model [38,39] are the primary battery‑electric models. By
accurately representing battery concentration, electrode potential, and Butler–Volmer ki‑
netics, the electrochemical model can simulate the complex interplay of chemical and elec‑
trical processes that occurs within the battery during intercalation. This enables better con‑
trol and regulation of the battery’s performance and lifespan [29]. The particle swarm op‑
timization (PSO) method is then used to optimize important model parameters, resulting
in the establishment of an electrochemical model to represent the electrochemical behav‑
iors of batteries. The electrochemical model demonstrated strong prediction performance,
although it required a large amount of computing during model simulation, as demon‑
strated by Sung and Shin [30]. Next, to integrate the electrochemical model into the BMS,
a model implementation strategy was created. The primary benefit of employing an elec‑
trochemical model is the ability to acquire the reactions occurring within the battery. In
real‑time applications, it might be challenging to identify numerous characteristics, such
as the compositions of the internal chemicals.

Furthermore, there are significant computing overheads associated with these elec‑
trochemical models, because they typically require the solution of several partial differen‑
tial equations. Reduced‑order electrochemical models can approximate full‑order models
with appropriate assumptions.

An estimated technique was developed with a way to capture and understand the
diffusion of compositions inside batteries. This helps us to understand what is happening
inside the battery [32]. Subsequently, a simplified electrochemical model based on physics
was created to estimate the state of charge of lithium‑ion batteries with Figure 8 showing
a cross‑sectional view of battery cells. To forecast the discharging capacity of the battery
under different situations, a robust SOC estimation was accomplished using a battery with
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a reduced‑order model [34]. The simpler reduced‑order models produced by this method
have some information loss, but they are still preferable for real‑time battery applications.
Reduced‑order models have significantly smaller computing overheads, and the measured
current and voltage signals can be used to determine the corresponding parameters.

Continuum porous‑electrode models use physics concepts to develop equations that
explain all of the internal events that occur within a cell. These equations are linked by par‑
tial differential equations (PDEs). The models take into account many state variables that
are vital for understanding what is going on inside the cell, incorporating the solid‑state
amount of lithium, Cs(x,r,t); lithium present on the cell’s surface, Cs(x,t); the electrolyte’s
lithium content, Ce(x,t); the solid’s potential, ϕs(x,t); the electrolyte’s potential, ϕe(x,t); and
the lithium migration rate, j(x,t), between phases [40].
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By resolving the five connected continuum‑scale partial differential equations (as well
as the corresponding boundary conditions), these five electrochemical variables can be
determined.

Movement of Lithium‑ions in the solid particles:

∂Cs

∂t
=

Ds

r2
∂

∂r

(
r2 ∂Cs

∂r

)
(45)

where Cs, Ds, and r are the concentration of lithium in the solid particles, diffusion coef‑
ficient in the solid, and radial coordinate within the particle, respectively. This equation
represents Fick’s law of diffusion in spherical coordinates.

Charge balance in particles; electron current:

∇.
(

σe f f ∇ϕs

)
= as F j. (46)

where ϕs, σe f f , as, F, and j are the electric potential in the solid, effective conductivity of
the solid, specific surface area of the particles, Faraday’s constant, and reaction current
density, respectively. This equation ensures that the divergence of the electric current in
the solid balances the reaction current.

Diffusion of lithium in electrolyte:

∂(εeCe)

∂t
= ∇.

(
De,e f f∇Ce

)
+ as

(
1 − t0

+

)
j. (47)

where Ce, εe, De,e f f , and t0
+ are the lithium concentration in the electrolyte, porosity of the

electrolyte phase, effective diffusion coefficient co‑efficient in the electrolyte, and transfer‑
ence number of lithium‑ion, respectively. This equation accounts for the time‑dependent
change in lithium concentration in the electrolyte, considering both diffusion and reaction
contributions.
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Charge balance in electrolyte; ion current:

∇.
(

κe f f∇ϕe + κD∇ln Ce

)
+ asFj = 0. (48)

The reaction rate (where η = (ϕs − ϕe)−Uocp − j F R f ilm) :

j = k0C1−α
e (Cs,max − Cs,e)

1−αCα
s,e

{
exp

(
(1− ∝)F

RT
η

)
− exp

(
− αF

RT
η

)}
(49)

It was discovered that these equations could be resolved using simulation; however,
the method demanded a significant amount of processing power. Furthermore, past per‑
formance demonstrates that PDE simulators can be quite brittle, unable to converge to
stable solutions.

A method to convert the PDEs into a discrete‑time reduced‑order model was sug‑
gested, and two fundamental presumptions in simulation were made [40]:

• The presumption was of linear behavior: a Taylor series was used to linearize the
nonlinear equations.

• By assuming that the electrolyte concentration Ce(x,t) was not a function of the reac‑
tion current j(x,t), transfer functions were built.

Next, a discrete‑time state‑space model was made using a technique known as the
“discrete‑time realization algorithm” (DRA), as shown below in Figure 9.
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The challenges and limitations of electrochemical model (EM) methods in state of
charge (SOC) estimation primarily revolve around their complexity and the need for de‑
tailed and accurate data. These models are computationally intensive due to their detailed
representation of electrochemical processes. They require precise parameters that are sen‑
sitive to changes, such as battery aging, and these parameters can be difficult to obtain
accurately. Additionally, EMs need extensive experimental data for calibration and vali‑
dation, which can be time‑consuming and costly. The effectiveness of EMs is highly de‑
pendent on the accuracy of the model in reflecting actual battery behaviors under various
conditions, such as temperature fluctuations and aging effects. These factors collectively
make EMs challenging to implement and maintain, especially for real‑time applications.
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2.3.2. Equivalent Circuit Model

The Partnership for a New Generation of Vehicles (PNGV) model, Rint model,
Thevenin model, and the RC model are just a few of the analogous circuit models that
are commonly used in EV research today [41,42].

• Rint Model

The Rint model defines the battery open‑circuit voltage by implementing an ideal
voltage source UOC, as seen in Figure 10 and Equation (50). UOC, which is the voltage
when the circuit is opened, and resistance Ro are both influenced by temperature, SOC,
and SOH. Terminal voltage (UL) is equal to load current (IL), which has a positive value
when charging and a negative value when discharging.

UL = UOC − ILR0 (50)
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• RC Model

[ .
Ub.
Uc

]
=

[ −1
Cb(Re+Rc)

1
Cb(Re+Rc)

1
Cc(Re+Rc)

−1
Cc(Re+Rc)

][
Ub

Uc

]
+

[ −Rc
Cb(Re+Rc)

−Re
Cc(Re+Rc)

]
[IL] (51)

[UL]=
[

Rc
(Re+Rc)

Re
(Re+Rc)

][Ub

Uc

]
+

[
−Rt −

ReRc

(Re + Rc)

]
[IL] (52)

This model is made up of three resistors (Rt, Re, Rc) and two capacitors (Cc, Cb), as
seen in Figure 11. The capacitor Cc, termed the surface capacitor, has a tiny capacitance
and mostly depicts a battery’s surface effects, while Cb is the bulk capacitor. A battery’s
ability to hold charge chemically is a result of its large capacitance, which is what bulk
capacitors are known for. By measuring the voltage across the bulk capacitor, one can find
the SOC. Terminal resistor, end resistor, and capacitor resistor are the names given to the
resistors Rt, Re, and Rc, respectively. The voltages across Cb and Cc are denoted by Ub
and Uc, respectively. Equations (51) and (52) represent the electrical behavior of the RC
model circuit.
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• The Thevenin Model

The Thevenin Model is primarily made up of three components, as seen in Figure 12:
equivalent capacitances, internal resistances, and open‑circuit voltage (UOC). Ro and RTh
are examples of internal resistances. The transient response while charging and discharg‑
ing is expressed in terms of the equivalent capacitance, or CTh. CTh voltages are repre‑
sented by UTh. The current that exits CTh is denoted as ITh. Equations (53) and (54) can be
used to express the Thevenin model’s electrical behavior.

.
UTh = − UTh

RThCTh
+

IL
CTh

(53)

UL = UOC − UTh − ILRO (54)
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• The PNGV Model

Figure 13 illustrates a PNGV model with an open‑circuit voltage source Uoc, in series
with an internal resistance Ro and a dynamic element represented by a capacitor 1/U′

oc and
a voltage Ud; alongside this series connection is a parallel network of a capacitor CPN and
resistor RPN, with the current IPN flowing out of CPN, and the entire assembly is connected
to a load characterized by a current IL and voltage UL, forming a modified Thevenin equiv‑
alent circuit that models the variable open‑circuit voltage behavior under load conditions.
The electrical behavior of the PNGV model can be expressed by Equation (56):

..
Ud = U′

OC IL (55)

.
.

UPN =
UPN

RPNCPN
+

IL
CPN

(56)

UL = UOC − Ud − UPN − ILR0 (57)
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• The Dual Polarization (DP) Framework

The test framework shows that polarization is one of a lithium‑ion battery’s proper‑
ties. The Thevenin model might replicate the polarization characteristic to some extent,
but in the final moments of charge or discharge, the differences between concentration
polarization and electrochemical polarization result in an erroneous projection. To more
accurately describe polarization features and simulate concentration and electrochemical
polarization independently, an enhanced circuit model, referred to as the dual polarization
(DP) model, is shown in Figure 14.
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The DP model is divided into three sections: The first three parameters are the OCV
(Uoc); the second is the internal resistance, which includes the ohmic resistance Ro and the
effective resistances Rpa and Rpc, which characterize the electrochemical and concentration
polarization, respectively; and the third is the effective capacitance, which includes Cpa
and Cpc, which describe the concentration and electrochemical polarization separately and
characterize the transient response during power transfer to and from the battery. Upa and
Upc represent Cpa and Cpc voltages, respectively. The currents of Cpa and Cpc are Ipa and
Ipc, respectively. Equation (60) can be used to express the circuit’s electrical behavior:

.
Upa= −

Upa

RpaCpa
+

IL
Cpa

(58)

.
UPC =

Upc

RpcCpc
+

IL
Cpc

(59)

UL = Uoc − Upa − Upc − ILR0 (60)

2.3.3. Electrochemical Impedance Model

In addition to incorporated components and porous electrode theory, the electrochem‑
ical impedance model (EIM)‑based SOC assessment incorporates additional parameters
into the model by including Warburg, constant phase, and Zarc elements [43–46]. A basic
schematic diagram of the EIM is displayed in Figure 15. A potent method for examining
the internal dynamics of batteries across a variety of periods is electrochemical impedance
spectroscopy (EIS). The electrochemical system comprising the battery’s capacitive and in‑
ductive components may be recognized and measured by EIS by measuring the battery’s
impedance throughout a broad frequency range [47]. Electric double‑layer effects, ion dif‑
fusion, and charge transfer reactions are just a few of the internal processes that may be
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understood by estimating the battery’s impedance using these measures. Battery research
and diagnostics have found that EIS is a useful tool, as it produces accurate findings with
little computing demand when combined with an appropriate electrochemical model, such
as the EIM.

The EIM method, used in SOC estimation, encounters several specific limitations.
Firstly, EIM is inherently complex in its interpretation, as it relies on analyzing impedance
spectra. This complexity necessitates specialized knowledge, making EIM less accessible
for standard applications. Moreover, the method’s accuracy is highly sensitive to oper‑
ational conditions like temperature and battery aging. Fluctuations in these factors can
lead to significant variances in impedance response, thereby affecting the precision of
SOC estimations.
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In addition, EIM demands a comprehensive understanding of the battery’s electro‑
chemical properties, involving detailed and complex electrochemical analysis. This re‑
quirement often makes EIM a more specialized approach, limited to scenarios where
such expertise is available. Another considerable limitation is the time‑intensive nature
of impedance spectroscopy measurements. These measurements often require the battery
to be in a stable state, which limits the method’s applicability in dynamic or real‑time sce‑
narios, where quick and responsive SOC estimation is crucial.

Furthermore, EIM requires specialized and often costly equipment to measure
impedance spectra, which may not be practical or affordable for all applications. The
method’s effectiveness also varies across different types of batteries, and it may not be
suitable for all battery chemistries or designs. Lastly, translating impedance data into ac‑
curate SOC values involves complex modeling, especially challenging due to the nonlinear
behavior of batteries.

In summary, while EIM offers detailed insights into a battery’s electrochemical pro‑
cesses, its practical application in SOC estimation is constrained by its interpretational com‑
plexity, operational sensitivity, specialized knowledge requirements, measurement con‑
straints, equipment costs, battery type limitations, and the complex modeling needed for
accurate data translation.

If the battery is accurately modeled, precision is the benefit of model‑based SOC esti‑
mation. This has been demonstrated in [48], where EIM and EKF are combined to assess
SOC for lithium batteries. Additionally, according to some researchers, model‑based SOC
estimation produces strong closed‑loop control, high adaptability, and good real‑time per‑
formance [49]. Unfortunately, based on models, modeling complexity is a drawback of the
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accurate SOC prediction approach. Considering the great variation in battery chemistries
and constructions, this might be a significant obstacle to researchers in fully comprehend‑
ing the distinctive electrochemical characteristics of the particular battery type they are
modeling [50]. The exhaustive experimentation necessary to determine the correlations
between numerous factors adds to the process’s time‑consuming nature [51]. The diffi‑
cult work of identifying every important parameter that goes into creating a strong model
frequently requires iterative testing and improvement. Sometimes, an extra Warburg
element—which symbolizes the battery’s frequency‑dependent diffusion impedance—is
added to these models to improve their accuracy for specific batteries. This adds another
level of complexity, but improves the model’s ability to mirror actual battery behavior [52].
Creating an excellent model is usually difficult and necessitates extensive prior knowl‑
edge. Consequently, it is not always feasible to apply the model‑based approach to all
battery types.

2.4. Data‑Driven Model Estimation

Battery parameters like current, voltage, and temperature can be measured and used
in data‑based techniques for SOC estimation. As a result, an additional filter in the model‑
based approach is avoided [53]. Additionally, the self‑learning algorithm determines the
network parameters of data‑driven methods [54]. This process is entirely different from
model‑based estimation techniques, which require significant time and human expertise
for parameter estimation.

Machine learning (ML) platforms are frequently required in data‑driven approaches
to extract relationships and rules from the data [55]. Their algorithms are used today to
achieve on‑par or sometimes even super‑human performance in a variety of fields, includ‑
ing medical diagnosis [56], stock trading [57], robotics [58], mastering board games [59],
and more.

This section concerns data‑driven approaches for battery SOC estimation.

2.4.1. Neural Network Method

A neural network (NN) is a created intelligence that learns from examples and im‑
proves with time. Consider it similar to training a machine to spot patterns. In this exam‑
ple, it is utilized to anticipate how much charge a battery has remaining.

There are two major steps. First, it follows through with a calculation process step by
step, much like adding numbers. It then double‑checks its replies and corrects any errors.
It makes use of battery performance metrics, such as how much power the battery is using,
the temperature, and the battery resistance, as input data [59–61]. Depending on all of
these variables, our neural network assists us in determining a battery’s level of charge.
The hidden layer serves as the system’s activation function. Figure 16 depicts the basic
processing sequence of a neural network method. The experimental results validate the
resilience and accuracy of this technique, which provides a quick and efficient calculation
of SOC.
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Despite its benefits, this strategy has inherent limits. A large number of training data
are used to adequately train the algorithm. The quantity and quality of training data
have a considerable influence on accuracy [63,64]. In summary, NNs for SOC estimation
face drawbacks such as a heavy reliance on extensive data for training, risk of overfitting,
opaque ‘black box’ decision‑making processes, computational intensity in training, sen‑
sitivity to network architecture and hyperparameters, challenges in generalizing across
different battery types, reduced adaptability in non‑stationary environments due to bat‑
tery aging or usage pattern changes, and the requirement for specialized machine learning
expertise for development and tuning.

The use of deep learning (DL) algorithms in the state estimation of BMS is made fea‑
sible by the advancement of big data and cloud computing platforms. The term “deep” is
used by the so‑called DL algorithms to characterize the utilization of several hidden layers
or other distinct architectural styles [65]. Deep learning algorithms can map complex and
nonlinear functions more accurately and effectively than shallow neural networks. This re‑
search categorizes standard DL algorithms into three groups based on their architectures:
convolutional neural network (CNN), recurrent neural network (RNN), and deep neural
network (DNN). The fundamental ideas and uses of these three SOC estimating techniques
are thoroughly described in this section.

• Deep Neural Network

A deep neural network (DNN) is an extension of a back‑propagation neural network
(BPNN) with additional hidden layers, as shown in Figure 17. Each hidden layer may
contain a different number of hidden neurons, represented by l1, … lM. Both DNN and
BPNN use the same learning method and information transformation principles. A multi‑
layer feed‑forward NN was developed to tackle the common issues of over‑fitting or under‑
fitting in data‑driven approaches for SOC estimation [66]. The NN was built from scratch,
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starting with a basic version that had a low‑dimensional input vector and gradually work‑
ing its way up to a more complex structure with a high‑dimensional input vector.
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Although this constructive strategy was largely a trial‑and‑error approach, it is a cru‑
cial stage in the training of DNNs. An additional innovation was the use of the unscented
Kalman filter (UKF) to filter the DNN outputs, which helped to increase their accuracy.
After noise reduction, the suggested method’s root mean square error (RMSE) was 1.4%,
and its maximum error was only 1.9%, which is less than 2% under the Federal Urban Driv‑
ing Schedule (FUDS) driving cycles. However, it is worth noting that the execution time
of the algorithm could be significantly increased by merging UKF. A four‑hidden‑layer
DNN with 64 neurons per hidden layer was found to be the best model after comparing
numerous DNN models [53]. The number of hidden neurons and the number of hidden
layers are important for accuracy and computing load.

DNNs encounter several drawbacks, including a substantial need for large datasets
for training, high susceptibility to overfitting, considerable computational resources for
model training and operation, complexity in architecture leading to difficulties in tun‑
ing and optimization, a “black box” nature that obscures interpretability of the decision‑
making process, and potential challenges in generalizing to new or unseen data, especially
when operational conditions significantly deviate from the training scenarios.

• Convolutional Neural Network

CNN is used in lithium battery state estimation research. A typical CNN includes
convolutional and pooling layers, fully connected layers, and an output layer, as shown
in Figure 18. In CNN, neurons in each convolution layer are not connected to every other
neuron, unlike in a fully connected network. This is achieved by sliding a filter across the
input space, resulting in sparse connectivity. Convolution is a process where subsets of
input space multiply with a filter. Three factors determine this process: filter size, number
of filters, and step. This process allows for faster learning and reduced memory usage.
Pooling layers decrease the size of feature maps. Rectified linear unit (ReLU) activation is
typically used in a CNN.
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Figure 18. The structure of CNN [67].

Hybrid CNN–RNN networks are often used to estimate SOC. In one study, a CNN–
long short‑term memory (LSTM) network was used to capture spatial features and retrieve
characteristics [68]. Different research conducted suggested the utilization of a CNN–gated
recurrent unit (GRU) network; however, it deviated from employing average current and
voltage as input parameters [69]. This hybrid network solely applied the one‑dimensional
convolution layer to extract relevant information from temperature, current, and voltage
measurements. Hyperparameters were selected by comparing various designs. The sug‑
gested hybrid network was compared to other machine learning algorithms under driving
cycles to confirm its superiority.

SOC can now be estimated using a 1D CNN alone for electric vehicles’ batteries. The
proposed model predicts SOC at timestep k using voltage, current, and temperature data
from k − tw + 1 to k as inputs. This model outperformed other techniques in terms of both
performance and offline training time. Hannan et al. [70] proposed a fully convolutional
network (FCN) with temporal convolutions for determining the state of charge. They used
global average pooling to prevent overfitting. The model’s learning rate was optimized
using various techniques to better its error rate. The model achieved an MAE of 0.7% at
room temperature and also an RMSE of 0.85%

CNNs encounter drawbacks such as their substantial need for large and diverse train‑
ing datasets, vulnerability to overfitting, particularly when training data are limited, high
computational requirements for training and inference, and the complexity of model archi‑
tecture, which necessitates fine‑tuning and specialized expertise to optimize effectively.

• Recurrent Neural Network

RNNs and BPNNs share some structural similarities, with RNNs evolving from feed‑
forward neural networks. This segment reviews RNN principles and their recent applica‑
tions in SOC estimation.

Nonlinear autoregression with exogenous input neural network (NARXNN) is a neu‑
ral network used for predicting one‑time series. It uses historical values, feedback, and an
external time series for training. Its layout is shown in Figure 19. It is a variation of the
Jordan NN with a feedback mechanism. The expression of NARXNN is as follows:

y(n) = f0

b0 +
l

∑
h=1

wh0 fh

bh +
du

∑
i=0

wihx(n − i) +
dy

∑
j=0

wjhy(n − j)

 (61)
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where h and l are the number of hidden neurons; fo(·) and fh(·) are activation functions of
the output layer and hidden layer, respectively; du and dy represent the input and output
delays, respectively; and [bh, bo] and [wih, wjh, who] are biases and weights between the
corresponding layers, respectively.
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Time‑sequence knowledge is enhanced by the prior knowledge of inputs and outputs.
This is especially useful for SOC estimates and has generated much attention in this field.
For SOC estimation, a dynamic neural network model based on the NARX structure was
proposed [72]. An actual dataset of driving cycles of an electric vehicle, obtained from 54
different 800 km trips with varying unknown initial SOCs, was used. In all scenarios, the
proposed approach is capable of producing accurate results. Particle swarm optimization
(PSO) and latent semantic analysis (LSA) optimization techniques were found to improve
NARXNN’s SOC estimation capabilities in a study [73]. Heuristic optimization methods
can be used to save time and allow for model performance tweaking. NARXNN alone,
as a result of noises, can lead to noisy estimation [74]. To enhance the overall SOC es‑
timation method’s robustness, adaptability, and efficiency, Qin et al. [75] combined the
NARXNN and UKF algorithms, similar to [71]. RNNs often experience gradient fading
issues, which in this case were solved using a moving window approach based on the con‑
ventional finite‑element concept [76]. The enhanced NARXNN adjusts historical data by
changing the window size at the right moment, avoiding gradient issues, and increasing
estimation accuracy.

RNNs, when used for applications like SOC estimation, encounter specific drawbacks
including a tendency to fade, significant computational resources required for training and
operation, and challenges in model tuning and hyperparameter optimization, all of which
require substantial machine learning expertise to address effectively.

2.4.2. Deep Learning

Vapnik introduced support vector machines (SVMs), another well‑liked and often‑
used machine learning algorithm that may be utilized for both regression and classifica‑
tion issues, particularly with smaller datasets [77]. Originally designed to address classifi‑
cation issues, SVMs were later extended to address regression issues and given the name
support vector regression (SVR) [78]. In general, a large number of regression issues are
not amenable to linear regression in the input space.

As a result, one of SVM’s benefits is to permit linear separation. The basic tenets of
SVM theory can be found in references [77,78].
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Let us choose a training dataset D = {(xi, yi) , i = 1, . . . , L} where xi and yi repre‑
sent the input and output vector, respectively; the support vector machine is defined as:

f (xi) = WT . ϕ(xi) + b, w ∈ Rn, xi ∈ Rm, b ∈ R (62)

where b and W are the parameters to be determined; φ(·) is a mapping function; and (Rm)

and (Rn) are the input and high‑dimensional space, respectively. The input data can be
linearly segregated in the new feature space. The SVM model employs more advanced
methods to compute the ϵ‑insensitive loss function, in contrast to basic linear regression
models. Slack variables ξ+i and ξ−i are added to the hard margin to produce a so‑called
soft margin, as seen in Figure 20, to make the optimization possible.
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Numerous researchers have used support vector machines (SVMs) for SOC estimation
due to their strong regression capabilities with tiny sample sizes. An SVM‑based approach
has been used to calculate SOC utilizing temperature, voltage, and current information
gathered from working cycles at various DST driving cycles [79]. In addition to validating
the SOC prediction’s performance, this approach was utilized to determine the ideal hyper‑
parameters. The findings show that throughout the whole test, the RMSE was just 0.71%,
and the prediction errors were consistent within 6% in each case. Various tactics were em‑
ployed [71,80] to train and identify the ideal parameters, enhancing model performance.
To cut down on the amount of time needed to search for optimal pairs of hyperparameters,
Hu et al. [71] employed a double‑step search strategy. The particle swarm optimization al‑
gorithm was used to determine the hyperparameters of the SVM model, namely the RBF’s
kernel width (σ) and penalty factor (γ). The particle swarm optimization model demon‑
strated the benefits of increased estimation accuracy and quicker processing performance
when compared to the SVM model using a standard approach. Furthermore, the suggested
method’s generalizability was confirmed under four lithium‑ion battery fault states: exces‑
sive internal resistance, excess temperature, and terminal voltage above the upper or lower
cut‑off voltage. Under these four battery failure scenarios, the suggested method’s average
errors were all less than 2.5%.

The primary drawback of using an SVM for SOC estimation is its sensitivity to the
choice of kernel and hyperparameters, which requires careful tuning, along with its po‑
tential difficulty in handling large datasets due to computational complexity, and limited
interpretability of the model’s decision‑making process.

2.4.3. Fuzzy Logic

A computational method that provides flexibility in a statement is called fuzzy logic
(FL). This method makes it easier to understand the idea of partial truth, in which the truth



Batteries 2025, 11, 32 25 of 42

value might be, depending on a number between 0 and 1, entirely true, partially true, or
fully false [81]. FL presents the idea of many‑valued logic as an alternative to the tradi‑
tional two‑valued true‑or‑false logic. Fuzzification, fuzzy rule base, inference engine, and
defuzzification are used in the framework of the FL interface system [82]. A few studies
using FL to estimate SOC are available. FL and SVM can be used to suggest the SOC of a
battery pack in an electric vehicle [83].

In comparison to NN and standard SVR, the authors found improvements in SOC es‑
timate accuracy and noise immunity. A strong‑tracking adaptive unscented Kalman filter
(ST‑AUKF) technique was developed to estimate SOC. It is based on a dynamic parameter
that varies according to conditions or inputs, allowing the control algorithm to adjust the
influence of past data, either giving more weight to recent data or considering historical
data, depending on the system’s changing circumstances and uncertainties [84].

The fuzzy adaptive forgetting factor is critical in updating the battery model parame‑
ters, which ensures that the model adapts to changing situations and retains accurate repre‑
sentations of the battery’s behavior over time. Compared to the traditional UKF technique,
the suggested model may yield better results in terms of accuracy, robustness, and conver‑
gence time. A fuzzy‑logic‑based SOC estimate model was developed by Singh et al. [85]
through the analysis of voltage and impedance data. Using fuzzy logic and data from
impedance spectroscopy, Salkind et al. [82] calculated SOC. The designed model is im‑
plemented using an analog‑to‑digital converter, temperature sensor, current sensor, and
Motorola 68HC11 microprocessor (LM35CZ). The error range is constrained to less than
5%, and the hardware is checked using LIBs.

The enhanced approach known as the adaptive neuro‑fuzzy inference system (ANFIS)
combines the fuzzy inference system with the NN learning method without requiring a
detailed battery model. In terms of modeling, decision‑making, and signal processing,
ANFIS is incredibly potent [86,87].

Using inputs such as current, temperature, cooling air temperature, and battery ther‑
mal factor, an ANFIS‑based SOC estimate model can be constructed. Ten distinct driving
cycles are used to assess the training and testing outcomes.

The findings show that in varied driving cycles, the ANFIS model performs with an
SOC error of less than 1%. To calculate SOC for lithium‑ion batteries, an ANFIS model
was constructed in [88] using current, voltage, capacity, and temperature. It is stated that
the average percentage inaccuracy is merely 0.53%. Figure 21 shows the ANFIS structure
with five computations for its SOC estimation. The five‑stage ANFIS configuration’s math‑
ematical representations are given in Equations (63)–(70).

µA =
1

1 +
∣∣∣ x−ci

ai

∣∣∣2bi

(63)
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The drawbacks of using fuzzy logic for SOC estimation include its reliance on expert
knowledge for rule formation, potential challenges in precisely defining membership func‑
tions, limitations in handling complex systems with high‑dimensional data, the subjective
nature of rule‑based systems leading to possible inconsistencies, and difficulties in inte‑
grating with other numerical methods due to its qualitative approach.

The table below highlights the components of the ML algorithms used for SOC esti‑
mations examined in the previous section: input and output characteristics, performance
metrics, a portion of the suggested algorithms’ hyperparameters, and the data profiles
used to train and verify the models. Furthermore, Table 1 provides a summary of genetic
algorithm (GA) and fuzzy logic (FL).

Batteries 2025, 11, x FOR PEER REVIEW 25 of 42 
 

 

Figure 21. ANFIS structure for SOC estimation [88]. 

The drawbacks of using fuzzy logic for SOC estimation include its reliance on expert 
knowledge for rule formation, potential challenges in precisely defining membership 
functions, limitations in handling complex systems with high-dimensional data, the sub-
jective nature of rule-based systems leading to possible inconsistencies, and difficulties in 
integrating with other numerical methods due to its qualitative approach. 

The table below highlights the components of the ML algorithms used for SOC esti-
mations examined in the previous section: input and output characteristics, performance 
metrics, a portion of the suggested algorithms’ hyperparameters, and the data profiles 
used to train and verify the models. Furthermore, Table 1 provides a summary of genetic 
algorithm (GA) and fuzzy logic (FL). 

Table 1. Machine learning algorithm SOC methods. 

Algorithm Input Output Metric Hyperparameter Data Profile 

Linear Regression 
(LR) 

Voltage, Current, 
Temperature SOC 

RMSE Root Mean 
Squared Error, 
MSE Mean Squared Error 
MAE Mean Absolute Er-
ror 

Learning Rate (LR), 
Regularization 
(REG) 

Cycles, Tempera-
ture Variant 

Support Vector Ma-
chine (SVM) 

Voltage, Current, 
Temperature SOC Accuracy, Precision, Re-

call 
Kernel, C, Gamma 
(γ) Cycles, Load prof 

Back-Propagation 
Neural Network 
(BPNN) 

Voltage, Current, 
Temperature 

SOC Coefficient of Determina-
tion R², MSE, RMSE 

LR, Momentum 
(MOM), Layers 

Lab, Driving past 

Recurrent Neural 
Network (RNN) 

Voltage, Current, 
Temperature SOC Accuracy, RMSE, MAE RNN Layers, Cells 

Seq data, Temp 
Corr 

Adaptive Neuro-
Fuzzy Inference 
System (ANSFIS) 

Voltage, Current, 
Temperature 

SOC Rule Accuracy, RMSE Rules, Membership 
Functions (MFs) 

Expert knows, 
Fuzzy rules 

Nonlinear Auto-
regressive with Ex-
ogenous Input 
Neural Network 
(NARXNN) 

Voltage, Current, 
Temperature 

SOC R², MSE, Accuracy Delays, Neurons Series, Feedback 
loops 

Genetic Algorithm 
(GA) 

Voltage, Current, 
Temperature SOC 

Conversion Rate, Accu-
racy 

Population Size 
(POP Size), Muta-
tion Rate (Mut), 
Crossover Rate (Xo-
ver) 

Param opt, Feature 
sel 

Fuzzy Logic (FL) Voltage, Current, 
Temperature SOC Rule Accuracy, Interpret-

ability MFs, Rule Base Expert knows, Op 
data 

Figure 21. ANFIS structure for SOC estimation [88].

Table 1. Machine learning algorithm SOC methods.

Algorithm Input Output Metric Hyperparameter Data Profile

Linear
Regression (LR)

Voltage, Current,
Temperature SOC

RMSE Root Mean
Squared Error,
MSE Mean Squared
Error
MAE Mean
Absolute Error

Learning Rate (LR),
Regularization (REG)

Cycles,
Temperature
Variant

Support Vector
Machine (SVM)

Voltage, Current,
Temperature SOC Accuracy, Precision,

Recall Kernel, C, Gamma (γ) Cycles, Load
prof

Back‑
Propagation
Neural Network
(BPNN)

Voltage, Current,
Temperature SOC

Coefficient of
Determination R²,
MSE, RMSE

LR, Momentum
(MOM), Layers

Lab, Driving
past

Recurrent
Neural Network
(RNN)

Voltage, Current,
Temperature SOC Accuracy, RMSE,

MAE RNN Layers, Cells Seq data, Temp
Corr

Adaptive
Neuro‑Fuzzy
Inference System
(ANSFIS)

Voltage, Current,
Temperature SOC Rule Accuracy,

RMSE
Rules, Membership
Functions (MFs)

Expert knows,
Fuzzy rules

Nonlinear
Autoregressive
with Exogenous
Input Neural
Network
(NARXNN)

Voltage, Current,
Temperature SOC R², MSE, Accuracy Delays, Neurons Series, Feedback

loops
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Table 1. Cont.

Algorithm Input Output Metric Hyperparameter Data Profile

Genetic
Algorithm (GA)

Voltage, Current,
Temperature SOC Conversion Rate,

Accuracy

Population Size (POP
Size), Mutation Rate
(Mut), Crossover Rate
(Xover)

Param opt,
Feature sel

Fuzzy Logic (FL) Voltage, Current,
Temperature SOC Rule Accuracy,

Interpretability MFs, Rule Base Expert knows,
Op data

Long Short‑Term
Memory (LSTM)

Voltage, Current,
Temperature SOC Accuracy, RMSE,

MAE LR, Units, Dropout Series,
Charge/discharge

Gradient
Boosting
Machines (GBM)

Voltage, Current,
Temperature SOC MAE, RMSE, R² LR, Estimators, Depth Cycles, Aging

data

Random Forest
(RF)

Voltage, Current,
Temperature SOC R², MSE, RMSE Trees, Depth, Split Lab, Real‑world

use

Reinforcement
Learning

Voltage, Current,
Temperature SOC Reward, Error Rate Learning Rate,

Discount Factor
Simulated
environments

PCA + ML
Model

Voltage, Current,
Temperature SOC R², MSE, RMSE Components, ML

Hyperparameters
Noise‑reduced
data

Ensemble
Methods

Voltage, Current,
Temperature SOC Accuracy, RMSE, R² Number of Models,

Strategy
Diverse driving
patterns

Deep Belief
Networks

Voltage, Current,
Temperature SOC R², MSE, MAE Layers, LR, Epochs Multivariate

time series

Convolutional
NN

Voltage, Current,
Temperature SOC Accuracy, Precision,

Recall Filters, Kernel Size Image,
Sequential data

k‑NN Voltage, Current,
Temperature SOC Accuracy, RMSE,

Precision Number of Neighbors Cycles, Driving
conditions

Decision Trees Voltage, Current,
Temperature SOC Accuracy, R², RMSE Depth, Min Samples Cycles, Varied

temps

3. SOH Estimation
Battery SOH is a performance metric that compares a battery’s current capacity with

respect to its full original capacity (as a fresh battery) and is expressed as a percentage. It is
a good indication of a battery’s current condition and future life expectancy. Aging causes
a decrease in battery capacity and an increase in internal resistance for EV applications; the
factors are represented in Equation (71):

∫ t

τ=t0

δ f unc(I, T, SOC, others)dτ (71)

δ f unc is an aging rate function that quantifies how quickly or slowly the battery de‑
grades or ages over time. Therefore, internal resistance can help in the estimation of
SOC [89]. There are three types of methods that have been proposed to estimate battery
SOH: data mining, model‑free, and model‑based methods.

Battery SOH can be simply defined as:{
SOH = Caged/Cn × 100%
SOH = Rinc/Rn × 100%

(72)



Batteries 2025, 11, 32 28 of 42

where Cn and Rn stand for the nominal capacity and internal resistance, respectively, of
the new battery without being used, Caged for the aged capacity, and Rinc for the internal
impedance.

Equation (72) defines SOH as follows: the aged capacity and internal impedance of
a battery are measured using the pulse current test [90] or the standard capacity test [91].
Since a full discharge using regulated current and temperature will disrupt regular EV
operations, this direct method is awkward and not advised. Electrochemical impedance
spectroscopy (EIS) of batteries can undoubtedly provide a great deal of information about
their state of health compared to the direct measurements of internal impedance and the
aged capacity. Therefore, the electrochemical impedance spectroscopy of batteries was
suggested by researchers for use in health diagnosis [92,93]. Its applicability is limited due
to the uniqueness of instruments that are required for the measurement and application
of battery electrochemical spectroscopy. Furthermore, it takes a long time to complete an
EIS test.

In the model‑based approach, the electrochemical model [94] and the battery equiva‑
lent circuit model [95] are used to determine the time‑varying parameters, such as battery
capacity or internal resistance. The resistance during battery operations is then estimated
using a variety of observers, including particle filters [96], Kalman filters [97], and sliding
mode [98], allowing the SOH to be determined appropriately. However, the decay in the
battery capacity is defined as:

Cdecay =
(

Caged − Cn

)
/Cn × 100% (73)

such that,

Cdecay = δ f unc( f )Ahz (74)

f represents the stress factors, which are external factors or conditions that contribute
to the degradation of a system, z is a parameter used to model how the capacity of the
system decreases as a function of the cumulative current passing through it, and δ f unc

represents the aging rate function.
Numerous studies are consulted for the dynamics of battery aging, because battery

capacity degradation is influenced by the temperature, current, SOC, and charging tech‑
niques of the battery, among other factors. Wang et al. created a model that predicts how
long a battery would survive after repeated charging and discharging cycles using a math‑
ematical equation known as the power law [99]. With no regard for the depth of discharge,
the battery model was calibrated across broad SOC parameter ranges such that a cycle‑
life model at constant temperature was used to forecast a capacity loss in batteries at low
SOC levels [100]. A battery aging model was used to forecast lower capacity under both
fast charging and discharging conditions [101]. To capture the dynamics of capacity de‑
terioration under changing load circumstances, a cycle‑life and dynamic cycle‑life model
based on a mechanistic and prognostic model were also presented [102,103]. According
to Gao et al.’s analysis [104] of battery aging under various charging circumstances, active
material loss is impacted by charging currents less than 1 C and cut‑off voltages less than
4.2 V. To maximize real‑time operations and extend battery service life, these cycle‑life
models are crucial. However, the majority of research being done now is focused on par‑
ticular workloads. In real‑time applications, there is no guarantee of their accuracy. More
test data and a larger range of battery operations are used in training the battery model,
which naturally increases its practical implementation due to SOH being more dynamic
than SOC.



Batteries 2025, 11, 32 29 of 42

Data mining techniques have been used for battery SOH estimation, such as battery
SOC estimation [105–107]. Klass et al. employed support vector machine (SVM) to de‑
termine the condition of a battery. It is similar to a diagnostic tool in that it tells us how
well a battery is performing and whether or not it is still in excellent condition [108]. To
generate the input and output vectors of the necessary SVM training dataset, a new data
processing technique is proposed that makes use of load collectives. For battery capacity
estimation, Hu et al. [106] used the K‑nearest neighbor (KNN) method, a data‑driven clas‑
sification technique. Neural network and clustering are techniques used to estimate the
battery SOH based on the historical distributions of the temperature, current, and voltage
of the battery [109].

The estimation error of the SOH is seen to be within 2.15% in an average practical
setting.

3.1. Review of ML SOH Estimation Algorithm

A certain amount of capacity‑ or resistance‑based estimation can be used for SOH
estimation. SOH is difficult to measure with commonly used sensors, much like the SOC
of LiBs. This makes it a difficult assignment for BMS. We concentrate on ML techniques
for SOH estimation in this section.

A reliable and accurate estimate of SOH cannot be guaranteed by the raw data, be‑
cause they do not contain enough information to reflect SOH directly. Consequently, the
second stage involves removing related features from sourced data using several methods,
including differential voltage analysis (DVA) and model‑based techniques. The degrada‑
tion modes and aging mechanisms of the battery must be examined, and a connection
with the health features must be made, before selecting any health characteristics. Then,
correlation analysis is applied.

This section mainly reviews different ML algorithm applications for SOH.

3.1.1. Shallow Neural Network

The nonlinear relationship that exists between inputs and outputs can be mapped by
the back‑propagation neural network (BPNN) and radial basic function neural networks
(RBFNN). Thus, SOH estimation has frequently employed these two types of NNs. To
take a more realistic approach to the surroundings of electric vehicles (EVs), You et al.
worked diligently to gather datasets from comprehensive dynamic driving profiles over
more than a year at different temperatures [109]. A BPNN‑based SOH estimate method
was then trained using temperature, current, and voltage. In a different study, eight com‑
mercial 15‑Ah lithium batteries provided the data needed for training and verifying a back‑
propagation NN SOH model [110]. The impact of completely charged or discharged tem‑
peratures (e.g., 25 ◦C, 45 ◦C) on calendar life was thoroughly examined. Reference per‑
formance tests (RPTs) were conducted for ten months to monitor the degradation trend.
The findings show that by calibrating the available capacity at specific conditions, sug‑
gested approaches may not only forecast the battery SOH well but also increase accuracy
in prediction.

It is commonly known that the caliber of the input features has a significant impact
on the model’s performance. Therefore, to reduce computational complexity, key traits
were chosen in one study using principal component analysis (PCA) [111]. The gathered
features were then further broken down and denoised using the complete ensemble em‑
pirical mode decomposition with adaptive noise (CEEMDAN) method. A different study
created an adaptive adjustable hybrid RBF network that shares most of the characteristics
of the autoregressive model [112]. Brownian motion (BM) and PF update the structural
parameters, which is the primary benefit of the suggested RBF network. Furthermore, as
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an input feature, the Kullback–Leibler distance was calculated using a continuous hidden
Markov model (CHMM) and a kernel density estimation (KDE) technique. In the National
Aeronautics and Space Administration (NASA) dataset and Center for Advanced Life Cy‑
cle Engineering (CALCE) dataset, the suggested adjustable RBF network might achieve
better estimation accuracy than the fixed RBF network [113]. Moreover, the suggested ap‑
proach could retain reliable estimation results even when Gaussian white noise is added
to dynamic discharge patterns.

3.1.2. Deep Learning Algorithm

As deep neural networks (DNNs) encompass numerous hidden layers, they excel
in efficiently mapping complex and nonlinear functions compared to shallow neural net‑
works. In a specific study, using the smoothing filter, five distinctive characteristics were
initially derived from incomplete IC curves [114]. It can be inferred from the Spearman
correlation analysis that some of the characteristics were not used as the input vector. The
NN model’s input was limited to the two feature values with the strongest association
with SOH. In addition, the examination of training accuracy and speed indicates that the
DNN’s final structure is four‑layered and has 2–5–6–1 neurons. Five features, including
the temperature decrease rate during the CV charging mode, voltage decrease rate dur‑
ing the constant current discharging mode, and voltage increase rate during CC charging
mode, form the entire self‑made aging dataset to fully cover the battery usage [115]. Ev‑
ery one of the five features exhibited a substantial link with SOH levels, according to the
gray relational analysis results. The findings on a 128‑neutron layer used in training the
estimator show that the maximum estimation accuracy might be achieved by utilizing all
five features. In Shi et al.’s (2021) estimate system, the combined use of the model‑based
EKF approach and the ML DNN method is reviewed in detail [116]. The best model was
determined by comparing more than 20 distinct DNN topologies.

Remember that employing a DNN has the advantage of greater accuracy, but it also
has the disadvantage of requiring more computer power and longer calculation times.

3.1.3. Support Vector Machine

Because SVM offers a good balance between usability and performance, it is one of
the most popular machine learning techniques. Both the conventional SVM model and var‑
ious SVM versions have been utilized in SOH estimation. It is commonly known that the
SVM kernel function can translate the input characteristics implicitly to a high‑dimensional
feature space in which samples may be separated linearly [117].

The SVM model’s hyperparameters were optimized using the differential evolution
(DE) technique. The suggested method performed better in terms of both the constant cur‑
rent discharging process and dynamic working circumstances when compared to other
machine learning estimating techniques utilizing the NASA dataset. Following an investi‑
gation of the impact of the Gaussian kernel’s standard deviation (σ) on estimate accuracy,
a theory for choosing the appropriate σ was put forward [118].

Another popular technique for optimizing the SVM model is to use more relevant
input characteristics. The IC peak values and position [119], constant current charging
time, sample entropy [120], energy signal, response of the voltage under pulse test of the
current [121], mean and standard deviation of the measured current and voltage, and pa‑
rameters of ECM [122] are among the frequently used features. To achieve simultaneous
optimization of feature extraction and hyperparameter tweaking, a hybrid encoding ap‑
proach on a single chromosome was employed [121]. A separate study talks about the
sliding‑window‑based feature extraction (SWBFE) [123].
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The least‑squares support vector machine (LS‑SVM) is a significant variation of the
regular SVM model with an easier solving procedure. A weighted least‑squares technique
for estimating SOH was presented in one study and was based on linear equations for
retired LiBs and a weighting function [124]. Even in test datasets with varying battery
materials and circumstances, the weighted LS‑SVM, when compared to the conventional
SVM, might enhance the SOH estimate performance by weighting the error factors. Addi‑
tionally, the PSO method was applied in a different study to enhance optimization [122].
The PSO–LS‑SVR approach performed better than the LS‑SVR technique without PSO op‑
timization, with an RMSE of less than 2%.

4. Challenges and Prospects
SOC and SOH estimations for electric vehicles (EVs) present a spectrum of intricate

challenges and considerations:

4.1. State of Charge Balancing Issues

To meet high voltage and energy needs, hundreds of cells are connected in series or
parallel to form the lithium‑ion battery (LIB) pack found in electric vehicles (EVs). Be‑
cause each cell’s state of charge (SOC) varies due to physical changes from repeated cy‑
cles of charging and discharging, monitoring and measuring SOC across these packs is
extremely difficult. SOC variations are caused by constraints in manufacturing methods,
material faults, and different operating conditions, which all affect cell performance in
terms of capacity and aging. The LIB’s overall safety systems may be impacted by these
imbalances, as they can significantly impair the quality of data pertaining to power and
energy calculations [125]. Recent years have seen the development of a number of ways to
solve these problems, such as calculation‑based approaches, screening methods, and bias
correction tools.

4.2. Charging Strategy

Recent years have seen a significant increase in interest in the charging procedures
for LIBs in EVs. Since EVs do not yet have sophisticated fast‑charging technologies, the
delayed charging procedure could be a deterrent to wider adoption. On the other hand,
quick charging techniques that raise the charging current might cause a lot of heat to be pro‑
duced, which will shorten the battery’s lifespan. It is difficult to create a charging method
that strikes a compromise between battery durability, thermal control, and charging effi‑
ciency. Ref. [126] discuss recent developments in quick charging methods, and Ref. [127]
delve deeper on a number of ideal charging approaches.

4.3. Lithium‑Ion Battery Material Issue

Despite their generally good performance, lithium‑ion batteries’ state of charge (SOC)
estimation is greatly impacted by the materials employed for the positive and negative
electrodes. Despite their good performance, lithium cobalt oxide (LiCo) batteries are ex‑
pensive and have a limited capacity because of the limited supply of cobalt. Because nickel
and cobalt are scarce, lithium nickel manganese cobalt oxide (LiNMC) and lithium nickel
cobalt aluminum oxide (LiNCA) batteries, which are renowned for their exceptional per‑
formance and longevity, are also expensive. On the other hand, the short lifespan and lim‑
ited capacity of lithium manganese oxide (LiMO) batteries, which provide high voltage
and reasonable safety at a lower cost, are caused by an inadequate supply of manganese.
Although lithium iron phosphate (LiFP) batteries are inexpensive, non‑toxic, long‑lasting,
and extremely safe, their low energy production and capacity are their main drawbacks.
Though they suffer from capacity and voltage constraints, lithium titanate (LiTO) batteries
outperform other lithium‑ion kinds in terms of life cycle efficiency and performance. LiTO
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can achieve excellent performance and is economically viable in spite of these limitations.
As mentioned in reference [128], graphite, which is frequently utilized in negative elec‑
trodes, has a poor energy density and inefficiency due to solid electrolyte interface (SEI)
development, despite its wide availability and durability.

The SOC was evaluated using two distinct lithium‑ion battery chemistries—lithium
titanate (LTO) and lithium iron phosphate (LiFePO4)—under various aging profiles and
temperatures in a comparative study referenced in [129]. According to the results, LiFePO4
batteries have an RMSE of 0.50305% at 25 ◦C, whereas LTO batteries exhibit an RMSE of
0.7012%. Additionally, the study showed that LiFePO4 batteries deteriorate considerably
with prolonged cycling, with an RMSE rising to 0.4547% after 1000 cycles, while LTO bat‑
teries exhibit greater aging resistance, maintaining a constant RMSE of 0.00334% after the
same number of cycles.

4.4. Hardware Development for Real‑Time SOC Monitoring

Thus far, experimental testing across a range of temperature conditions, noise effects,
and beginning SOC levels has been used to validate SOC estimate techniques. Despite
these initiatives, there is still a dearth of thorough research on SOC estimation for LIBs
operating in real‑world scenarios. Implementing SOC estimation techniques in a BMS
that must strike a balance between low cost, limited memory capacity, and fast compu‑
tational speed is a significant problem. In order to test an adaptive Hoo‑filter‑based SOC
estimate algorithm in real‑time settings, a hardware‑in‑the‑loop (HIL) experimental plat‑
form was created [130]. Similarly, a lithium‑ion battery‑in‑loop testing apparatus was built
and benched with an xPC target to verify a multiscale dual Hoo filter for real‑time SOC
and capacity estimation and to mimic electric vehicle (EV) drive cycles [131]. In one study’s
evaluation of SOC using a system‑in‑the‑loop configuration for lithium batteries, a field‑
programmable gate array (FPGA)‑based BMS attained a remarkably quick execution time
of 16.5 microseconds and compatibility with inexpensive hardware [132]. Furthermore,
battery state estimators were evaluated on an FPGA‑based BMS using an HIL platform.
Beyond the technological difficulties noted above, a number of factors, including battery
aging, model variations, hysteresis, cell unbalancing, self‑discharge, and the rate of charge–
discharge currents, affect the accuracy of SOC estimates. Prior studies have examined these
issues in great depth [128].

4.5. Data Quality

Large amounts of data are essential for ML state estimate techniques. For them to
succeed, obtaining high‑quality datasets is also essential.

First, the accuracy of the data determines how reliable high‑quality datasets are. Usu‑
ally, advanced battery testing devices with a controller, programmable load, and an inte‑
grated software system within the host computer are used to gather these statistics. The
Arbin BT2000 [133] and the NEWARE BTS series are examples of common battery testing
platforms. Data quality and the efficacy of machine learning algorithms are significantly
impacted by variations in these testing platforms, including variations in data collecting
speed and accuracy. Therefore, advanced battery testing systems are essential for lower‑
ing measurement noise and offering a solid foundation for model training and validation.
Furthermore, the volume of data gathered also affects the datasets’ quality. Theoretically,
expanding the training data can improve the generalization of DL algorithms and reduce
problems like model overfitting. Since LiBs are affected by their operating environment,
the quality of training data has a major impact on how well ML algorithms work in EVs
and associated subsystems.



Batteries 2025, 11, 32 33 of 42

Thirdly, high‑quality databases require a diversity of data. Although controlled lab‑
oratory simulations can produce a large amount of data, they do not offer much variety.
Data from laboratory settings using common tests, such as constant charge or discharge
and dynamic drive cycles, have been used in the majority of research. Only a small number
of studies, though, have included data from real EV usage [134]. These real‑world datasets
are essential for training machine learning models, because they introduce changes in pat‑
terns that are different from lab simulations. Additional data types greatly increase the
diversity of the datasets. These include temperature changes detected by resistance tem‑
perature detectors (RTD) [135], volumetric changes measured by optical fiber bragging
(FBG) sensors [136], and internal temperatures measured by thermocouples.

In conclusion, improving training data’s accuracy, quantity, and variety is a basic but
crucial task for the advancement of machine learning algorithms in the future.

4.6. Hyperparameter Tuning and Structure Selection

Because network design and hyperparameter selection have an impact on the ML al‑
gorithm’s performance, choosing the best structure and fine‑tuning hyperparameters are
additional difficult challenges. Consider the neural network (NN) as an example. Gen‑
erally speaking, the more complicated the structure, the more parameters that must be
taught. The computing load needed to train and run the model increases with the num‑
ber of hidden layers. Up until now, the majority of architecture choices has been limited
to the time‑consuming and ineffective trial‑and‑error method. For instance, a singular
value decomposition technique could be used to determine the number of hidden‑layer
neurons [137]. There is currently no standardized approach that can be used to direct the se‑
lection of appropriate hyperparameters for variously specific problems, hyperparameters
which include the learning rate, neuron initialization, optimization algorithm, dropouts,
batch size, batch normalization, and activation function. As a result, the trial‑and‑error
method is also used to adjust the hyperparameters until acceptable outcomes are obtained.
Several studies showed that the algorithm’s performance will be greatly impacted by var‑
ious hyperparameter settings [68,138]. They also compared the algorithm’s performance
under various hyperparameter settings.

There must be greater focus on how ML algorithms have been compared, because
choosing an architecture and fine‑tuning hyperparameters are the most time‑consuming
tasks for ML algorithms. With many approaches to improve SBS (sequential backward
selection), many attempts at hyperparameter tuning are skewed by the small number of
heuristic optimization techniques that are known to be effective. While optimization tech‑
niques like SA (simulated annealing) and SGD (stochastic gradient descent) are mainly
theoretical, widely utilized heuristics like genetic algorithms (GAs) are thought to be un‑
reliable methods of testing heuristic optimization strategies.

These methods can also be slow, and there are still few clear applications for them.
The main drawbacks of machine learning algorithms that employ these optimization strate‑
gies are their slow convergence, which can be critical, and their laborious parameter ad‑
justment, which can impair the algorithms’ performance. Furthermore, there has not been
sufficient comparison between the heuristic optimization methods used in hyperparame‑
ter tuning mentioned above. As a result, future research must enhance the ML algorithm’s
hyperparameter tweaking and optimal structure selection.

4.7. Hybrid Algorithms and Ensemble Learning

For the estimation of SOC or SOH, recent studies have mostly used a single approach.
Nonetheless, hybrid algorithms—which blend several algorithms—have become more
and more well‑liked for improving accuracy, resilience, and efficiency. These hybrid algo‑
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rithms, which are typically divided into two categories—those that combine model‑based
techniques with ML methods and those that integrate several ML methods—use the ad‑
vantages of multiple approaches to provide better results. To improve the accuracy and
resilience of SOC estimate techniques, for example, more sophisticated filters like EKF,
UKF, and adaptive UKF are frequently combined with simpler neural network forms like
BPNN, RBFNN, and ELM. Optimization via UKF and particle filter (PF) is advantageous
for deep learning algorithms such as DNN, NARXNN, and LSTM. Additionally, the com‑
bination of other machine learning models, such as CNN with GRU or LSTM, leverages the
strength of RNN’s sequence prediction and CNN’s feature extraction capabilities. Addi‑
tionally, methods such as Gaussian process regression (GPR) and RBFNN [111] have been
used with linear regression to improve SOC estimation accuracy. Another useful method
to raise training precision, effectiveness, and model resilience is ensemble learning (EL). By
cleverly mixing multiple distinct algorithms, EL aims to reduce the risks associated with
single algorithms that perform badly [139]. Random forest (RF) is a popular ensemble ap‑
proach that uses decision‑tree logic and a bagging technique. Approximately two‑thirds
of the original dataset size is used in bootstrapping to create training datasets, with the
remaining unselected samples included as out‑of‑bag (OOB) samples. These datasets are
then utilized to generate several decision trees, and performance is assessed using the OOB
samples. A random forest (RF) is produced by combining the results of several decision
trees. In order to estimate battery capacity, for instance, Li et al. created an RF model
with multiple trees [140]. They did this by immediately entering raw data, such as current,
voltage, and time, into the model without any preprocessing. This resulted in a minimal
computingdemand and resulting estimates with anRMSE of less than 1.3%. Another study
evaluated the classifier against decision trees and RF using time‑related variables collected
from charge–discharge cycles [141]. The results showed that RF performed better than
other models in general because of its thorough approach to battery capacity estimation.

4.8. Evaluation and Implementation of the Algorithm

In future research, thorough assessment and on‑device implementation of ML tech‑
niques will be essential. First, consistent training, validation, and testing datasets are es‑
sential for evaluating an ML method, especially when compared to other algorithms. SOC
and SOH estimation models are built using publicly accessible datasets [142–144]. Fur‑
thermore, since computational needs and memory storage are directly related to model
complexity, it is preferable to align the complexity of models (e.g., count of trainable pa‑
rameters, selected training techniques) across the algorithms under comparison. Other
factors that need to be taken into account in addition to model accuracy include model
robustness against various uncertainties, training duration, memory usage, floating point
operations per second (FLOPs), and parameter count [145,146]. In the development of
machine learning algorithms, finding the ideal balance between model complexity and
accuracy continues to be a major problem. Future studies should therefore evaluate ML
approaches using a multifaceted analytical framework.

Second, prior research has usually used the same kind of battery for both model eval‑
uation and training. However, the performance of the pretrained ML models frequently
deteriorates when these models are applied to batteries with differences in their param‑
eters, such as their capacity or electrode material. Furthermore, collecting fresh training
data and retraining models for each type of battery is not feasible. There is a need for more
research to improve the adaptability of ML approaches across many battery situations, as
recent studies have investigated the application of transfer learning techniques to adapt
ML methods to different battery types [147,148].
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Finally, the significant computational overhead of ML methods for state estimation
has hindered their in situ implementation. However, embedding ML algorithms directly
onto devices is a feasible option for next‑generation battery management systems (BMS)
due to developments in big data analytics, 5G network capabilities, cloud computing in‑
frastructures, and other new technologies. Cloud computing provides the scalability to
handle huge data quantities, while the emergence of big data and the Internet of Things
(IoT) offers the enormous datasets required for machine learning applications. Addition‑
ally, the computational effort related to offline machine learning training is decreased by
the wider availability of graphic processing units (GPUs). From a different angle, ongoing
online training of machine learning algorithms is crucial, particularly for batteries.

The effectiveness of statically trained state estimation models decreases with the age
of LiBs. As a result, ML algorithms that are directly installed on devices are able to learn
and adjust in real time under real‑world operating conditions. This allows for continuous
enhancements and prompt implementation of insights obtained from EV usage data.

4.9. Thermal Influences

Given the acute sensitivity of battery performance to thermal conditions, SOC and
SOH evaluations are particularly susceptible to deviations in ambient and operational tem‑
peratures, necessitating the incorporation of advanced modeling techniques to mitigate
these effects.

4.10. Sensor Constraints and Economic Factors

The reliance on high‑precision sensors for accurate measurements introduces con‑
straints, not only in terms of the financial outlay but also in the limitations inherent in
sensor technologies.

In summation, the process of estimating the state of charge and health in EVs encom‑
passes a range of technical, computational, and practical challenges, necessitating ongoing
innovations in battery technology, data analytics, and algorithmic development to enhance
the efficacy and reliability of these estimations.

5. Conclusions
SOC and SOH estimate techniques are evaluated critically in this review and divided

into model‑based and data‑driven methodologies. While data‑driven approaches are su‑
perior when system details are unclear, model‑based approaches perform better statisti‑
cally when system models are predefined. These tactics are currently being integrated in
research to maximize their advantages, especially in light of data availability and compu‑
tational developments.

The review identifies many shortcomings in the methods used for SOC and SOH es‑
timation today:

• Aging, discharge rates, and sensor precision all have an impact on the accumulated
mistakes that plague coulomb counting.

• The OCV method’s flat SOC–OCV curve segment makes it inaccurate for LiFePO4
batteries and inapplicable in real time for EVs.

• The computing requirement and parameter estimation time provide difficulties for
EM and ECM.

• Complex operations and sensitivity to model errors are KF’s limitations.
• NN requires extensive training, yet it produces reliable estimates in a variety

of scenarios.
• The computational complexity and optimization difficulties of FL, ANFIS, GA, and

PSO place limitations on them.
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ML techniques approaches to SOC and SOH estimation are also well covered in this
review. There has been insufficient in‑depth study of ML techniques; by offering a thor‑
ough and organized analysis of the machine learning techniques used for SOC and SOH
estimates, this work seeks to close this research gap. This review’s initial contribution out‑
lines the standard procedures for SOC and SOH estimation, describing the basic ideas of
popular machine learning algorithm types—deep learning (DL), support vector machines
(SVM), shallow neural networks (NN), and Gaussian process regression (GPR)—along
with their mathematical formulas and visual representations to aid their comprehension.

Specific methods such as CNN, LSTM, extreme learning machines (ELM), and BPNN
are covered in detail. Another significant contribution is the review’s methodical anal‑
ysis of common uses of these machine learning categories in SOC and SOH estimation,
which includes a thorough summary of specifics like input features, datasets utilized, hy‑
perparameter selection, and performance metrics in extensive tables for easy reference and
comparison. Furthermore, a critical analysis is conducted of the benefits, limitations, and
similarities among various uses of these algorithms.

Highlighting issues including data quality, structure selection, hyperparameter tun‑
ing, hybrid frameworks, and algorithm execution, this review examines the main obstacles
and potential future developments of ML‑based state estimation techniques. Significant
avenues for future research are suggested, with an emphasis on improving the precision,
abundance, and diversity of data; optimizing structure selection and hyperparameter ad‑
justments; utilizing advanced learning strategies to increase the accuracy and robustness
of models; assessing machine learning techniques in various dimensions; and integrating
ML state estimation techniques onboard.

Adding to previous observations, this analysis also points out that although ML algo‑
rithms for SOC and SOH estimation show a great deal of promise for future advancements
in BMS, they also confront several real‑world difficulties. Future studies should focus on
technologies that use cloud computing and online retraining, create fusion models and
joint multistate estimates, anticipate whole life cycles, improve data variety through ad‑
vanced sensing, and make onboard installation easier. By addressing both present con‑
straints and potential future developments, this thorough study seeks to motivate aca‑
demics to further the use of ML algorithms in SOC and SOH estimates.

The following are suggestions for additional research:

• Thorough research on electrochemical models to comprehend the dynamics and
degradation of batteries.

• Creation of efficient SOC and SOH management controllers and real‑time SOC and
SOH estimation systems.

• Optimization‑based reduction of computing complexity in data‑driven approaches.

In summary, while significant strides have been made in battery technology and man‑
agement for EVs, accurately estimating SOC and SOH remains a complex challenge. Ad‑
dressing this requires a multifaceted approach, including ongoing research, advanced al‑
gorithm development, leveraging machine learning, and continuous calibration and vali‑
dation efforts.
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