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Abstract: The transport sector is responsible for nearly a quarter of global CO2 emissions
annually, underscoring the urgent need for cleaner, more sustainable alternatives such
as electric vehicles (EVs). However, the electrification of heavy goods vehicles (HGVs)
has been slow due to the substantial power and battery capacity required to match the
large payloads and extended operational ranges. This study addresses the research gap
in battery pack design for commercial HGVs by investigating the electrical and thermal
behaviour of a novel battery pack configuration using an electro-thermal model based
on the equivalent circuit model (ECM). Through computationally efficient 1D modelling,
this study evaluates critical factors such as cycle ageing, state of charge (SoC), and their
impact on the battery’s range, initially estimated at 285 km. The findings of this study
suggest that optimal cooling system parameters, including a flow rate of 18 LPM (litres per
minute) and actively controlling the inlet temperature within ±7.8 ◦C, significantly enhance
thermal performance and stability. This comprehensive electro-thermal assessment and the
advanced cooling strategy set this work apart from previous studies centred on smaller EV
applications. The findings provide a foundation for future research into battery thermal
management system (BTMS) design and optimised charging strategies, both of which are
essential for accelerating the industrial deployment of electrified HGVs.

Keywords: driving cycle; electric truck; dynamic battery thermal model; BTMS; equivalent
circuit model

1. Introduction
One of the main challenges that the modern world continues to face is climate change

and the global warming process associated with it. Global temperatures have increased by
more than 1 ◦C since 1880, with most of this rise occurring since 1975 [1]. The main driver
of this continues to be the global production of CO2, with the transport sector accounting
for 24% of the 33.5 billion tonnes produced annually [2]. Having been highlighted as a
leading contributor, governments globally have placed stricter emissions legislation on the
transport sector. The EU and UK governments have introduced policies to suspend the
sale of fossil fuel-powered consumer vehicles beyond 2035 [3,4]. This will leave a void in
sales of more than 10 million vehicles annually [5], which will likely be filled by vehicles
featuring either electric or hydrogen propulsion systems. In anticipation of the transition to
more environmentally friendly vehicles, the popularity of EVs (electric vehicles) has risen
exponentially over recent years, with this trend likely to continue [6].
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Despite similar legislation [7], the heavy-duty commercial vehicle sector has been
slower to electrification than other sectors [8]. As of 2021, only 0.3% of global new truck
registrations were attributed to electrically powered vehicles, accounting for less than 0.1%
of the total global fleet [9]. The slow transition is likely due to significantly increased
payloads [10] requiring advancements in batteries and electric drive units (EDUs).

EDUs capable of supplying the required power for electric heavy-duty trucks have
now been developed, which can provide high power such as 375 kW continuously [11].
Despite this, limited research and development have been carried out to enable the pro-
duction of equally capable battery systems. Where the literature is available, it usually
focuses on passenger and light-duty commercial vehicles, hindering heavy-good vehicle
electrification [11].

Automobile applications feature significantly more demanding technical requirements
than customer electronics regarding capacity, operating temperature range, cost, and cycle
life. Mathematical models can predict system characteristics in different environments
and conditions, enabling assessment of the performance and range of EVs [12]. Due to the
complexity of large-scale energy storage systems and their loading cycles, computational
methods are most used for these assessments. Tools such as AVL Cruise and MATLAB
Simulink R2023b allow for incorporating vehicle parameters, drive cycle requirements, and
battery characteristics through mathematical equations representing physical and chemical
reactions [13–15].

Mathematical models estimate the performance of individual cells or whole systems,
with SoC, voltage, current draw, and power supply among the parameters of significant
interest [15–17]. It is, therefore, essential to model these accurately to ensure physical battery
operation is as predicted, as this allows manufacturers to establish whether performance
targets can be met reliably and safely by the system. The ability to mathematically model
lithium-ion (Li-ion) batteries is vital for the development of battery management systems
(BMS), which help to maintain electrical and thermal balance in energy storage systems
(ESS) [18].

Effective Battery Thermal Management Systems (BTMS) are needed within EV bat-
tery packs as Li-ion batteries’ performance and safety characteristics are sensitive to cell
temperatures [18]. It is generally accepted that Li-ion batteries tend to perform optimally
between 25 ◦C and 35 ◦C [19,20]. Above this range, the cycle life of Li-ion batteries tends
to decrease exponentially. Tarascone et al. [21] found that in early rechargeable Li-ion
batteries, the battery cycle life at 25 ◦C was approximately 250% greater than that at 55 ◦C.
Similar harmful impacts on Li-ion cell capacity have been found below optimal tempera-
tures, with Lo [22] showing up to 30% reductions in cell capacity at −20 ◦C. Temperature
differences within Li-ion cells and across battery packs have also been found to hinder
overall performance. It has been suggested that a maximum difference of 5 ◦C should not
be exceeded within cells and between modules to maintain optimal performance [23,24]
and avoid potential short-circuiting [25]. Temperature differences more significant than this
have increased thermal ageing by 25% and decreased power capabilities by 10% [26]. Based
on existing studies, it can therefore be suggested that the BTMS must maintain optimal
battery temperature (25–35 ◦C), with a pack temperature range of <5 ◦C.

Key thermal challenges facing the electrification of HGVs stem from the increased
mass and power requirements compared to typical EVs. Typical EVs have masses of around
1600–2300 kg [27,28] and electric drive units capable of supplying 100–150 kW [28]. Due
to payloads of up to 44 tonnes, HGVs require motors that can provide high power and
torque to perform similarly to current diesel powertrains [29]. The additional mass of
loaded HGVs means they can require upwards of 1000% more torque during standardised
drive cycles than typical EVs [30–32], thus drawing proportionately more current from
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the battery pack. With total heat generation within Li-ion battery systems proportional
to the amperage draw squared [24], the increased torque requirements mean that the
heat generation per battery cell could be exponentially more significant in electric HGVs
than typical EVs, increasing demand on the BTMS. Electric HGVs’ more significant power
requirements also mean they will likely have much larger battery systems than typical EVs.
Typical EVs feature battery capacities of around 40–80 kWh [28], compared to an electric
HGV requirement of upwards of 400 kWh [33], to achieve ranges competitive with existing
diesel counterparts. At the same current draw, this may mean that the electric truck’s
total battery heat generation could be up to 750% greater than typical EVs. To maintain
thermal stability within the battery, the truck’s BTMS and cooling capacity would need to
be upscaled sufficiently, with components such as the radiator, compressor, and pumps
capable of generating increased heat.

According to Pesaran [34], EV BTMS should use minimal parasitic power while
allowing pack operation in hot and cold climates. Potential BTMS designs for typical
EVs have been compared in studies, with liquid water/glycol cooling widely regarded as
preferential [35]. This has been attributed to the more significant heat transfer coefficients
of liquid systems, which can be more than 3× those of equivalent air systems [34]. Such
liquid BTMSs can be cooled passively and actively, as detailed by Piao et al. [36], with
passive systems only found to be viable for climates between 10 ◦C and 35 ◦C [34].

The existing literature has widely studied potential liquid BTMS for consumer EVs,
with the inlet temperature and coolant flow rate having been found to play critical roles.
Lan et al. [37] studied the effect of coolant flow rate and detailed battery cell thermal
behaviour at different C-rates. It was found that an increase in coolant flow rate provided
increased cooling across all C-rates but would eventually suffer from diminishing returns.
Karimi et al. [38] carried out similar work and achieved flow rate results identical to those
of Lan et al. [37], but also studied the effect of inlet temperature on cell temperature. It
was shown that a decrease in inlet temperature proportionately decreased maximal cell
temperature across the whole battery discharging cycle. For example, at the end of the
1400 s cycle, each 1 ◦C reduction in coolant inlet temperature reduced the maximal end
temperature by 0.6 ◦C. This trend was repeated across all inlet temperatures. Yue et al. [39]
also found similar results at the pack level. These studies suggest that increased coolant
flow rate and low coolant inlet temperatures would provide preferential cooling for electric
HGV TMS. However, the diminishing returns shown by increased flow rates and the
increased energy consumption required for active cooling suggest that both properties
should be optimised for each application.

This study addresses these challenges by employing a 1D electro-thermal model within
the MATLAB Simulink R2023b environment to assess a potential battery design’s electrical
and thermal performance for heavy-duty vehicles. This model is based on realistic cell
characteristics, real-world power demand data, and driving cycle data for HGVs. Using
a 1D model offers a practical solution by increasing the speed and reducing the costs of
large-scale simulations while maintaining accuracy. Unlike previous research, this study
integrates real-world power demand and drive cycle data for heavy-duty trucks. It also
employs realistic cell characteristics and cooling system performance, ensuring the results
apply to industrial-scale deployments. An equivalent circuit model (ECM) is calibrated
for electro-thermal analysis using actual battery test data. This enhances the reliability of
the simulation results, allowing for precise evaluation of battery behaviour under various
operating conditions [40].
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The primary novel contributions of the present research are as follows:

1. Thermal management solutions for heavy-duty electric vehicles, providing analysis
of these vehicles’ thermal behaviour.

2. Use of actual drive cycle and power demand data for realistic battery design.
3. The 1D electro-thermal modelling is based on ECM, battery test data, and typical

thermal management materials.
4. Industrial-scale applicability using realistic cell characteristics and cooling system

performance.

The structure of this paper is as follows: Section 2 outlines the methodology, covering
the system description, electrical battery model, and thermal cooling model. Section 3
presents the study’s findings, while Section 4 provides an in-depth discussion. Finally,
Section 5 concludes with a summary of the key insights.

2. Materials and Methods
2.1. System Description

Prior to the modelling procedure, a battery pack design for an electric heavy-duty
truck was created based on typical EV battery specifications and space availability in heavy-
duty trucks. Samsung SDI 94 Ah cells [41] were selected for use in the battery pack design
due to their suitability in automotive applications, historically proven by their presence
in multiple EVs. These cells use lithium-ion chemistry, with a Nickel–Cobalt–Manganese
(NMC)-based cathode composition (Ni0.33Mn0.33Co0.33O2) [42].

Following a review of the limited EV trucks available from large original equipment
manufacturers (OEMs) [43], minimum electrical capabilities of the novel battery pack were
established, with an excess of 600 V and 516 kWh required. Table 1 highlights the battery’s
electrical architecture, with Table 2 highlighting the system’s electrical characteristics.

Table 1. Battery architecture used in the current study.

Type Module Pack Total

Electrical architecture 12 cells in series (12 s) 16 modules in series 7 packs in parallel

Table 2. Battery system parameters used in the current study.

Cell [41] Module Pack Total

Nominal voltage (V) 3.68 44.16 706.56 706.56
Maximum voltage (V) 4.15 49.80 796.80 796.80

Capacity (Ah) 94 94 94 658
Energy capacity (kWh) 0.35 66.41 64.41 464.92

Maximum energy capacity (kWh) 0.39 74.52 74.52 521.64
Mass (kg) 2.1 28 448 3136

At the point of concept, consideration was made to the spatial requirements of such a
battery to allow for its potential future integration into an HGV. An example of the novel
battery in situ is shown by 3D visualisation in Figure 1. Prior work has shown that a
cooling channel design is the most appropriate for a vehicle of this scale when considering
cooling performance, pressure loss, and special requirements [44]. The cooling system
was assumed to feature 6 cooling channels per pack, as shown in Figure 2, while using an
industry-standard 50:50 water/glycol coolant mixture [45].
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Figure 2. 3D CAD model of battery module with cooling channels.

2.2. Battery Thermal Model
2.2.1. Battery Life Cycle Dynamics and Electrical Parameters Overview

Physical testing data of typical EV battery modules containing Samsung SDI prismatic
cells was used to understand cell cycle ageing, with the results summarised in Table 3.
The study considered 2000 and 4000 cycles, corresponding to 100%, 90%, and 80% of the
state of health (SoH). Further cycle ageing was not considered due to the cell’s end of life
(EOL) being exceeded, with a replacement expected when the SoH of the cells depletes
beyond 80%.

Table 3. Battery life cycle values of a typical EV battery module.

Charge/Discharge Cycles Capacity Difference at 25 ◦C (%) Internal Resistance
Difference at 25 ◦C (%)

1 0 0
2000 −9.96 17.28
4000 −20.28 42.45

Key battery parameters were parametrised within the script and applied to each cell
in line with manufacturer datasheets and experimental fade data. The complete block
diagram of the electrical system, alongside charge/discharge application and battery
performance assessment methods, is also presented in Figure 3. The power demand for
each cycle was proportioned to each pack. This meant that including all 7 packs was
optional, helping simplify the model while significantly decreasing the computational
power without compromising accuracy. Uniform discharge and health degradation were
assumed for all the cells in the system; hence, a SoC reading from the output of a single
cell was considered sufficient. In the initial stage, the thermal implications were neglected,
with perfect cooling assumed, therefore maintaining the cells’ temperature at 298.15 K.
The electrical model would later be combined with the thermal model to investigate the
thermal impacts of varying power demand. Similarly, no self-discharge or memory effect
was considered for the cells.
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During simulation, the cells’ dynamic charge and discharge models were used to
determine the cell terminal voltage based on current draw and time. Hence, the depth of
discharge provided was defined by Equations (1) and (2), respectively. These models are
pre-determined within MATLAB R2023b to suit a lithium-ion type battery, such as the cells
used for this paper [46]. Table 4 shows the parameters used in the electrical model.

fc(it, i∗, i) = E0 − K
(

Q
it + 0.1Q

)
i ∗ −K

(
Q

Q − it

)
it + Ae−Bit (1)

fd(it, i∗, i) = E0 − K
(

Q
Q − it

)
i ∗ −K

(
Q

Q − it

)
it + Ae−Bit (2)

Table 4. Parameters of the electrical model.

Parameter Symbol Unit

Voltage E0 V
Polarisation constant K V/Ah

Current dynamics i∗ A
Battery current i A

Extracted capacity it Ah
Maximum battery capacity Q Ah

Exponential voltage A V
Exponential capacity B Ah−1

2.2.2. Equivalent Circuit Model (ECM)

Methods of battery modelling can be split into two main categories, one being the
electrochemical models (EM), and the second being the equivalent circuit model (ECM).
The ECM utilises components like resistors, capacitors, and voltage sources to form a
circuit network that replicates the behaviour and dynamics of a battery [47]. On the
other hand, the EM provides a more precise depiction by accounting for the underlying
electrochemical processes. The ECMs, particularly resistor–capacitor (RC) networks, are
frequently used for lithium-ion battery modelling because they effectively capture the
battery’s dynamic behaviour.

Simulink’s Simscape toolbox allowed the electrical system to be modelled using
blocks representing various system components. The equivalent circuit model (ECM)
implemented using the battery cell block in Simulink can be seen in Figure 4, alongside a
schematic diagram.
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Figure 4. Schematic diagrams: (a) equivalent circuit model for Li-ion cell; (b) equivalent circuit model
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Figure 4b illustrates a standard ECM configuration, specifically, the nRC model, which
consists of an n-RC network. The battery’s output voltage (V i) depends on various param-
eters, such as the open circuit voltage (OCV), ohmic resistance (R 0), polarisation resistance
( Ri), and the corresponding polarisation capacitance ( Ci), as defined in Equation (3).

Vi = OCV − Ii

[
R0 +

n

∑
i=1

Ri

(
1 − e−

t
RiCi

)]
(3)

2.2.3. Drive Cycle Energy Demand Analysis

This study considered two drive cycles—VECTO long haul and AVL These were
chosen due to their use in the international emission assessment of modern trucks and
their accurate representation of a typical heavy-duty truck drive cycle. The long-haul cycle
predominantly features steady-state driving with some stop/start instances, similar to
what could be expected of a drive along a motorway with moderate traffic. The AVL cycle
is twice as long (200 km) and includes no stopping instances, with only some sections of
reduced velocity. The AVL cycle, therefore, maintains a higher average velocity through
the cycle and can be said to be representative of a drive through a mountainous region
with fluctuations in altitude—the velocity and altitude profiles of each cycle can be seen in
Figures 5 and 6.
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2.3. Thermal Cooling Model
2.3.1. Thermal Parameters Overview

The battery pack materials used during the modelling process were selected based
on the previously highlighted battery pack design procedure. The corresponding thermal
parameters assumed for the materials were selected based on parameters used typically
within existing papers [48–50] and, where available, manufacturer’s datasheets. Table 5
provides an overview of the materials. The cooling system parameters were selected
similarly, as shown in Table 6.
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Table 5. Thermal parameters of the materials used for the battery pack [48–50].

Materials Thickness (m) Thermal Conductivity
(W/(K∗m)) Application

Aluminium 0.004–0.005 202.40 Cell casing and module plates

HV Insulation 0.002 1.38 Electrical insulation and
high-voltage protection

PVC Lid 0.005 0.02 Electrical insulation and
thermal protection

Air Pockets N/A 5.00 Heat Dissipation

Table 6. Cooling system parameters used in the current study [49,51–53].

System Property Values

Coolant

Viscosity 4.41 (mPa/s)
Kinematic Viscosity 4.25 (mm2/s)

Thermal Conductivity 0.35 (W/mK)
Specific Heat Capacity 3.57 (kJ/kg K)

Heat Exchanger Pipes

Thermal Conductivity 202.4 (W/mK)
Hydraulic Diameter 0.01 (m)

Pipe Roughness 1 × 10−6 (m)
Laminar Flow Upper Reynolds Number 2300

Turbulent Flow Lower Reynolds Number 4000
Nusselt Number 3.66

Darcy Friction Factor Constant 64

2.3.2. Simulink Model Overview

Simulink was again used as a simulation environment to model the battery pack and
cooling system in 1D, as shown in Figures 7 and 8. The model components were connected
electrically and thermally based on the arrangements in Table 5 to produce subsystems
of each system level. Each component was assumed to be in contact with surrounding
components, except at the pack level, where air spaces were assumed to be surrounding
each pack. The battery subsystems were combined to create a representative model of the
total battery, as shown in Figure 3.
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2.4. Simplified Assumptions for Battery System Modelling

The electrical battery model assumed uniform discharge, health degradation, and per-
fect cooling for all cells within the system. Therefore, the cell temperature was considered
to be constant at 25 ◦C in line with the similar existing literature [32]. These assump-
tions meant that monitoring the electric state of a single cell was assumed sufficient and
representative of all cells in the system.
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All three models also used one fundamental assumption to reduce computational cost.
It was assumed that one pack would provide a representative view of the whole system’s
behaviour. This was considered valid as the CAD model of the entire system suggested that
each pack would be thermally isolated from each other with air. This was implemented
by using one pack’s cooling system and drawing a power demand for the pack with a
scalar equal to 1/7th of what would be faced by the total battery pack, therefore reducing
computational cost by approximately 86%.

3. Results
3.1. Power Demand

The energy demand for a 44-tonne truck to complete both drive cycles was obtained
from simulations carried out in AVL Cruise M, as shown in Figure 9. Both cycles included
energy recovery from regenerative braking, as indicated by the positive power demand
regions in both figures.
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3.2. Electrical Battery Model
3.2.1. Model Validation

The electrical model was validated by assessing the total power consumption calcu-
lated from the initial and final SoC of the battery pack and scaling to consider the full,
seven-pack system before comparing it to the literature [54,55]. For validation purposes,
the SoH and initial SoC of the cells were taken as 100%. The more significant difference in
energy consumption displayed by the long-haul cycle was attributed to the use of different
cells in the literature and was therefore ignored. The results from the study can be seen in
Table 7; from these, the model was deemed valid.

Table 7. Model simulation results.

Cycles
Energy

Consumption—Literature
(kWh)

Energy
Consumption—Simulink

Model (kWh)
Difference (%)

Long-haul 169.42 187.77 10.82
AVL 343.42 339.83 −1.05

3.2.2. Long-Haul Cycle

By varying the initial SoC and SoH values, nine use cases were obtained. The different
use cases were investigated for energy consumption and post-cycle SoC, with the results
shown below in Table 8 and Figure 10.

Table 8. Results of long-haul cycle.

Cycles 1 2000 4000

Pack Energy
Capacity

(kWh)
66.41 59.78 53.13

Initial SoC 1 0.9 0.8 1 0.9 0.8 1 0.9 0.8
Final SoC 0.60 0.48 0.37 0.55 0.44 0.32 0.48 0.37 0.26

Energy Consumed
(kWh) 188 193 197 189 194 199 192 197 201
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3.2.3. AVL Cycle Results

Equivalent use cases to those in Section 3.2.2 were used to analyse the AVL drive cycle
for energy consumption and post-cycle SoC. The results are in Table 9 and Figure 11.

Table 9. Results of AVL cycle.

Cycles 1 2000 4000

Pack Energy Capacity
(kWh) 66.41 59.78 53.13

Initial SoC 1 0.9 0.8 1 0.9 0.8 1 0.9 0.8
Final SoC 0.26 0.18 0.08 0.19 0.11 0 0.09 0 0

Energy Consumed
(kWh) 342 333 335 339 331 335 335 335 298
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3.3. Battery Thermal Management Performance
3.3.1. Flow Rate Simulation Results

The thermal behaviour of the battery pack was simulated for 3600 s at the max C-rates
obtained from the AVL cycle. These were 0.714 C and 0.935 C at 100 and 80% battery
SoH, respectively, found during the electrical analysis. The median temperature increases
and maximum temperature difference over the pack were recorded at varying coolant
flow rates. Figures 12 and 13 show the effect of coolant flow rate on temperature increase
and difference.

3.3.2. Inlet Simulation Results

The thermal response of the battery pack to varying inlet temperatures was also
simulated for 3600 s at 0.714 C. Ambient temperatures of −15 ◦C, 25 ◦C and 40 ◦C were
selected to cover both typical ambient temperatures and extremes that the literature has
suggested heavy-duty trucks could face [29]. Figures 14 and 15 show how varying the inlet
temperature affects battery temperature change.
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3.4. Transient Thermal Performance Analysis of the Battery Pack

Using the optimised BTMS parameters, the thermal behaviour of the truck’s battery
was analysed under AVL cycle loading at varying ambient temperatures. Each ambient
temperature was studied without implementing a cooling system and with predefined
optimal coolant parameters. These were determined from the results shown in Section 3.3
for each ambient temperature and can be seen in Table 10. Figure 16 shows the transient
analysis results, highlighting the optimal region in grey.

Table 10. Optimised cooling system parameters.

Ambient Temperature
(◦C)

Coolant Flow Rate
(LPM)

Coolant Inlet Temperature
(◦C)

−15 18 −7.2
25 18 25.0
40 18 32.2
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4. Discussion
4.1. Performance Insights from the Electrical Model
4.1.1. Long-Haul Driving Cycle

Based on the post-cycle SoC of the pack, the total energy consumption was calculated
to range between 188 and 201 kWh/100 km (~7% range) for the long-haul cycle, as shown in
Table 8. This suggests a potential single-charge range of 247 km at full load under optimal
operating conditions. As expected, energy consumption for the cycle increased with
increased cycle ageing due to the increased internal resistance within each cell. Decreasing
the initial SoC also increased energy usage due to the reduced pack voltage. In these
scenarios, more current would be drawn to achieve the required power, compensating for
the lower voltage. The use case with 100% SoH and SoC appeared to be the most energy
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efficient for the cycle, whilst expectedly, the oldest and least charged batteries appeared
least efficient.

The final SoC values for the long-haul cycle, as shown in Figure 10, were found to
vary from 60% to 26.7%, depending on the initial SoC and SoH. The SoC trend followed
expectations from the power demand plot in Figure 9 and showed a steady discharge with
one significant section of battery recharge around the 1750 s mark, coinciding with the
large, positive peak in the power demand plot. It was also noticed that the power input in
the recharge sectors resulted in a higher SoC increase for lower SoH cases. This occurred
due to the reduced cell capacity, which allowed for a quicker charge at a constant power
input. The impact of the remaining energy recovery sectors (around 200 s and 430 s) was
found to be less significant, with the SoC increase not exceeding 1% for all cases. This likely
reflects less extreme regenerative braking conditions in which gentle deceleration or less
frequent breaking events occurred.

4.1.2. AVL Cycle

Unlike the long-haul cycle, the longer AVL cycle could not be completed in all nine
use cases. Table 9 shows the total energy consumption varied between 331 and 342 kWh
(3% range) when considering fully completed cycles, suggesting a potential battery range
of 285 km under optimal conditions. However, as evident in Table 9, the 100% SoH, SoC
battery was found to be the least efficient, contradicting the results from the long-haul
cycle. This could be explained by the nature of the route, which contains more areas of
regenerative braking, which is potentially more efficient at lower SoHs.

Final SoC values ranged from 26.4% and 0%, with three cases completely discharging
the battery before the end of the cycle, as shown in Figure 11. Complete discharge was
achieved within the 155 km–165 km range for these cases. The cycle contains three sectors
of recharge, with the most significant one occurring around 7500 s. The minimum increase
in SoC achieved at this part of the cycle was found to be around 4%. It can be estimated
that without this large recharge power peak, a further three cases would not be able to
complete the cycle.

4.1.3. Validation of Model

Overall, the model provided energy consumption results, which gave single-charge
range predictions in line with current industry standards for electric class eight trucks [56].
The model was also validated by comparing energy consumption with 10.85% and −1.82%
difference for the long-haul cycle and AVL cycle, respectively, upon comparison with the
literature [56,57], and, hence, high confidence can be placed in the model. The energy
flow in the system behaved as expected, showing the expected charge and discharge
stages of the pack, accurately reflecting the power draw for each cycle, and giving reliable
approximations for variations in SoC.

4.1.4. Key Assumptions and Limitations of the Model

The model utilised three main assumptions: constant temperature, uniform discharge,
and uniform cycle ageing of all cells. The validity of these assumptions would be highly
dependent on the performance of the cooling and battery management systems, both of
which would be required for the battery design to be industrialised.

One modelling assumption that could have compromised the accuracy of results in
comparison to experimental data was the neglect of the dynamic constants of the cells. The
cells considered in this paper did not undergo characterisation tests, preventing accurate
data regarding their behaviour under dynamic loading from being established. Only cycle
ageing tests were carried out to understand the cycle ageing implications on the system
performance in terms of vehicle single-charge driving range over the lifespan of the pack.
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4.2. Thermal Cooling System Model
4.2.1. Coolant Flow Rate

Figures 12 and 13 suggest that with an ambient inlet temperature, cooling performance
increases with coolant flow rate, up to a point of diminishing returns. For example, an
increase in flow rate from 1 to 10 LPM at 0.714 C decreased the final temperature increase
by 36.5% and temperature difference by 85.1%. The increase in cooling performance is
likely due to the greater flow rate providing increased cooling capacity to the system, with
more mass able to absorb heat each second, therefore maintaining the temperature gradient.
However, increasing the coolant flow rate from 10 to 25 LPM saw limited additional cooling
benefits, suggesting that the rate of heat transfer was no longer limited by the flow rate.

Additionally, Figure 13 suggests that greater C-rates increase temperature difference
across a battery pack, with this decreasing slightly with an increase in flow rate. This is
likely due to the increase in heat production and, therefore, overall pack temperatures. In
turn, this would likely cause greater heat transfer to the coolant across the pack, reducing
the temperature gradient at the coolant outlet, and thus reducing the rate of heat transfer
from the end modules compared to those at the inlet.

4.2.2. Coolant Inlet Temperature

Figure 15 shows a positive relationship between coolant inlet temperature and thermal
benefits, with correlation coefficients of 0.776 for cooling and 0.753 for heating obtained
using the least-square method. Increased modification of the coolant temperature at
extreme ambient temperatures would likely provide continued thermal benefits. However,
due to the power demand associated with active coolant temperature modification, the
BTMS should be optimised for each ambient temperature to minimise parasitic energy
consumption. This can be achieved by implementing dynamic control of the thermal
management system [57].

4.2.3. System Optimisation

Results shown in Section 3.3 and the CFD results [58] were used to optimise the BTMS.
Figure 13 suggested that 18 LPM would be the optimal coolant flow rate per sub-pack,
with this value found to be achievable in typical automotive applications [44]. This was
determined by combining the point of diminishing returns, ~15 LPM, with a SF (safety
factor) of 1.2. SFs of 1.2–1.5 have been suggested for battery systems [59], with 1.2 selected
to minimise parasitic power consumption seen with increasing flow rates [37]. CFD results
in [58] showed that at optimal ambient temperatures, ambient cooling would suffice. At
extremes, it was found that an active system would be required, with 7.8 ◦C of active
cooling or heating to be optimal [60].

4.3. Combined Transient Analysis Results

Figure 16 shows that the optimised cooling system demonstrated effective performance
under ambient temperature conditions of 25 ◦C and 40 ◦C. When applied throughout the
AVL drive cycle, the system enhanced the battery’s thermal stability by 87.7% at 25 ◦C,
ensuring the battery remained in the optimal temperature range for the entire drive cycle
and 81% of the cycle at 40 ◦C.

This likely means that at ambient temperatures of 25 ◦C and above, the truck’s battery
would be thermally stable with the suggested parameters, avoiding issues like runaway,
whilst achieving optimal performance on typical drive cycles.
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Despite optimisation, Figure 16 showed poor BTMS performance at sub-zero tem-
peratures, and the system’s efficiency was not evaluated. These could likely be improved
through the implementation of a battery preheating controller to improve low-temperature
performance, with studies showing 40 ◦C temperature rises within an hour being possi-
ble [60]. This would allow the truck’s battery to operate in its optimal temperature range
with just 1 h of preheating. Studies have also shown that P.I.D style controllers can allow for
reductions in operational time of BTMS during driving cycles, whilst maintaining thermal
stability [61]. These could be used to reduce parasitic power draw, ultimately helping to
improve battery range and BTMS efficiency.

5. Conclusions
This study develops a novel methodology, presenting the findings of an investigation

into the electrical and thermal performance of a battery pack designed for a heavy-duty
truck. The analysis employed 1D simulation techniques, utilising AVL CRUISE M and
MATLAB Simulink Simscape R2023b, to evaluate the system under representative dynamic
driving conditions. This approach allowed for a detailed assessment of energy consump-
tion, state of charge (SoC), temperature fluctuations, and the effects of various cooling
configurations while minimising computational costs. The simulations were conducted
over two real-world drive cycles, providing valuable insights into the performance of the
proposed battery pack design. The key findings of this investigation are as follows:

• As cell ageing progresses and the initial SoC decreases, the suitability of the battery
pack for long-distance travel diminishes significantly, indicating that battery degrada-
tion plays a critical role in reducing range capabilities.

• Despite ageing, cells may exhibit improved range performance from regenerative
braking during drive cycles, suggesting that drive cycle regeneration can partially
offset the impacts of cell degradation.

• Increasing the coolant flow rate to 18 LPM and actively controlling the inlet tempera-
ture within ±7.8 ◦C were found to significantly enhance thermal regulation, resulting
in an 80%+ improvement in thermal stability under ambient conditions of 25 ◦C
and 40 ◦C.

• The predicted single-charge range of the vehicle varied based on drive conditions, with
a maximum range of 285 km, which underscores the variability in battery performance
depending on real-world operating conditions.

The integration of AVL CRUISE M and MATLAB/Simulink Simscape R2023b in the
simulations provided a comprehensive platform for both electrical and thermal analysis,
offering a high degree of accuracy and flexibility. These tools were crucial in capturing
the complex interactions between the battery pack’s electrical behaviour and its thermal
management system.

While this study’s results offer a solid foundation for advancing electric propulsion
systems in heavy-duty trucks, further design optimisation and experimental validation are
needed. Future research should focus on validating the electrical and thermal performance
of the proposed system through practical testing, incorporating parasitic power draws from
auxiliary components such as pumps and compressors into the simulations, considering
the effects of charging system behaviour, and developing a more robust BTMS tailored for
electric heavy-duty vehicles. Also, higher C-rates should be considered for the analysis.

This investigation provides valuable insights into the performance and feasibility
of battery packs in heavy-duty electric trucks, especially concerning their thermal and
electrical characteristics in dynamic driving conditions. This study highlights the need for
further cooling optimisation and increased battery longevity. As electric mobility continues
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to evolve, this research will contribute to the goal of achieving more sustainable and
efficient heavy-duty electric vehicles.
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