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Abstract: In this work, three methods for the synthesis of composites based on poly(ortho-
toluidine) (POT) and WS2 are reported: (a) the solid-state interaction (SSI) of POT with WS2

nanoparticles (NPs); (b) the in situ chemical polymerization (ICP) of ortho-toluidine (OT);
and (c) the electrochemical polymerization (ECP) of OT. The preparation of WS2 sheets was
performed by the ball milling of the WS2 NPs followed by ultrasonication in the solvent
N,N’-dimethyl formamide. During the synthesis of the POT/WS2 composites by SSI and
ICP, an additional exfoliation of the WS2 NPs was reported. In this work, we demonstrated
the following: (a) the ICP method leads to POT/WS2 composites, which contain repeating
units of POT in the leucoemeraldine salt (LS) state, while (b) the ECP method leads to
POT/WS2 composites, which contain repeating units of POT in the emeraldine salt (ES)
state. Capacitances equal to 123.5, 465.76, and 751.6 mF cm−2 in the cases of POT-ES/WS2

composites, synthesized by SSI, ICP, and ECP, respectively, were reported.

Keywords: composites; conducting polymers; transition metal dichalcogenides; sheets;
Raman scattering; FTIR spectroscopy; cyclic voltammetry; supercapacitors; energy storage

1. Introduction
Composites based on conducting polymers and transition metal dichalcogenides

(TMDs) have been of particular interest as a result of applications in the fields of photocatal-
ysis [1], gas sensors [2], and, last but not least, supercapacitors [3–5]. The methods often
used for the synthesis of polyaniline (PANI)/WS2 composites are as follows: (i) the method
of the chemical interaction of nanolayers of WS2 with PANI in a solid state [3]; (ii) the ECP
of a monomer in an anhydrous solution of H2SO4, acetonitrile, and WS2 microparticles [4];
and (iii) the exfoliation of WS2 microparticles in butyl lithium, followed by the ICP of
aniline [6]. The use of TMDs in the bulk state in supercapacitors (SCs) has often been
avoided due to their small surface area (SA). The large SA of individual TMD sheets and
higher oxidation numbers (e.g., in MoS2 from +2 to +4) allow TMDs to store electrostatic
charge as well as ionic interlacing in the interlayer space, leading to a specific capacitance
and an energy density with higher values [7,8]. The main methods for TMD exfoliation are
as follows: (a) mechanically; (b) in the liquid phase, using organic solvents or surfactants;
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(c) ion intercalation; and (d) grinding [9]. Concerning the particular case of WS2 nano- and
microparticles, among the main strategies adopted for the exfoliation of these TMDs are
(i) liquid-phase exfoliation assisted by the ultrasonication of the WS2 crystals in surfac-
tant aqueous solutions [10] or organic solvents [11] as well as superacid (chlorosulfonic
acid) [12]; (ii) chemical exfoliation performed in three stages involving magnetic stirring,
horn-tip sonication, and shear mixing [13]; (iii) electrochemical exfoliation at a DC potential
of 10 V [14]; (iv) solvothermal reaction [15], etc. The methods often used to illustrate
TMD exfoliation are X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman
scattering, and X-ray photoelectron spectroscopy (XPS), e.g., in [10–15]. A disadvantage
of liquid-phase exfoliation assisted by the ultrasonication of WS2 crystals is the long time
taken to obtain the nanolayers as a consequence of the successive ultrasonication and
centrifugation stages. In this work, special attention will be paid to obtaining WS2 sheets
by grinding WS2 NPs followed by ultrasonication for a short period in N,N’-dimethyl
formamide (DMF).

The low conductivity in the most stable phases of TMDs prevents their use as potential
electrode materials in supercapacitor cells. Conductive polymers such as PANI [16] are
often used in the field of supercapacitors as a result of their high specific capacitance,
electrical conductivity >0.001 S/cm, manufacturing methods that do not require expen-
sive equipment and high flexibility, ability to be obtained in different oxidation states
such as leucoemeraldine, emeraldine, and pernigraniline, which correspond to reduced,
semi-oxidized and oxidized states, and obtaining of polymers in undoped and doped
states, respectively [17]. The following methods have been used to synthesize PANI/WS2

composites: (i) the ICP of aniline using WS2 sheets resulting from the exfoliation of WS2

powder in water/isopropanol mixtures [18]; (ii) the interaction of the two constituents,
e.g., in [3,19]; and (iii) the ECP of WS2 dispersed in a mixture of aniline and acid solution,
e.g., in [4]. According to Ref. [20], a disadvantage of PANI is its rigid structure, which
can influence the capacitance of supercapacitors. An improvement in the processability
of PANI was reported by replacing aniline with ortho-substituted aniline, with functional
groups of the types -CH3, -OCH3, etc. [21]. One of the important properties of POT is its
conductivity, which varies between 10−4 and 2 × 10−2 S/cm [22,23]. In this study, our
effort will be given to the synthesis of composites based on WS2 and POT and the evalua-
tion of their optical, structural, and electrochemical properties. The following strategies
will be used for the synthesis of POT/WS2 composites: (i) the SSI of POT with WS2 NPs;
(iii) the ICP of ortho-toluidine (OT) with the addition of WS2 NPs; and (iii) the ECP of
OT in a semi-aqueous acid solution containing WS2 sheets in DMF/H2O (the volumetric
ratio was 1:1). Using correlated studies of XRD and SEM, new evidence concerning the
exfoliation of WS2 NPs in the absence and presence of POT will be shown. The chemical
interactions at the interface of the two constituents of the POT/WS2 composites will be
highlighted by Raman scattering, FTIR spectroscopy, and X-ray photoelectron spectroscopy
(XPS). Using cyclic voltammetry (CV), new information concerning the capacitive and
diffusion-controlled intercalation processes and their contributions to the current densities
of cyclic voltammograms of the symmetrical supercapacitor cells that have electrodes
containing the POT/WS2 composites as active materials will be shown. An assessment of
the dependence of the capacitance of the symmetrical supercapacitors as a function of the
potential scan rate and cyclic voltammogram number will also be reported.

2. Materials and Methods
The supplier for the compounds OT, H2SO4, DMF, K2Cr2O7, NH4OH, CH3CN,

poly(vinylidene fluoride) (PVDF), dibutyl phthalate (DBP), acetone, diethyl ether, Nafion
117 membrane, and WS2 NPs was Sigma-Aldrich (St. Louis, MO, USA).
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To prepare the WS2 sheets, a powder containing WS2 NPs was used, which were sub-
jected to mechanical exfoliation using a ball mill model PM 100—RETSCH and SamplePrep
8000 M shaker mill from SPEX, USA. Using the first ball mill, 1 g of WS2 NPs was subjected
to a grinding time of one hour at 150, 300, and 600 rpm. With the second mill, the grinding
of 1 g of WS2 NPs was carried out for an hour of effective milling time at 900 cycles/min.
Milling periods of 5 min were interspersed with 5 min pauses to avoid excessive heating of
samples. The changes induced in the crystalline structure of the WS2 NPs by the exfoliation
process were analyzed by XRD. An additional exfoliation after grinding WS2 NPs for one
hour at 900 rpm was performed by ultrasonicating a suspension of WS2 in DMF for 15 min,
leading to a yellowish solution with a concentration of 0.5 mg/mL.

The chemical synthesis of poly(o-toluidine)–emeraldine salt (POT-ES) and poly(o-
toluidine)–emeraldine base (POT-EB) involved the use of two solutions of OT 0.18 M and
K2Cr2O7 0.05 M, each in 50 mL H2SO4 2M. Adding the solution of K2Cr2O7 in H2SO4 to the
solution of OT in H2SO4 induces a change in the reaction mixture color from orange to dark
green. After two hours, the chemical polymerization reaction led to a green precipitate,
which corresponds to POT-ES. The filtration of POT-ES and its interaction with 1 M NH4OH
solution led to obtaining POT-EB, when a change in the color of the precipitate to dark blue
occurred. Further, the interaction with 500 mL of distilled water and 100 mL of CH3CN
allowed the removal of oligomers from the reaction product. The polymerization reaction
products, i.e., POT-ES and POT-EB, were dried at room temperature for 24 h to constant mass.

The ICP of the POT/WS2 composites, having TMD concentrations of 20 wt.% and
10 wt.%, was performed as described above; the only difference was the addition of 0.1 g
and 0.01 g of WS2 NPs to the OT solution in H2SO4.

Another method for the preparation of the POT-EB/WS2 composites was the SSI of
POT-EB with WS2 NPs when the TMD concentration in the composite mass was equal to
33 wt.% and 50 wt.%.

Electrochemical synthesis of POT-ES involves the use of a semi-aqueous solution of
OT 0.1 M in H2SO4 0.5 M with a volumetric ratio of DMF/H2O equal to 1:1.

The electrosynthesis of the POT-ES/WS2 composite involved the preparation of (i) a
WS2 solution in DMF (50 mL, 0.5 mg/mL) by ultrasonication of the TMD in DMF for
15 min and (ii) an aqueous solution of 0.1 M OT in 0.5 M H2SO4 (50 mL). Subsequently,
the solutions were interacted and homogenized by ultrasonication for 5 min. The reaction
mixture was placed in a single-compartment cell, which was accessorized with three
electrodes as follows: a Pt working electrode with an area of 1 cm2, an auxiliary electrode
made of Pt, and a Ag/AgCl reference electrode. Cyclic voltammograms were recorded in
the potential range (−200; +900 mV) vs. Ag/AgCl at a potential scan rate of 50 mV/s, with
a Voltalab 80 potentiostat/galvanostat, purchased from Radiometer Analytical.

XRD diagrams of the POT/WS2 and POT-ES/WS2 composites were recorded with
Bruker’s D8 Advance X-ray diffractometer (Bruker, Hamburg, Germany).

The SEM images of WS2 NPs before and after exfoliation as well as their composites
with POT-EB were recorded with the Zeiss Gemini 500 scanning electron microscope (Zeiss,
Oberkochen, Germany).

The Raman spectra of WS2, POT-EB, POT-ES, and the POT-ES/WS2 and POT-EB/WS2

composites were recorded using an FTRaman spectrophotometer, MultiRam model, from
Bruker (λexc = 1064 nm, (Ettlingen, Germany)).

To record IR spectra of POT-EB, POT-ES, and the POT-ES/WS2 and POT-EB/WS2

composites, we used an FTIR spectrophotometer, model Vertex 80, from Bruker (Billerica,
MA, USA), in the transmission geometry mode for compounds prepared by SSI and ICP,
while for composites deposited as films on the Pt electrode, the totally attenuated reflection
geometry was used.
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To record the UV-VIS spectrum of WS2 sheets, we used a Lambda 950 UV-VIS-NIR
spectrophotometer from Perkin-Elmer (PerkinElmer, Inc., Waltham, MA, USA).

The XPS spectra of WS2, POT-EB, POT-ES, and the POT-ES/WS2 and POT-EB/WS2

composites were recorded on a SPECS spectrometer (SPECS Gmbh, Berlin, Germany) with
a Phoibos 150 electron energy analyzer and a monochromatic X-ray source of the type Al
Kα 1486.74 eV.

The testing of composites as electrode active materials (EAMs) in SC cells was per-
formed by CV. To prepare electrodes, we used a mixture of 80 wt.% EAM, 5 wt.% PVDF,
15 wt.% super-P conductive black carbon, 0.1 mL DBP, and 1 mL acetone, which were
mixed for 12 h under magnetic stirring to obtain a homogeneous paste. A film was obtained
after the evaporation of the acetone from the paste poured onto the glass slides. To remove
DBP from the film to be used as an electrode in SCs, an interaction with diethyl ether was
performed. The electrodes for SC cells were in a circular form with a diameter of 8 mm
obtained by cutting above the film. The electrolyte used in the SC study was a Nafion 117
membrane treated with a 1 M H2SO4 solution [21].

3. Results and Discussion
3.1. Exfoliation of the WS2 Nanoparticles as Well as Their Optical and Structural Properties

Figure 1(a1,a2) show SEM images of WS2 flakes. According to Figure 1(a2), WS2 flakes
have a diameter between 260 and 460 nm and a width between 30 and 78 nm. Figure 1
shows that the thinnest WS2 sheets were obtained when the grinding of WS2 flakes took
place at 900 rpm for one hour.
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Figure 1. SEM images of WS2 flakes (a1,a2); the WS2 nanosheets resulting from grinding flakes for
one hour at 600 rpm (b1,b2) and 900 rpm (c1,c2).

Figure 2 shows an SEM image of the WS2 sheets deposited onto the Si plate after the
evaporation of DMF from the solution prepared using WS2 sheets, resulting from grinding
flakes for one hour at 900 rpm, and then its dispersion by ultrasonication in DMF.
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Figure 2. SEM image of WS2 sheets.

Figure 2 shows WS2 sheets of various sizes, some of which are rolled.
Information confirming the formation of WS2 sheets is presented by XRD in Figure 3.

Figure 3a shows the XRD diagram of WS2 nanoparticles, where diffraction maxima are
observed at 2θ angles of cca. 14.3◦, 28.8◦, 32.8◦, 33.5◦, 39.6◦, 43.9◦, 49.7◦, 58.4◦, 59.8◦,
and 60.3◦, belonging to the crystalline planes (002), (004), (100), (101), (103), (006), (105),
(110), (008), and (112) [PDF 00-008-0237]. An important detail highlighted in Figure 3a
is that the peak intensity of the crystalline plane (002) is 3.58 × 105 counts. According
to Figure 3c, it is observed in the XRD diagram that mechanical exfoliation induces a
significant decrease in the intensity of the maximum corresponding to the crystal plane
(002) to cca. 6.53 × 103 counts, accompanied by a diminution in the intensity of the maxima
corresponding to the crystalline planes (004), (006), and (008).
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Figure 3. (a) XRD diagrams of WS2 nanoparticles before and after grinding at 150, 300, 600, and
900 rpm. (b,c) X-ray diagrams of WS2 nanoparticles before and after 900 rpm.

These variations are typical for the exfoliation of WS2 particles, and to support this
claim, an example may be the case of exfoliation of WS2 particles mixed with lithium
halides [24] or organic solvents such as ethanol, acetone, methanol, isopropyl alcohol,
dimethyl formamide, and N-methyl pyrrolidone [24].

The Raman spectra of WS2 NPs before and after their exfoliation are shown in Figure 4.
According to Figure 4a, two intense Raman lines of WS2 NPs with maxima of 357 and
422 cm−1 are observed. These are attributed to the E2g

1 and A1g vibrational modes,
respectively, that must be understood as related to in- and out-of-plane vibrations of W and
S atoms [25].
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Figure 4. The Raman spectra of WS2 NPs before (a) and after grinding exfoliation at 900 rpm (b).

Raman lines at 126, 168–172, and 314 cm−1 were assigned to the vibrational modes
Ag, Bu, and Ag of 1T’-WS2 [26]. The Raman line at 200 cm−1 belongs to the vibrational
mode E”(M) - ZA(M) [27]. The Raman line that peaks at 150 cm−1 is situated no longer in
terms of wavelength than that reported at 148 cm−1, which is characteristic of monolayer
WS2 [28]. In Figure 4b, we can observe two Raman lines of WS2 sheets associated with
vibrational modes E2g

1 and A1g, which show a shift at cca. 354 and 420 cm−1, which
has been attributed to the exfoliation of WS2 microparticles [24]. In the context of the
exfoliation process of WS2 NPs, an important parameter is the distance between the two
Raman lines associated with vibrational modes E2g

1 and A1g and the ratio between their
intensities (IEg/IAg). Careful analysis of Figure 4a,b reveals that (a) the distance between
the Raman lines associated with vibrational modes E2g

1 and A1g is equal to 65 and 66 cm−1,
respectively, and (b) the IEg/IAg ratio is equal to 1.8 and 1.1, respectively.

The UV-VIS spectrum of WS2 sheets mechanically exfoliated at 900 rpm, which were
further dispersed into DMF by ultrasonication for 15 min (Figure 5), shows a band at
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632 nm, accompanied by another band presenting one shoulder at 530 nm and another
one at 454 nm, which were attributed to the exciton band, the transition of the indirect
exciton, and the optical transition between the valence and conduction bands specific to
the semiconductor character of the direct forbidden band [29].
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Figure 5. UV-VIS spectrum of WS2 sheets resulting from mechanical exfoliation at 900 rpm, followed
by ultrasonication in DMF.

3.2. POT/TMD Composites Obtained by SSI and ICP

According to Figure 6a, the SSI of the constituents of the POT-EB/WS2 composite in-
volves the exfoliation of WS2 nanoparticles, which was evidenced in the XRD by decreasing
the peak intensity of the crystal planes (002) from 6.35 × 105 counts/sec (black curve in
Figure 6a) to 3.58 × 105 counts/sec (blue curve in Figure 6a) to 1.11 × 105 counts/sec (red
curve in Figure 6a).
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Figure 6. (a) XRD diagrams of WS2 NPs (black curve) and the POT-EB/WS2 composites obtained
by SSI, when the WS2 concentration in the composite mass is 50 wt.% (blue curve) and 33 wt.% (red
curve). (b) XRD diagram of POT/WS2 composite obtained by ICP of OT, when the WS2 concentration
in the composite mass is 20 wt.%.
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This exfoliating process of WS2 nanoparticles is also observed in the ICP of OT assisted
by WS2 NPs. In this context, the diffraction peak intensity of the crystalline plane (002) of
WS2 varies from 6.35 × 105 counts/sec (black curve in Figure 6a) to 1.74 × 104 counts/sec
(Figure 6b) for the sample with a WS2 concentration equal to 20 wt.% in POT-EB/WS2

composite mass.
The analysis of Figure 7a,b indicates that Raman spectra of the POT-EB and POT/WS2

composite show Raman lines that belong to (a) WS2, these being situated at 359 and 421 cm−1,
and (b) POT, these being localized at 1119, 1176, 1259, 1329–1363, 1499, and 1620 cm−1 and
attributed to the vibrational modes of deformation of the benzene ring (B) + C-H bond in the
CH3 group, the C-H bond in B, the stretching C-N bond + stretching C-C + C-H bonds in B,
the stretching C-C bond in B, the stretching C-C bond in the quinoid ring (Q) + C-H bond
in B, and the stretching C-N bond and stretching C-C + C-H bond in B [30,31]. The Raman
lines at 1119, 1259, 1363, and 1620 cm−1 are closely situated to those reported in the POT-EB
(Figure 7a) that peaked at 1117, 1254, 1367, and 1618 cm−1. In contrast with the Raman line of
POT-EB at 1163 cm−1 (Figure 7a), the Raman line of the POT/WS2 composite is situated at
1176 cm−1 (Figure 7b) as a consequence of the generation of POT–emeraldine salt (ES).
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Figure 7. The Raman spectra of POT-EB (a) and the POT/WS2 composite (b), with a TMD concentra-
tion of 20 wt.%, synthesized by ICP of OT.

The difference between vibrational modes E2g
1 and A1g of the POT/WS2 composite

is less than that obtained by the mechanical exfoliation of WS2 NPs followed by ultra-
sonication in DMF. This fact indicates that the protocol for the preparation of WS2 sheets,
shown in the previous section, is most suitable for preparing composites based on POT and
WS2 sheets.

Information on potential interactions between constituents of the POT-EB/WS2 com-
posite, synthesized by ICP of OT in the presence of WS2 NPs, is shown in Figure 8. Figure 8a
shows the IR spectrum of POT-EB, which is characterized by IR bands located at 444, 816,
879, 1004, 1111, 1151, 1242, 1306, 1497, and 1601 cm−1, attributed to vibrational modes of B
deformation, out-of-plane deformation of the substituted B in the even position, deforma-
tion of triple-substituted B, deformation of B, deformation of the B + C-H bond in B, the
C-H bond in-plane deformation of Q, stretching of the C-N bond in the B-N=Q structure,
stretching of the C-N bond in Q, stretching of C-C + C-H + N-H bonds, and the structure of
N=Q=N [32]. According to Figure 8b, the following vibrational changes are induced in POT
by WS2: (a) the IR bands are down-shifted from 1111, 1242, 1497, and 1601 cm−1 (Figure 8a)
to 1105, 1213, 1490, and 1587 cm−1 (Figure 8b), accompanied by an up-shift in the IR band
from 1306 cm−1 (Figure 8a) to 1313 cm−1 (Figure 8b); (b) a change in the absorbances ratios
of the IR bands situated at (b1) 1242–1213 cm−1 and 1497 cm−1 (I1242-1213/I1497) as well
as (b1) 1497 cm−1 and 1587–1601 cm−1 (I1497/I1587-1601) from 1.16 and 1.76 to 3.73 and 1,
respectively. The IR bands that peaked at 3381 and 3730 cm−1 (Figure 8a) were assigned to
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the N-H symmetric stretching [33] and free OH group [34] vibrational modes. In contrast
to Figure 8a, the FTIR spectrum of the POT/WS2 composite highlights the two IR bands
situated at 3371 and 3729 cm−1, the last one being accompanied by a new IR band at
3628 cm−1 assigned to the stretching OH vibrational mode [35]. An explanation for the OH
vibrational mode must consider the generation of new hydrogen bonds between POT/WS2

and H2O molecules, according to Scheme 1.
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Figure 8. FTIR spectra of POT-EB (a) and POT/WS2 composite (b), obtained by ICP of OT, with a
WS2 concentration in composite mass equal to 20 wt.%.
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In the case of the chemically synthesized POT/WS2 composite, the following is ob-
served by deconvolution: (a) In the XPS C1s spectrum, there are two bands of high intensity,
with the maximum at 284.5 and 286.3 eV, which are accompanied by another five bands
of lower intensity located at 287.3, 285.3, 284.8, 288.9, and 291 eV belonging to POT-EB
(Figure 9a). The band from 291 eV corresponds to the π-π* transition of the aromatic ring of
POT [36]. The bands that peak at 284.5, 284.8, 285.3 and 286.3 eV are assigned to bonds C=C
(C hybridized sp2), C-C/C-H, C-N/C=N, and C-O-H [37]. The bands that peak at 287.6 and
288.9 eV are assigned to the C=O and -COOR bonds existing as contaminants in the XPS
installation. (b) In the XPS N1s spectrum, there are three bands located at 399.2, 399.9, and
401.4 eV (Figure 9b) that are assigned to bonds C-N=C [37], C-NH-C [37] and C-N+ [38]
of POT. (c) In the XPS W4f spectrum, three bands at 32.8, 34.9, and 35.9 eV (Figure 9c) are
highlighted. The intense bands from 32.8 and 34.9 eV correspond to the doublet W 4f7/2

and W 4f5/2, which are separated by cca. 2.1 eV, the ratio of the areas of the two bands
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being 4:3 [31]. The low-intensity band from 36.7 eV is associated with the 4f7/2 band of the
tungsten sulfate adsorbed from the manufacturing process. (d) In the XPS S2p spectrum,
four bands with maxima at 162.4, 163.6, 168.4, and 169.6 eV (Figure 9d) are remarked.
The first two bands correspond to the 2p3/2 and 2p1/2 states, which are separated by cca.
1.18 eV, the ratio of the areas of the two bands being 2:1. The doublet from 162 to 163 eV
represents 78% S from WS2, while the doublet from 169 to 170 eV corresponds to 22% S
from W(SO4)3. This fact indicates the presence of W(SO4)3 as a reaction byproduct in the
WS2 sample [31].
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Figure 9. XPS C1s (a), W4f (c), S2p (d), and N1s (b) spectra of the POT/WS2 composite with a WS2

concentration in composite mass equal to 20 wt.%, synthesized by ICP of OT.

Considering the variations presented above, the total reaction of ICP of OT is shown
in Scheme 1.

In our opinion, Scheme 1 explains the existence of the C-N=C, C-NH-C, and C-N+ bonds
in the POT-EB/WS2 composites resulting from the ICP of OT in the presence of WS2 NPs.

3.3. Electrochemical Synthesis of POT/WS2 Composite and Its Optical Properties

Figure 10 shows the first 50 cyclic voltammograms recorded in the potential range
(−200; +900) mV vs. Ag/AgCl, using a semi-aqueous solution of 0.1 M OT in 0.5 M
H2SO4 (the volumetric ratio of DMF/H2O was 1:1) and 0.5 mg/mL WS2 sheets exfoliated
according to the protocol reported in this work.
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Figure 10. The first 50 cyclic voltammograms of ECP of OT in a solution of H2SO4 and WS2 sheets,
recorded at a potential scan rate of 50 mV/s.

The main changes in the cyclic voltammogram profile whilst increasing the cycle
number recorded on the working electrode surface (Figure 10) can be quantified in the
case of the following: (a) the first cyclic voltammogram, when the potential scanning takes
place from (a1) −200 to +900 mV vs. Ag/AgCl at the oxidation maximum with a potential
of +418 mV, which is accompanied by another one with a potential of +246 mV, with the
current densities of the two oxidation maxima at +418 and +246 mV equal to 2.12 mA/cm2

and 1.06 mA/cm2, respectively, and (a2) +900 mV to −200 mV vs. Ag/AgCl, by a reduction
maximum characterized by a potential equal to +334 mV, which is accompanied by another
one with a potential of +200 mV; the two reduction maxima from +334 and +200 mV are
characterized by current densities equal to 2.25 and 1.83 mA/cm2, respectively; (b) the
50th cyclic voltammogram, when the potential scanning occurs from (b1) −200 to +900 mV
vs. Ag/AgCl, by an oxidation maximum with potential of +414 mV that is accompanied
by another maximum with potential of +248 mV (the current densities of the two oxida-
tion maxima at +414 and +248 mV are equal to 2.67 mA/cm2 and 1.48 mA/cm2), and
(b2) +900 mV to −200 mV vs. Ag/AgCl, where a reduction maximum characterized by
a potential equal to +328 mV is observed, which is accompanied by another one with a
potential of +198 mV; the two reduction maxima from +328 and +198 mV are characterized
by current densities equal to 2.73 and 2.33 mA/cm2, respectively. Regardless of the number
of cyclic voltammograms recorded at the electrolyte/electrode interface, it is observed
that two oxidation–reduction processes take place, which are evidenced by oxidation and
reduction maxima with anodic and cathodic potentials located at (i) +418 mV and +334 mV
as well as +246 mV and +200 mV in the first cyclic voltammogram, and (ii) +414 mV
and +328 mV as well as +248 mV and +198 mV, respectively, in the 50th cyclic voltam-
mogram. The above variations are accompanied by a progressive increase in the density
of anodic and cathodic currents as the cyclic voltammogram number increases. The two
oxidation–reduction processes are characterized by a potential difference of ∆E = Ea − Ec,

(where Ea and Ec are anodic and cathodic peak potential), equal to (i) 84 mV and 46 mV
for the first cyclic voltammogram and (ii) 88 mV and 50 mV in the case of the 50th cyclic
voltammogram. The ratio between the peak current densities of the anode to cathode
(ia/ic) is equal to (i) 0.94 and 0.58 for the first cyclic voltammogram and (ii) 0.97 and 0.63 in
the case of the 50th cyclic voltammogram. Analyzing the above results, it is noticed that
there are oxidation–reduction processes for which ∆E differs by 56.5 mV/n, where n is the
number of electrons involved in the oxidation–reduction process, and/or the ratio of anodic
to cathodic current densities (ia/ic) differs from one, facts which allows us to conclude
that the ECP of OT onto a Pt electrode in the presence of WS2 sheets is an irreversible
process. After 50 cyclic voltammograms, a dark green film is generated on the Pt electrode
surface as a consequence of the generation of the POT-ES/WS2 composite. To confirm the
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formation of this composite, Figure 11 shows the Raman spectrum of the POT-ES/WS2

composite synthesized electrochemically on the Pt electrode surface, after recording the
50th cyclic voltammogram.
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Figure 11. Raman spectrum (a) and FTIR spectrum (b) of the POT-ES/WS2 composite synthesized by
ECP on the Pt electrode surface after recording 50 cyclic voltammograms.

According to Figure 11a, the Raman spectrum of the POT-ES/WS2 composite is char-
acterized by Raman lines located at (a) 359 and 420 cm−1, coming from WS2 sheets, being
related to vibrational modes E2g

1 and A1g [24], and (b) 1118, 1178, 1256, 1317, 1363, 1500,
and 1618 cm−1, belonging to POT-ES [31,32]. The FTIR spectrum of the electrochemically
synthesized POT-ES/WS2 composite after recording 50 cyclic voltammograms in the range
(−200; +900) mV (Figure 11b) is characterized by IR bands situated at 758, 881, 1045, 1161,
1465 −1495, 1529, and 1632 cm−1. According to Ref. [39], the FTIR spectrum of POT-ES is
characterized by IR bands localized at 754, 889, 1045, 1145–1185, 1481–1489, and 1610 cm−1

that are attributed to the following vibrational modes: B deformation, Q deformation,
out-of-plane deformation of triple-substituted B, (B)-NH+=(Q), N-B-N, and N=Q. The
differences concerning the wavenumbers of IR bands associated with the vibrational modes
of B–NH+=Q and N=Q can be explained by steric hindrance effects due to the covalent
coordination bonds established between W atoms in WS2 and amine groups of POT-ES.
According to Figure 11b, the IR bands assigned to the stretching OH and free OH group
vibrational modes peaked at 3610 and 3740 cm−1. A careful analysis of Figures 8b and 11b
highlights that the ratio between the absorbance of the OH stretching vibrational mode
and free OH groups is equal to 1 and 0.5, respectively. The low absorbance of the IR band
assigned to OH bond vibration indicates a small proportion of hydrogen bonds and a low
degree of connectivity of molecules through hydrogen bonds for the samples resulting
from ECP. More information about the bonds existing in the electrochemically synthesized
POT-ES/WS2 composite is presented in the following by XPS. Figure 12 illustrates the XPS
spectra of the electrochemically synthesized POT/WS2 composite, for which the decon-
volution of (a) the XPS C1s spectrum highlights a band of high intensity at 284.3 eV and
another three bands of lower intensity situated at 285.1, 285.7, and 286.8 eV belonging to
POT-ES (Figure 12a). The bands from 284.3, 285.1, 285.7, and 286.8 eV have been assigned
to the bonds C=C (C hybridized sp2), C-C/C-H, C-N/C=N, and C-O-H [34]. (b) The XPS
N1s spectrum highlights three bands located at 399.2, 399.9, and 401.4 eV (Figure 12b),
which have been assigned to bonds C-N=C [37], C-NH-C [37], and C-N+ [38]. (c) The XPS
W4f spectrum highlights two bands at 32.6 and 34.7 eV (Figure 12c), corresponding to the
doublet W 4f7/2 and W 4f5/2, the two bands being separated with cca. 2.1 eV, the ratio of
areas being 4:3. (d) The XPS S2p spectrum leads to four bands with maxima at 162.1, 163.3,
168, and 169.2 eV (Figure 12d).
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Figure 12. XPS spectra C1s (a), N1s (b), W4f (c), and S2p (d) of the POT-ES/WS2 composite synthe-
sized by the electrochemical method.

The first two bands correspond to the 2p3/2 and 2p1/2 states, which are separated by
cca. 1.18 eV, the ratio of the areas of the two bands being 2:1. The doublet from 162 to 163 eV
represents S from WS2, while the doublet from 168 to 169 eV corresponds to S derived from
W(SO4)3. This fact indicates that the polymerization reaction leads to a byproduct of the
type W(SO4)3. All these changes clearly prove the generation of POT-ES/WS2 composites
by the ECP method. The chemical mechanism that can explain the electrochemical gen-
eration of the POT/WS2 composite on the Pt electrode surface takes into account (i) the
oxidation reaction of OT when a cation radical of OT is produced, which is unstable and
consequently reacts with itself, forming the dimer of OT; (ii) further, macromolecular chain
growth involves a propagation reaction when the dimer is successively transformed into a
trimer, oligomer, and polymer, with POT thus obtained being in a leucoemeraldine base
(LB) state, which reacts with H2SO4 and leads to POT in leucoemeraldine salt (LS). Accord-
ing to Scheme 2, the oxidation reaction of POT-LS leads to the generation of POT- ES, which
chemically interacts with WS2, resulting in the POT-ES/WS2 composite.
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Scheme 2. The mechanism of EC synthesis of the POT/WS2 composite: (1) oxidation reaction of
POT-LS with the generation of POT-ES; (2) chemical interaction of POT-ES with WS2.

3.4. Electrochemical Properties of the POT/WS2 Composites as Promising EAM in
Supercapacitor Cells

Figure 13 shows cyclic voltammograms of the POT-EB/WS2 and POT-ES/WS2 com-
posites, prepared by SSI and ICP, respectively, when a Nafion membrane that interacted
with H2SO4 1M was used as an electrolyte. A careful analysis of Figure 13a,b highlights
higher values of the voltametric output currents of the POT-EB/WS2 and POT-ES/WS2

composites than of POT-EB and POT-ES. These results allow us to anticipate that the high
capacitance value of the POT-EB/WS2 and POT-ES/WS2 composites would be obtained.
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Figure 13. The 5th cyclic voltammogram of (a) POT-EB (black curve), the POT-EB/WS2 composite
synthesized by chemical polymerization (with a WS2 concentration in composite mass equal to
50 wt.%, red curve), and the POT-EB/WS2 composite resulting from SSI of the two compounds when
the WS2 concentration in the composite mass is equal to 20 wt.% (blue curve) and the scan rate is
100 mV s−1; (b) POT-ES (black curve), the electrochemically synthesized POT-ES/WS2 composite
(blue curve), and the POT-ES/WS2 composite obtained by SSI when the WS2 concentration in the
composite mass is 20 wt.% (red curve), when the scan rate is 100 mV s−1; the POT-EB/WS2 composites
with a WS2 concentration equal to 33 wt.% (c) and 50 wt.% (d); the POT/WS2 composites, synthesized
by ICP, when the WS2 concentration in the composite mass is equal to 10 wt.% (e) and 20 wt.%
(f); and the POT-ES/WS2 composite synthesized by the ECP method (g). Black, red, green, blue,
magenta, and dark yellow curves in (c–g) show the cyclic voltammograms recorded at 200, 100, 75,
50, 25, and 10 mV s−1. (h) The variation in the b value with voltage in the case of the POT-EB/WS2

composites synthesized by SSI of POT-EB with WS2 nanoparticles, when the WS2 concentration
is equal to 33 wt.% (blue square) and 50 wt.% (red square); (i) the dependence of the b value on
voltage for the POT/WS2 composites with the WS2 concentration of 20 wt.%, synthesized by chemical
polymerization of OT assisted by WS2 (blue square), and the POT-ES/WS2 composites synthesized
by the ECP method (red square).

Using the equation i(V) = a x vb, where I, v, a, and b correspond to current density
(A cm−2), potential scan rate (mV s−1), and the two constants, we calculate the contribution
of the capacitive process due to the double-layer charge at the electrolyte/electrode interface



Batteries 2025, 11, 37 16 of 25

and diffusion processes [40]. According to Ref. [40], depending on the value of the b
constant, (a) a redox reaction at the electrode surface and the charge/discharge processes
of the electric double-layer capacitors (EDLCs) occur when b = 1; (b) a pseudocapacitive
process takes place when 0.8 < b < 1; and (c) a behavior of the type battery is invoked when
0.5 < b < 0.8. With all these in mind, from plot log(i) to log(v), we have determined that all
samples show battery behavior. The contribution of the surface capacitive and diffusion-
controlled intercalation (DCI) processes in cyclic voltammograms can be assessed using the
protocol published in Ref. [31]. Thus, using the equation i(V) = k1v + k2v1/2, where i(V),
k1v, and k2v1/2 are current density for a fixed potential, the weight of the capacitive effect,
and the intercalation process, respectively, and applying a linear fit in the case of the plot
i(V)/v1/2 vs. v1/2, the values of k1 and k2 were determined. The contribution of the two
processes is shown in Figures 14 and 15.
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Figure 14. Deconvoluted intercalation (pink area) and capacitance (white area) processes of the
POT-EB/WS2 composites with WS2 concentrations of 33 wt.% (a) and 50 wt.% (b); the POT/WS2

composite with a WS2 concentration in the composite mass equal to 10 wt.% (c) and 20 wt.% (d),
prepared by the ICP method; and the POT-ES/WS2 composite obtained by the ECP method (e), when
the cyclic voltammograms were recorded at a scan rate of 100 mV s−1.

According to Figures 14 and 15, all samples show a significant contribution given the
diffusion-controlled intercalation process, which is accompanied by a capacitive process.
Scheme 3 shows the reactions at the electrolyte/electrode interface when the electrodes
contain the composites prepared by ICP and ECP.
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Figure 15. Contribution ratio between capacitive and diffusion processes of POT-EB/WS2 composites
with WS2 concentrations of 33 wt.% (sample A) and 50 wt.% (sample B), the POT/WS2 composites
synthesized by the ICP method (WS2 concentration in composite mass is 10 wt.% (sample C) and
20 wt.% (sample D)), and the POT-ES/WS2 composite synthesized by the ECP method (sample E).
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Scheme 3. The reactions at the electrolyte/electrode interface of the electrodes containing the
POT/WS2 composites synthesized by ICP (a) and the POT-ES/WS2 composite synthesized by ECP (b).
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Figure 16 shows the variation in capacitance vs. scan rate of the electrodes prepared in
this study.
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Figure 16. The dependence of capacitance vs. potential scan rate of electrodes based on the POT-
EB/WS2 composites resulting from SSI with WS2 concentrations equal to 33 wt.% (a) and 50 wt.% (b);
the POT-EB/WS2 composites synthesized by ICP with WS2 concentrations equal to 10 wt.% (c) and
20 wt.% (d); and the POT-ES/WS2 composite synthesized by the ECP method (e).

At a scan rate of 10 mV s−1, the capacitance of the SCs with composites prepared
by ICP and ECP was equal to 2.82 and 12.5 F cm−2. A decrease in capacitance when
increasing the potential scan rate from 10 to 200 mV/s takes place for (i) the POT-EB/WS2

composites resulting from the SSI method, which have WS2 concentrations equal to 33 wt.%
and 50 wt.%, from 462.18 and 299.68 mF cm−2 to 123.52 and 108.16 mF cm−2; (ii) the
POT/WS2 composites, synthesized by the ICP method, when the TMD concentration in
the composite mass is 10 wt.% and 20 wt.%, from 2386.2 and 2820.71 mF cm−2 to 382.69
and 465.76 mF cm−2; and (iii) the POT-ES/WS2 composite synthesized by the ECP method
from 6136.75 to 751.6 mF cm−2. Figure 17 shows the variation in the capacitance of the
SCs with the cyclic voltammogram numbers, in the case of electrodes based on (i) the
POT-EB/WS2 composite resulting from the interaction of the two constituents when the
WS2 concentration is 50 wt.%; (ii) the POT/WS2 composite, synthesized by the chemical
polymerization of OT, when the WS2 concentration is 20 wt.%; and (iii) the electrochemical
synthesized POT-ES/WS2 composite.
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Figure 17. The variation in capacitance vs. number of cyclic voltammograms recorded at 200 mV s−1

of electrodes based on (a) the POT-EB/WS2 composite prepared by the SSI method, when the WS2

concentration in composite mass was 50 wt.%; (b) the POT/WS2 composite, synthesized by ICP (the
WS2 concentration in the composite mass was 20 wt.%); and (c) the POT-ES/WS2 composite, synthesized
by the ECP method.

According to Figure 17, an important decrease in the capacitance takes place in the first
750 cyclic voltammograms for the POT/WS2 composites prepared by the three synthesis
methods. This behavior should be explained by considering various expansions and
contractions of the volume of the electrode as a consequence of the expulsion and insertion
of ions during discharge and charge processes, as shown in Schemes 3 and 4.

Scheme 3 highlights, based on Equations (1) and (2), that during the discharge half-
cycle of the first cyclic voltammogram, the HSO4

− and S2− ions leave the POT-ES/WS2

composites, with the macromolecular compounds having an LB structure. In the charge
half-cycle of the first cyclic voltammogram, both the HSO4

− and S2− ions will inserted
into the composite matrix. Scheme 4 shows the chemical reaction that can occur after the
discharge half-cycle of the first cyclic voltammogram considering the H+ and HSO4

− ions of
the Nafion membrane treated with H2SO4, which interact with the amine groups according
to Equation (1) when POT-LB/WS2 is transformed into POT-LS/WS2. This fact indicates
that, in the following cyclic voltammograms, the charge/discharge processes take place
according to Equation (2). Increasing the number of cyclic voltammograms will induce
more and more amine groups to react with H2SO4 according to Equation (1), which, in our
opinion, may explain the decrease in SC capacitance in the first 750 cyclic voltammograms
and the degradation of EAM. After recording 5000 cyclic voltammograms, the values of the
capacitance of the supercapacitor cells with electrodes based on the POT/WS2 composites
obtained by SSI, ICP, and ECP are equal to 95.03 (Figure 17a), 327.71 (Figure 17b), and
375.33 mF/cm2 (Figure 17c).
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composite as EAM: (a) the reaction of the POT-LB/WS2 composite with H2SO4 (Equation (1)) and
(b) charge/discharge processes of the POT-LS/WS2 composite (Equation (2)).

The differences between the capacitance values of supercapacitors containing the
PANI/WS2 and POT/WS2 composites, prepared in different ways and using various
synthesis methods or suppliers for WS2 particles, are summarized in Table 1 [41–46].
According to Table 1, the capacitance value depends on the shape of the WS2 particles, the
synthesis method of the composites used as active materials in the SC cells, the type of
electrolyte, and the applied current densities. Table 1 further presents the performance of
SCs with PANI/MnO2 and polybenzidine/MnO2 composites as EAMs. The comparison
between SCs with composites of the type PANI/WS2 [42,44] and γ-MnO2/PANI [45] as the
EAM indicates that the former shows higher values of capacitance. In the case of SCs based
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on POT/WS2 composites, which were prepared by ICP and ECP, higher capacitance values
of 2.82 and 12.5 F cm−2 at a potential scan rate of 10 mV s−1 are reported in comparison with
the SC containing polybenzidine/MnO2 as the EAM [46]. In this stage of our investigations,
to optimize the SCs developed in this work, we plan to test SC cells by preparing new
POT/WS2 composites, in which WS2 sheets will be replaced by WS2 rods. Considering
the work reported by Zhang et al [16], which demonstrated that by doping PANI with
HClO4 and p-toluenesulfonic acid (p-TSA), respectively, higher energy density values can
be obtained only in the former case, another parameter to be considered for improving the
performance of SCs containing POT/WS2 is co-doping with a suitable dopant agent such
as HClO4. An electrolyte often used in the SC field containing sulfides [47,48] or MnO2 [44]
is KOH, which will be considered by us in future studies.

Table 1. The performance of SCs based on PANI/WS2, POT/WS2, PANI/MnO2, and polybenzidine/
MnO2 composites.

EAMs; Inorganic Particle
Synthesis Method or Supplier

Synthesis Method of
Composite Electrolyte Current Density or

Potential Scan Rate Capacitance Ref.

PANI/WS2/C; Merck ICP 1M Na2SO4 10 mVs−1 464 F g−1 [41]

PANI nanofibers/WS2; Sigma
Aldrich

Electrodeposition by
CV 1M Na2SO4 1Ag−1; 5000 V s−1 72.27 F g−1;

331 mF cm−2 [41]

PANI/WS2; hydrothermal ICP 1M H2SO4 1Ag−1 560 F g−1 [42]

PANI/WS2; mechano-chemically
assisted NaCl

Mechano-chemical
reaction 1M H2SO4 1Ag−1 580 F g−1 [43]

POT/WS2; ball milling SSI 1M H2SO4 50 mV s−1 177 mF cm−2 This work

POT/WS2; ball milling ICP 1M H2SO4 50 mV s−1 1.15 F cm−2 This work

POT/WS2; ball milling ECP by CV 1M H2SO4 50 mV s−1 2.64 F cm−2 This work

MnO2 Nanorods@PANI;
hydrothermal ICP 1M KOH 50 mVs−1 259 F g−1 [44]

γ-MnO2/PANI; from precursor of
KMnO4

ICP 0.5M H2SO4 0.5 A g−1 493 F g−1 [45]

Polybenzidine/MnO2 Chemical interaction 1M H2SO4 0.5 mAcm−2 950 mF cm−2 [46]

POT/WS2; ball milling ICP 1M H2SO4 10 mVs−1 2.82 F cm−2 This work

POT/WS2; ball milling ECP by CV 1M H2SO4 10 mVs−1 12.5 F cm−2 This work

4. Conclusions
The synthesis methods of the POT/WS2 composites, their optical and structural prop-

erties, and their applications in the symmetrical SC field were reported. Using SEM, XRD,
FTIR spectroscopy, Raman scattering, XPS, UV-VIS spectroscopy, and CV, the following
conclusions are highlighted:

(i) Mechanical exfoliation by grinding WS2 NPs using a ball mill followed by exfoliation
in DMF allows the transformation of nanoparticles of WS2 in sheets and induces a
diminution in the intensity of the crystalline plane (002), a change in the distance
between the Raman lines related to vibrational modes E2g

1 and A1g, and the presence
of three bands situated at 632, 530, and 454 nm in the UV-VIS spectrum.

(ii) SSI of POT-EB with WS2 induces an exfoliation of the WS2 NPs.
(iii) ICP of OT in the presence of WS2 sheets induces the formation of covalent coordination

bonds between the imine groups of EB and the transition metal W, when a POT/WS2

composite is created, simultaneously with the generation of a byproduct such as
tungsten sulfate.

(iv) ECP of OT in the presence of WS2 sheets involves oxidation and reduction reactions
at the electrolyte/electrode interface that have an irreversible character as a result
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of the generation of the POT-ES/WS2 composite when the formation of covalent
coordination bonds between imine groups of POT and W atoms of TMD takes place.

(v) The electrochemical processes at the electrode/electrolyte interface in symmetrical
SCs show a significant contribution given the performance of a diffusion-controlled
intercalation process and an additional capacitive-type process; the best values of
capacitance of the SCs with EAMs of the composites prepared by ICP and ECP were
reported at 10 mV s−1, these being equal to 2.82 and 12.5 F cm−2; the increase in
the scan rate at 200 mV s−1 led to values of capacitance equal to 123.5, 465.76, and
751.6 mF cm−2, respectively, for the POT/WS2 composites prepared by SSI, ICP, and
ECP. After recording 5000 cyclic voltammograms at 200 mV s−1, a decrease in the
capacitance of the three SCs to 95.03, 327.71, and 375.33 mF cm−2 was reported.
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POT Poly(o-toluidine)
OT O-toluidine
NPs Nanoparticles
XRD X-ray diffraction
XPS X-ray photoelectron spectroscopy
UV-VIS Ultraviolet–visible
FTIR Fourier transform infrared
LS Leucoemeraldine salt
ES Emeraldine salt
EB Emeraldine base
TMDs Transition metal dichalcogenides
PANI Polyaniline
SEM Scanning electron microscopy
DMF N,N’-dimethyl formamide
PVDF Poly(vinylidene fluoride)
DBP Dibutyl phthalate
CV Cyclic voltammetry
SSI Solid-state interaction
ICP In situ chemical polymerization
ECP Electrochemical polymerization
SCs Supercapacitors
SA Surface area
EAMs Electrode active materials
B Benzene ring
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DCI Diffusion-controlled intercalation
EC Electrochemical
λexc Excitation wavelength
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