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Abstract: The sustainable development of high-performance micro-batteries, characterized
by miniaturized size, portability, enhanced safety, and cost-effectiveness, is crucial for the
advancement of wearable and smart electronics. Zinc-ion micro-batteries (ZIMBs) have
attracted widespread attention for their high energy density, environmental friendliness,
excellent safety, and low cost. The key to designing high-performance ZIMBs lies in
improving their volumetric capacity and cycle stability. This review focuses on material
design, electrode fabrication, and the structural configuration of micro-batteries, providing
a comprehensive analysis of the challenges and strategies associated with cathodes in
ZIMBs. Additionally, the application of ZIMBs, which provide energy for electronics such
as wearable devices, tiny robots, and sensors, is introduced. Finally, future perspectives on
cathodes for ZIMBs are discussed, offering key insights into their design and fabrication in
order to facilitate the successful integration of ZIMBs into practical applications.

Keywords: zinc-ion micro-batteries; cathode materials; microelectrode fabrication;
structural configurations

1. Introduction
In recent years, the swift advancement of the IoT has stimulated the booming growth of

smart and wearable microelectronics, tiny robots, implantable medical devices, wireless self-
powered systems, and more applications. In this context, miniature energy storage devices,
characterized by miniaturized size, portability, enhanced safety, and cost-effectiveness,
have become vital for powering microelectronic products [1–4]. Among various micro-
batteries, zinc-ion micro-batteries (ZIMBs) have attracted widespread attention for their
high energy density, environmental friendliness, excellent safety, and low cost. These merits
make ZIMBs highly promising candidates for powering next-generation devices, such as
wearable electronics, tiny robots, and portable medical devices.

Zn’s high theoretical volumetric energy density (5855 mAh cm−3) and low electro-
chemical potential (−0.76 V vs. SHE) enable its operation in aqueous electrolytes, further
reducing costs and minimizing fire risks. In addition, ZIBs with aqueous electrolytes exhibit
much higher ionic conductivity (10−1–1 S cm−1) compared to non-aqueous electrolytes
(1–10 mS cm−1), further enabling fast-rate capacity [3,5]. However, significant challenges
remain in the development of ZIMBs, particularly regarding their cathodes. The cathode
is crucial in determining the capacity, rate capability, and cycle life, factors which largely

Batteries 2025, 11, 57 https://doi.org/10.3390/batteries11020057

https://doi.org/10.3390/batteries11020057
https://doi.org/10.3390/batteries11020057
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0000-0001-7232-8644
https://doi.org/10.3390/batteries11020057
https://www.mdpi.com/article/10.3390/batteries11020057?type=check_update&version=1


Batteries 2025, 11, 57 2 of 24

influence the overall performance of ZIMBs. Therefore, understanding and addressing the
limitations of the cathode is essential for advancing ZIMB technology.

Generally, micro-batteries (MBs) have a small footprint, typically in the range of square
millimeters or square centimeters, with electrode thickness restricted to the micron level
or to sub-cubic-millimeter volumes for 3D configurations [6,7]. It is noted that, unlike
conventional batteries, achieving high electrochemical performance is more challenging for
MBs due to their limited space or footprint area. The electrode serves as the key component
of MBs, with its material composition, microstructure, fabrication techniques and spatial
configuration collectively influencing the overall electrochemical performance of MBs.
Hence, the design of both electrode materials and architectures requires ingenuity and
modern fabrication techniques in order to achieve high-performance MBs.

Recently, significant efforts have been focused on regulating the microstructures of
electrode materials through engineering techniques such as crystal structure selection,
morphology design, defect engineering, and interlayer engineering [8–11]. Additionally,
combining electrode materials with highly conductive nanoporous frameworks to achieve
both high energy storage and rapid power delivery has also been a key focus [12,13]. From
an architectural perspective, the distinctive design of the electrode minimizes ion transfer
pathways, enhancing both rate capability and power density. Furthermore, these MBs
are well suited to the shape customizability and aesthetic versatility of microelectronics.
For example, 3D MBs have been employed to simultaneously enhance high energy den-
sity and power capability. These 3D electrode architectures offer high surface-to-volume
ratios, optimizing mass loading and minimizing ion diffusion pathways [14]. The de-
velopment of electrode architectures benefits from advances in fabrication techniques,
such as photolithography, screen printing, laser scribing, electrodeposition, and direct ink
writing (DIW). Finally, these feasible electrodes are assembled into devices for diverse
applications [15–17].

In this review, we concentrate on cathode material design, electrode fabrication, and
the structural configurations of MBs, providing a comprehensive analysis of the challenges
and strategies associated with cathodes in ZIMBs. Additionally, the applications of ZIMBs,
which power electronics such as wearable devices, flexible robots, and sensors, are in-
troduced. Finally, future perspectives on cathodes for ZIMBs are discussed, offering key
insights into their design and fabrication to facilitate the successful integration of ZIMBs
into practical applications.

2. Challenges and Optimization Strategies for Cathode Materials
ZIBs are primarily composed of the cathode, anode, and electrolyte. In some cases, they

include current collectors and separators. The cathode plays a critical role in determining
the electrochemical performance of ZIBs. Cathode materials for large-scale energy storage
are required to possess an optimal reversible charge-discharge capacity, outstanding cycle
stability, abundant resources, and environmental friendliness [9]. Therefore, developing a
comprehensive understanding of the challenges and corresponding optimization strategies
for the current cathode materials is essential before rational utilization.

2.1. Challenges of Cathode Materials

Numerous studies have been conducted on cathode materials for ZIBs. However,
persistent challenges remain, including poor structural stability, the dissolution of active
materials, low electrical conductivity, and side reactions, all of which significantly hinder
their practical application and development.
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2.1.1. Poor Structural Stability

Because of its large size (0.76 Å) and strong electrostatic attraction, the Zn2+ ion readily
forms tight bonds with electronegative atoms (such as oxygen), inducing substantial stress
in host during insertion/extraction, which can cause phase transformation or structural
collapse eventually. As shown in Figure 1a, due to the insertion of hydrated Zn2+, tunnel-
structured MnO2 transitions to display a layered structure. Subsequently, the structure
collapses owing to the repeated intercalation of hydrated Zn2+, leading to a rapid decline in
capacity during cycling [18]. This issue is common in V-based and Mn-based cathode mate-
rials with multiple polymorphic forms. Zn2+ intercalation weakens the V-O bond, creating
a rivalrous interaction between V-O and Zn-O bond. This leads to a prominent reduction
in the thermodynamic stability. With ongoing intercalation/extraction, the lattice spacing
suffers persistent expansion and contraction, ultimately causing structural collapse. The
stress and spatial deformation produced during phase transitions aggravate lattice distor-
tion, decrease Zn2+ ion active sites, and prevent migration [9]. Layered structures, typically
bonded by weaker van der Waals forces, experience more significant structural collapse. It
is crucial to modify and optimize cathode materials to fulfill application demands.

Batteries 2025, 11, x FOR PEER REVIEW 4 of 25 
 

sition of the electrolytes [21,22]. Numerous zinc salt byproducts are produced at the cath-
ode electrode by repeated discharging/charging cycles, contributing to the increased in-
terfacial impedance and capacity degradation of cathode materials. 

For cathodes with H⁺ intercalation, byproducts such as layered double hydroxides 
form due to the increased local OH⁻ concentration on the cathode due to H⁺ consumption. 
The generated OH- reacts with Zn2+ and anions in the aqueous electrolyte, and the byprod-
uct species are determined by the type of anion. Generally speaking, Zn4SO4(OH)6·5H2O 
is the primary byproduct in a ZnSO4 aqueous electrolyte, whereas Znx(CF3SO3)y(OH)2x-

y·nH2O/Zn12(CF3SO3)9(OH)15·xH2O byproducts are commonly found when using a 
Zn(CF3SO3)2 aqueous electrolyte. In addition to the pH influence, factors such as active 
water molecules, dissolved O2 molecules, and Mn3⁺ ions are also identified as contributors 
to byproduct formation [23,24]. The generation of unexpected byproducts continues to be 
one of the most critical and challenging issues in aqueous ZIBs, ultimately resulting in 
poor cycling performances. 

 

Figure 1. (a) Structural transformation of MnO2 during discharge/charge cycles. Reprinted with per-
mission from ref. [18]. Copyright 2018, Springer Nature. (b) Pourbaix diagram for (b) manganese 
and (c) vanadium, oxides. Reprinted with permission from ref. [19]. Copyright 2023, John Wiley and 
Sons. 

2.2. Strategies for Developing Advanced Cathodes 

To address the aforementioned challenges, numerous studies have focused on con-
structing novel structures that offer substantial capacity while maintaining stability dur-
ing Zn2+ insertion/extraction. Recent research efforts in material engineering have primar-
ily concentrated on areas such as nanostructure design, improvements in electrical con-
ductivity, interlayer engineering, and defect engineering. 

2.2.1. Nanostructure Design 

Generally, nanostructured materials with notable size effects and high surface areas 
are used in a common approach to enhancing energy storage. The benefits of those mate-
rials arise from the following advantages. (1) Nanostructure optimization increases the 
contact surface between the electrolyte and electrode, enhancing Zn2⁺ storage sites. The 
smooth diffusion of charge carriers on the nanostructure surface significantly enhances 
rate capability. (2) Nanostructures, such as 1D nanowires, nanorods, and nanobelts, 
shorten the ion diffusion path, therefore enhancing the reaction kinetics. (3) Nanostruc-
tures reduce volume expansion and maintain structural stability, contributing to stable 
cycling performances. 

So far, various nanostructures, such as low-dimensional structures, hierarchical 
structures, and hollow structures, have been designed to optimize Zn2+ storage. As an il-
lustration, Jing et al. [25] synthesized an amorphous Mn1.8Fe1.2O4 material with a hollow 
nanocube structure for ZIBs (Figure 2a,b). The amorphous characteristics facilitated diffu-
sion and narrowed the band gap, leading to improved Zn2⁺ ion and electron transport 
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2.1.2. Dissolution of Cathode Materials

In aqueous ZIBs, the electrochemical reaction of cathode materials varies according
to the pH of the electrolyte. Weakly acidic aqueous electrolytes are preferred due to their
low corrosiveness and excellent compatibility with the zinc anode. Nevertheless, these
electrolytes may lead to the dissolution of cathode materials, a process that is further
aggravated by the increased protons produced from water splitting. Consequently, the
cathode materials experience structural degradation, leading to battery failure owing
to insufficient cycling stability. Generally, Jahn-Teller effect has a significant influence
on MnO2 [19]. In weakly acid aqueous electrolytes, Mn4+ reduces to Mn3+ during the
discharge process. Mn3+ is prone to the Jahn-Teller distortion, and the disproportionation
reaction results in the dissolution of Mn2+. As shown in Figure 1b,c, both V-based and
Mn-based materials tend to dissolve during cycling in aqueous ZIBs, particularly in the
presence of mildly acidic electrolytes [10].
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2.1.3. Poor Electrical Conductivity

Mn-based and V-based cathode materials exhibit semiconductor properties [20]. Gen-
erally, most electrons in semiconductors are confined within covalent bonds. However,
a small number of electrons escape from these bonds due to thermal motion, becoming
free electrons and leaving behind holes in the original covalent bonds. In this scenario, the
holes carry a positive charge, and in the semiconductor, both free electrons and holes serve
as charge carriers [9]. V-based and Mn-based materials exhibit poor electronic conductivity
because of the limited availability of free electrons and holes. The inadequate intrinsic con-
ductivity, which results in both limited ionic diffusion and sluggish reaction kinetics, can
lead to significant electrochemical polarization, ultimately results in suboptimal capacity
and poor rate performance.

2.1.4. Parasitic Byproducts Formation

The reduplicative charge and discharge process promotes the formation of unforeseen
byproducts. Side reactions, such as oxygen evolution (OER) and hydrogen evolution (HER),
are pH-dependent and thus under the influence of the concentration and composition
of the electrolytes [21,22]. Numerous zinc salt byproducts are produced at the cathode
electrode by repeated discharging/charging cycles, contributing to the increased interfacial
impedance and capacity degradation of cathode materials.

For cathodes with H+ intercalation, byproducts such as layered double hydrox-
ides form due to the increased local OH− concentration on the cathode due to H+ con-
sumption. The generated OH− reacts with Zn2+ and anions in the aqueous electrolyte,
and the byproduct species are determined by the type of anion. Generally speaking,
Zn4SO4(OH)6·5H2O is the primary byproduct in a ZnSO4 aqueous electrolyte, whereas
Znx(CF3SO3)y(OH)2x−y·nH2O/Zn12(CF3SO3)9(OH)15·xH2O byproducts are commonly
found when using a Zn(CF3SO3)2 aqueous electrolyte. In addition to the pH influence,
factors such as active water molecules, dissolved O2 molecules, and Mn3+ ions are also
identified as contributors to byproduct formation [23,24]. The generation of unexpected
byproducts continues to be one of the most critical and challenging issues in aqueous ZIBs,
ultimately resulting in poor cycling performances.

2.2. Strategies for Developing Advanced Cathodes

To address the aforementioned challenges, numerous studies have focused on con-
structing novel structures that offer substantial capacity while maintaining stability during
Zn2+ insertion/extraction. Recent research efforts in material engineering have primarily
concentrated on areas such as nanostructure design, improvements in electrical conductiv-
ity, interlayer engineering, and defect engineering.

2.2.1. Nanostructure Design

Generally, nanostructured materials with notable size effects and high surface areas are
used in a common approach to enhancing energy storage. The benefits of those materials
arise from the following advantages. (1) Nanostructure optimization increases the contact
surface between the electrolyte and electrode, enhancing Zn2+ storage sites. The smooth
diffusion of charge carriers on the nanostructure surface significantly enhances rate capa-
bility. (2) Nanostructures, such as 1D nanowires, nanorods, and nanobelts, shorten the ion
diffusion path, therefore enhancing the reaction kinetics. (3) Nanostructures reduce volume
expansion and maintain structural stability, contributing to stable cycling performances.

So far, various nanostructures, such as low-dimensional structures, hierarchical struc-
tures, and hollow structures, have been designed to optimize Zn2+ storage. As an illus-
tration, Jing et al. [25] synthesized an amorphous Mn1.8Fe1.2O4 material with a hollow
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nanocube structure for ZIBs (Figure 2a,b). The amorphous characteristics facilitated dif-
fusion and narrowed the band gap, leading to improved Zn2+ ion and electron trans-
port kinetics. In addition, the hollow structure supplied ample sites and suppressed
structural collapse during constant cycling. Liu et al. [26] developed hollow octahedral
Pr6O11-Mn2O3 heterostructures (Figure 2c,d). Pr6O11 not only effectively inhibited the Mn
dissolution, stabilizing Mn2O3, but also induced charge rearrangement at the interface,
promoting ion/electron transfer and improving the electrochemical activity and stability of
Pr6O11-Mn2O3. The hollow structure designed offered sufficient sites and facilitated the
reaction kinetics.

2.2.2. Improving Electrical Conductivity

Electrical conductivity is a crucial factor influencing reaction kinetics in ZIBs. Due
to the inherently low electronic conductivity of certain materials (e.g., MnO2 and V2O5),
combining them with conductive materials such as carbon substances and conductive
polymers has emerged as an effective strategy with which to enhance their electronic
conductivity. Moreover, this approach has been shown to increase the surface area, provide
more storage sites, and improve the stability of the microstructure.

Owing to their high conductivity, light weight, and outstanding mechanical flexibility,
carbon materials such as carbon nanotubes (CNTs) and graphene are widely adopted
in composites [12,13,27,28]. As shown in Figure 2e,f, a hydrogen-substituted graphdiyne
(HsGDY) film was tightly constructed on MnO2 nanorods (denoted as MnO2-NRs@HsGDY)
through interfacial modification [29]. The introduction of HsGDY significantly enhanced
the conductivity of MnO2-NRs@HsGDY, reducing the charge transfer impedance (Rct) from
249 Ω to 3.46 Ω. Moreover, the conductive film contributed additional ion storage sites and
enhanced structural stability via the accumulation of Zn2+ ions and the restriction of Mn2+

ions on the MnO2-NR surface. A pomegranate-like V2O5@LIG composite was developed by
anchoring V2O5 nanospheres onto the laser−induced graphene (LIG) conductive network
through defect-induced adsorption [30]. The 3D porous and continuous electron conduction
network provides adequate chemical active sites and ion transport channels (Figure 2g,h).
Notably, the honeycomb-like LIG improved the electrical conductivity of the cathode by up
to four orders of magnitude.

In addition to carbon materials, conductive polymers (e.g., PPy, PEDOT, PANI) with
outstanding conductivity and excellent chemical stability are also commonly used as
additives to enhance electron conductivity. As shown in Figure 2i,j, MnO2@PANI core-shell
nanowires were prepared [31]. A uniform 6 nm thick conductive PANI layer was adhered
to the surface of the MnO2 nanowires, substantially increasing their electronic conductivity.
The Rct of the MnO2@PANI electrode was 177 Ω, approximately one-third of that of pure
MnO2 (Figure 2k). Furthermore, the hybrid electrode showed a significantly smaller slope
(12.1) compared to pure MnO2 (49.1) (Figure 2l), indicating a higher ion diffusion coefficient.
Both the reduced resistance and enhanced ion diffusion were attributed to the PANI shell.
Similarly, PEDOT was uniformly coated on MnO2 microspheres (denoted as MOP-5) to
stabilize the structure and improve conductivity through polymerization [32]. As shown
in Figure 2m–o, a 4 nm thick PEDOT layer was observed on the surface MnO2. The Rct of
MOP-5 (51 Ω) was significantly lower than that of MnO2 (371 Ω) (Figure 2p), demonstrating
that the PEDOT coating effectively improved electrical conductivity.
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2.2.3. Interlayer Engineering

Because of the intercalation/deintercalation storage mechanism, hydrated Zn2+ ions
are predominantly stored in tunnel-based or layered structures. For cathode materials
with such structures, the narrowed interlayer spacing and unstable framework signifi-
cantly hinder Zn2+ diffusion, making the structure susceptible to collapse during repeated
Zn2+ intercalation and deintercalation cycles. Interlayer engineering effectively expands
the interlayer spacing and stabilizes the host structure, ensuring Zn2+/H+ intercalation
and deintercalation.

Various efforts have been conducted to insert guests into host layered lattices. For
instance, the pre-intercalation of metal ions, such as K+, Na+, Cu2+, Mg2+, Ca2+, Al3+, and
Bi3+, was explored to enhance the performance of MnO2 [33–39]. Wang et al. [40] reported
that Mg2+ doping in NH4V4O10 acts as pillars, which expanding the interlayer spacing to
10.5 Å (from the original spacing of 9.6 Å). Meanwhile, pre-intercalated Mg2+ improves
structural stability, resulting in an outstanding electrochemical performance.
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Other intercalating guests, such as polymer molecules (PEDOT, PPy, PANI, PPy), have
also been explored to adjust the interlayer spacing of active materials [41–44]. The interca-
lation of conductive polymer molecules and highly stable polymers can improve electrical
conductivity and shield the intense electrostatic interaction between Zn2+ ion and the
host materials, respectively. For example, our team developed a strategy of incorporating
conductive polyaniline into V2O5 to enhance structural stability [43]. Analogically, Zhang
et al. [45] synthesized Bet-intercalated MnO2 (MnO2-Bet) by leveraging zwitterionic betaine
(Bet) for intercalation. The quaternary ammonium groups in Bet, carrying positive charges,
form strong electrostatic interactions with negatively charged oxygen atoms, bolstering
structural stability and preventing collapse. Meanwhile, the carboxylate groups, with
negative charges, promote efficient H+/Zn2+ diffusion, enhancing reaction kinetics.

2.2.4. Defect Engineering

Defect engineering has gradually become a strategic approach with which to adjust
the electronic structures and lattice arrangement of cathode materials [46]. Ongoing studies
mainly concentrate on point defects at the atomic scale, which include cation vacancies,
anion vacancies, and doping. These defects adjust the local electronic structure and bring
new electronic and electrochemical properties, such as enhanced conductivity and the
creation of more sites.

As a common anion vacancy, oxygen vacancy (Vo) is widely used to modify the
surface chemistry of cathode materials for ZIBs. Oxygen vacancies can adjust the local
electronic structure. This affects the Gibbs free energy of Zn2+ adsorption on the surface,
facilitating reversible Zn2+ intercalation/deintercalation. On the other hand, oxygen va-
cancies can reduce stress and electrostatic repulsion between nearby layers, which helps
to overcome transfer and diffusion obstacles, enhancing charge transfer and ion diffusion
during the reversible Zn2+ intercalation/deintercalation [9]. Under low oxygen pressure or
reduction conditions, oxygen atoms are easily extracted from the lattice, creating oxygen
vacancies. For instance, oxygen vacancies were introduced into α-MnO2 by treating it
with NaBH4, which weakened the Zn–O bond and facilitated the involvement of more
electrons during charge/discharge [47]. Studies have shown that oxygen defects can im-
prove conductivity by altering the local electronic structure. Combining defect engineering
with other modification approaches, such as nanostructure design and interlayer engi-
neering, is also a promising strategy. Zhang et al. [48] constructed an electrode (labeled
3D-NPG@S-NVO@CTAB) with oxygen vacancies and performed the intercalation of S and
CTAB (Figure 3a–c). The density functional theory (DFT) results confirmed that H+/Zn2+

insertion into MnO2 containing oxygen defects caused smaller charge depletion regions,
suggesting that oxygen defects in MnO2 were advantageous in terms of enhancing con-
ductivity and boosting charge migration (Figure 3d–f). Xiong et al. [49] employed DFT
simulation to assess the oxygen-deficient MnO2 (Figure 3g). The results showed that Gibbs
free energies of Zn2+ adsorption near VO in oxygen-deficient MnO2 were close to ther-
moneutral (≈0.05 eV), in contrast to pristine MnO2, which exhibited much lower values
(≈−3.31 eV).
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3. Challenges and Optimization Strategies for Fabrication Techniques of
Microelectrodes

It is noticeable that the performance of MBs depends not only on the choice of suitable
active materials but also on the design and structure of the fabricated microelectrodes [50].
The electrode architecture of MBs is typically classified into 2D stacked, 2D planar, 3D
stacked, 3D planar, and fiber-shaped configurations, which are displayed in Figure 4.
Among them, the 2D stacked and planar architectures, which offer the opportunity to
construct arbitrarily shaped devices, are the most basic configurations of MBs [51]. Unlike
conventional batteries, the fabrication of microelectrodes requires us to address challenges
like suitable microprocessing, stable and highly active material loading, and process com-
patibility [17]. The challenges associated with cathode materials were discussed earlier.
Here, the challenges and optimization strategies in the main fabrication techniques are
summarized systematically.
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3.1. Challenges in the Fabrication Techniques for Microelectrodes
3.1.1. Low Mass–Loading and Mechanical Instability of Microelectrodes

Currently, commercial MBs are essentially microscale versions of conventional batter-
ies [52]. They typically consist of thin-film electrodes prepared by coating. In this sense, the
well-established fabrication method for conventional batteries can be adapted to manufac-
ture MBs cost-effectively. However, the reduction in size results in a reduction in attainable
capacity and energy density. As the capacity and energy density are dimension-dependent,
they are severely constrained by the limited footprint area of MBs. To some extent, increas-
ing the areal capacity can be accomplished by enhancing the loading mass of the active
material. However, this may compromise the stability of the microelectrode during cycling.

3.1.2. The Lack of Facile and Scalable Fabrication Techniques

Unlike with conventional batteries, the construction of MBs requires a miniaturized
and compatible approach [53]. The traditional coating method is no longer suitable for
fabricating electrodes of MBs. Up until now, several microfabrication technologies, such
as lithography, deposition, screen printing, spray coating, laser scribing, and direct ink
writing (DIW), have been proposed for the fabrication of microelectrodes. However,
those methods have drawbacks, such as high initial costs, poor efficiency, a redundant
process, and the low mass loading of active materials. These inherent challenges hinder
applications in constructing various microelectrode architectures. For example, owing
to the limited space and suboptimal architectural design of microelectrodes, the active
material mass loading in screen-printed electrodes is usually very poor and low-resolution.
The corresponding strategies for improving those fabrication processes are discussed in
Section 3.2.2, respectively.

3.2. Optimization Strategies for Fabrication Techniques of Microelectrodes
3.2.1. Constructing 3D Architecture Microelectrode

Although numerous efforts have been conducted to advance cathode materials with
superb performance, the energy density of ZIMBs remains insufficient for practical appli-
cations. Apart from the cathode material, the mass loading and structural stability of the
microelectrodes also play a crucial role in determining the capacity of ZIMBs. Because
of the limited area of 2D geometry, the innovative 3D architecture electrode has emerged.
Increasing the mass loading within the constrained footprint area is an effective solution
for boosting the energy density of MBs. To this end, 3D architecture electrodes take full
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benefit of the vertical dimension (height) to increase the surface-to-volume ratio and enable
more mass loading [52]. For example, Naresh et al. [54] introduced porous 3D Au scaffold-
based electrodes (IDEs) as current collectors, facilitating the efficient loading of PANI and
Zn, respectively (Figure 5a–c). The measured thicknesses of the Zn and PANI for the 3D
architecture electrodes are 7 and 17 µm, respectively (Figure 5d), which are much higher
than those for flat Au electrodes (6 µm and 11 µm, respectively). In the 3D P-ZIMB, the
areal capacities rise from 15 to 35 µAh cm−2 at 50 µA cm−2 and from 6.8 to 16 µAh cm−2 at
1000 µA cm−2 compared to the C-ZIMB (Figure 5e,f). Even at higher areal currents, the 3D
P-ZIMB achieves a substantial enhancement in areal capacity (≈135%). Its areal capacities
are markedly superior to those of the C-ZIMB (Figure 5g). In general, 3D direct printing
is employed to construct 3D electrodes. Printed electrodes were fabricated with 1, 3, and
5 layers, exhibiting proper device formation without any shape distortion. The patterned
electrodes reached a maximum height of approximately 2.5 mm with a footprint of around
1.5 cm × 1.5 cm (Figure 5h) [55]. The printed interdigital electrodes demonstrated good
consistency. The optical microscopy of the magnified local view of the electrode reveals the
solid electrode’s clear formation, featuring sharp corners and clean gaps between interdigi-
tal legs. Moreover, interdigital electrodes of various sizes can be accurately manufactured,
with the minimum spacing between adjacent electrodes reaching 100 µm (Figure 5i). MBs of
varying miniaturized sizes can be efficiently attached to the limited surface area of fingers
(Figure 5j), showcasing adjustable miniaturization to suit diverse application needs. The
gel-like inks, possessing controlled fluidity, allow for smooth extrusion from the nozzle at
a regulated speed, preventing clogging (Figure 5k). Yao et al. [56] demonstrated printed
graphene electrodes with high MnO2 loading (182.2 mg cm−2) (Figure 5l,m), achieving a
fairly high areal capacity. Combining picketing emulsion and direct ink writing, Huang
et al. developed free-standing, porous polymer foams (Figure 5n,o) [57].

3.2.2. Developing Advanced Fabrication Processes

In terms of device configuration, the challenge lies in locally integrating electrode
materials into the microsized architecture without causing a short circuit of the two adja-
cent electrodes [15]. The achievement of high-resolution microelectrode designs requires
advanced technologies. The ever-developing fabrication technologies include printing
technologies (such as 3D printing, inkjet printing, screen printing, stamping), etching
technologies (photolithography, laser scribing, plasma etching), coating strategies (spray
coating, vacuum filtration, layer by layer assembly), and deposition technologies (elec-
trolytic deposition, chemical vapor deposition, electrophoretic deposition). The strategies
behind fabrication technologies are discussed in detail to support future investigations and
the development of efficient microelectrodes.

Printing Technologies

Printing (direct ink writing, inkjet printing, screen printing, 3D printing, stamping,
etc.) is a promising technology that allows specific microelectrode patterns to be formed on
a substrate by integrating functional material into an ink system [58]. The most important
advantages of printing technologies are cost-effectiveness, ease of processing, and the
simplicity of mass production and integration. However, the precision of printed designs is
greatly affected by the ink’s rheological properties and the stencil’s sharpness (for screen
printing and stamping).
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with 1, 3, and 5 layers, respectively. (i) A photo of the mass fabrication of MBs in a 4 × 4 layout.
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inks as a function of shear rate. Reprinted with permission from ref. [55]. Copyright 2023, American
Chemical Society. (l) The fabrication scheme of a 3D-printed electrode. (m) An SEM of a 3D-printed
electrode at different magnifications and deposition times. Reprinted with permission from ref. [56].
Copyright 2019, Elsevier. (n) A dispersion consisting of the V2O5·nH2O and soybean oil. (o) Photos
of 3D-printed emulsified V2O5·nH2O. Scale bars: 5 mm. Reprinted with permission from ref. [57].
Copyright 2023, Wiley-VCH GmbH.

The 3D printing technique typically involves the optimization of ink properties and
printing process parameters. Figure 6a illustrates the printing process [59]. As displayed
in Figure 6c, the printed electrode exhibits clear patterns, highlighting the superior print-
ability of the inks. The sheet resistance values of each ink are relatively low (Figure 6d),
which facilitates efficient electron transfer. The printed cathode exhibits a mass loading
of 14.5 mg cm−2 and a thickness of 90 µm (Figure 6e). In addition, the magnified SEM
image reveals the entanglement between P-NVO and CNTs (Figure 6f). Consequently,
printed ZIMBs of 0.95, 1.42, and 1.89 cm2 deliver discharge areal capacities of 3.4, 3.3, and
2.9 mAh cm−2 at a current density of 2 mA cm−2, respectively (Figure 6b). Moreover,
the 3D printing technique offers a potential method for preparing fiber-shaped electrodes
(Figure 6g). Various complex patterns (Figure 6h,i) are printed, demonstrating the high
accuracy and scalability of the technology.
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Screen printing is widely regarded as a usual technique, offering precise control
over flexibility, stability, and seamless integration with prepared microelectronics. Wang
et al. [60] fabricated Zn//MnO2 MBs with customizable shapes and intricate planar ge-
ometries (Figure 6j,k). To enhance the capacity of ZIMBs, achieving high mass loading
while maintaining the structural stability of microelectrodes is crucial. Cai et al. [61] fabri-
cated planar ZIMBs with high energy density by leveraging interfacial engineering. The
interlayer, which is composed of hydroxylated carbon nanotube (CNT-OH) and carbon
black, preserves the topography intact and significantly improves the mass loading and
mechanical stability of microelectrodes. By optimizing the Ce-MnO2 to CNT-OH ratio and
the mass loading, the assembled ZIMBs show an ultra-high capacity (7.2 mAh cm−2 or
497.3 mAh cm−3) and energy density (8.4 mWh cm−2 or 573.5 mWh cm−3), far exceeding
those of other similar MBs reported.
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Figure 6. (a) The scheme of the 3D printing process. (b) Discharge curves of PZIMBs with different
surface areas at 2 mA cm-2. (c) A photo of and (d) the sheet resistance of the printed electrode.
(e) Cross-sectional and (f) surface SEMs of printed cathode. Reprinted with permission from ref. [59].
Copyright 2024, Wiley-VCH GmbH. (g) A coaxial device via direct ink writing. (h,i) The various
printed device. Scale bar, 10 mm. Reprinted with permission from ref. [62]. Copyright 2021, the
Authors. (j) Zn//MnO2 MBs connected: 5 series × 3 parallel. (k) Photos of four concentric circle
shapes under a bending state. Reprinted with permission from ref. [60]. Copyright 2019, Oxford
University Press.
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Etching Technologies

Etching technologies are used to carve high-resolution patterns for the development
of on-chip MBs. Laser scribing offers superiority in terms of preparing MBs, including
controlled shape and satisfactory accuracy. This is due to the simplicity, scalability, cost-
effectiveness, and high-resolution capabilities of the method. The laser beam functions as
both a patterning tool and a heat source for carbonization [14]. For instance, Li et al. [63]
utilized laser irradiation to construct flexible planar MBs (Figure 7a,b). Owing to the
high precision of direct laser patterning technology, the smallest unit is about 2.3 mm2

(≈1.5 mm × 1.5 mm) (Figure 7c). Additionally, the width of each finger and the interelec-
trode gap is only about 160 and 100 µm, respectively. Moreover, it allows for mask-free
patterning with arbitrary configurations (Figure 7d).

Coating Technologies

Coating strategies, including layer-by-layer assembly, spray coating, and vacuum
filtration, are commonly used to fabricate binder-free thin-film electrodes. These approaches
include applying a uniform dispersion onto a substrate, evaporating the dissolvent, and
forming a solid film with adjustable thickness. Shadow masks are required to create various
patterns, such as interdigital fingers.

Spray coating is widely employed to fabricate microelectrodes. A crucial factor is
the ink’s ability to produce droplets without causing nozzle clogging during the process.
Shi et al. [64] fabricated a planar graphene–based on–chip energy storage device with
asymmetric configuration by spray-coating, assisted by a patterned mask on a substrate,
as shown in Figure 7e. The device, featuring free-of-metal current collectors, high voltage
output, and excellent integration, was very adaptable to on-chip energy devices. To develop
a simple and scalable method for the efficient fabrication of fiber–shaped electrodes with
high conductivity and mass loading, Lan et al. [65] reported a 3D active coating strategy.
In this approach, the active material ink was injected from a stepping syringe onto a
rotating conductive wire to create a fiber–shaped electrode (Figure 7f). The as-fabricated
fibrous electrode had a diameter of about 670 µm, with a stainless-steel wire as a core. The
MnO2 layer was evenly coated onto the wire’s surface and exhibited 235 µm thickness
(Figure 7g–i). Accordingly, the weight of coated materials was almost 3.1 mg cm−1 or
14.9 mg cm−2, exceeding the mass production demand (>10 mg cm−2).

Vacuum filtration is usually used to fabricate thin films by separating solid materials
from liquid. The filtrated film is densely stacked but permeable to ions, resulting in a
free-standing electrode with high energy density. Moreover, because of the various disper-
sions, forming uniform films, including various hybrid materials, is straightforward. The
hybridization of high-conductivity carbon materials, like graphene and CNTs, with active
materials is a responsible approach for realizing high energy density and superior mechan-
ical properties. For instance, Zhao et al. [66] assembled flexible MnO2@rGO interdigital
electrodes, with a thickness of 13.6 µm, using mask-assisted filtration.

Deposition Technologies

As mature methods, deposition technologies have been extensively reported on, in-
cluding electrolytic deposition, electrophoretic deposition, and chemical vapor deposition
(CVD). Microelectrodes can be easily formed by depositing materials on pre-patterned
current collectors, thereby eliminating the need for binder additives. The CVD deposi-
tion involves high-temperature processing, which thin plastic films (such as PET) are not
suitable for. Electrolytic and electrophoretic deposition techniques, on the other hand,
are cost-effective and scalable, requiring only simple devices. In these processes, charged
nanomaterials are diffused and deposited onto the current collectors under the influence of
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electric fields. For instance, Liu et al. [67] constructed an Zn-Mn MB by combining a multi-
step electrodeposition technique with laser scribing possesses. Li et al. [68] successfully
fabricated a concentric circle structure ZIMB with CNTs/TPU interdigital microelectrodes,
where anode Zn and cathode PANI were employed as electrode materials by in situ elec-
trodeposition (Figure 7j). Although deposition is facile and cost-effective, the preparation
of MB arrays requires specialized consideration. In addition, the lateral growth of active
materials is able to bridge the interval between adjacent electrodes, eventually causing a
short circuit. Thus, the concentration of the solution and the time of the process should be
arranged accurately. Importantly, the structure of pre-patterned current collectors, which
determines the loading of active materials, should be intelligently designed. Wang et al. [69]
fabricated a fiber-shaped electrode by electrodepositing MnO2 onto a carbon fiber rope
(CFR) (Figure 7k). The fabricated device exhibited a high power density and energy density,
with values of 1.25 mW cm−1 and 0.18 mWh cm−1, respectively.
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Figure 7. (a) A schematic diagram of the fabrication of MBs. (b) Photos of an MB with planar and
bending. (c) An MB on the thumb-scale bar: 5 mm. (d) The various shapes of MBs by all DLP-scale
bar: 3 mm. Reprinted with permission from ref. [63]. Copyright 2023, Wiley-VCH GmbH. (e) A
schematic diagram and photo of GP-LTMSs. Reprinted with permission from ref. [64]. Copyright
2017, Wiley-VCH GmbH. (f) The scheme for fabricating fibrous batteries. (g–i) An SEM of the fibrous
MnO2 electrodes. Reprinted with permission from ref. [65]. Copyright 2022, American Chemical
Society. (j) Schematic diagrams of the processes for Zn-PANI MB. Reprinted with permission from
ref. [68]. Copyright 2020, Wiley-VCH GmbH. (k) A schematic diagram of the manufacturing of
an MnO2@CFs electrode. Reprinted with permission from ref. [69]. Copyright 2023, American
Chemical Society.

In conclusion, various fabrication techniques have been explored to realize MBs. The
efficacy of fabrication techniques can be evaluated in terms of cost, scalability, resolution,
multi–material capability, and so on. A comparison of each technique is presented in
Table 1.
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Table 1. Comparisons of different fabrication techniques used for ZIMBs.

Categories Technologies Advantages Disadvantages

rinting technologies

Screen printing Fast fabrication, scalable,
cost-effective

Low resolution, functional
ink-incompatible

Direct ink writing Low cost, easy operation, high
resolution, material diversity

Strict requirements for
viscosity inks (rheological and

viscoelastic
properties), small-scale
production, nozzle jam

Etching technologies
Laser scribing

Fast fabrication, high
resolution, scalable,

eco-friendly
Expensive equipment

Photolithography Cost-effective, high resolution Hash work environment
Plasma etching Facile Limited to carbon materials

Coating technologies

Spray coating Material diversity, scalable,
easy operation Poor homogeneity of the film

Vacuum filtration Low cost, facile, controllable
thickness

Time–consuming, complex
architectures inadaptability

Layer-by-layer
assembly Material-saving, facile Complex preparation

procedure

Deposition technologies

Electrolytic deposition Low cost, fast fabrication,
scalable, eco-friendly

Uncontrollable growth in
a lateral
direction

Electrophoretic
deposition Low cost, simple equipment Limited to the charged

materials
Chemical vapor

deposition Scalable, controllable thickness High cost, complicated
operation

4. Multiple Applications of ZIMBs
In recent years, there has been a boom in ZIMBs, with varied architectures and

cathodes, because of their virtues of outstanding safety and high energy density [70].
Based on the electrode architectures seen in a single device, ZIMBs can usually be clas-
sified into three categories: one-dimensional (1D) (which are also named fiber-shaped),
two-dimensional (2D), and three-dimensional (3D) designs [17]. Here, we will discuss the
application of ZIMBs with different configurations and various performance metrics.

4.1. Fiber-Shaped ZIMBs

Recently, fiber-shaped ZIMBs, with the advantages of bending, twisting, and fold-
ing, have been widely studied for their potential application in wearable microelectronics.
Using the wet spinning method, Gao et al. [71] assembled flexible 1D ZIMBs with fab-
ricated electrodes. Benefiting from the synergistic effects of both CNTs and CNFs, the
fabricated fiber-shaped electrodes demonstrated excellent mechanical properties and de-
sirable conductivity. Combined with the active material MnO2, the fiber–shaped ZIMBs
demonstrated high volumetric and gravimetric energy densities of 131.3 mWh cm−3 and
47.3 Wh kg−1, respectively. Their high retention capacity, detected after thousands of bend-
ing tests, demonstrated their excellent flexibility and structural stability. Consequently, the
1D ZIMBs can be woven into multitudinous structures, such as textiles, in order to power
various electronics and achieve various intelligent functions (Figure 8a). Analogously, Zhao
et al. [62] fabricated an on-chip coaxial fiber-shaped battery using direct multi-ink writing.
The device delivered excellent areal energy and power density during the high loading of
active materials and demonstrated outstanding stability (Figure 8b). Xia et al. [72] fabri-
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cated a wearable self-powered device by integrating a solar cell with a fiber-shaped battery
to provide power for an electronic watch (Figure 8c). The solar charging-discharging test
lasted for about 4 h and demonstrated outstanding repeatability.

In terms of device configuration, fiber-shaped ZIMBs can be classified into coaxial,
twisted, and parallel types. First, the coaxial configuration features a hollow multi-shell or
core–shell configuration, where the anode and cathode share the same axis. The configura-
tion is more compact and has higher ion transfer efficiency. Zhang et al. [73] reported on
coaxial ZIMBs that were integrated with a strain sensor (Figure 8d–f). Second, the twisted
configuration included two-line-electrode-coated gel electrolytes, which were twisted into
a double helix structure. Li et al. [74] synthesized a Ni-V2O5 NWs@CNT fiber electrode
by a novel quenching method (Figure 8g), and then assembled fiber-shaped ZIMBs by
twisting the Ni-V2O5 NWs@CNT cathode fiber and Zn NSs@CNT anode fiber, which were
coated with gel electrolyte. Moreover, the fiber-shaped ZIMBs continued to perform well
when knitted into a textile glove (Figure 8h). With their integration into a soft robot, it was
able to operate in an untethered way and move forward (Figure 8i). Third, for the parallel
configuration, the anodes were arranged in parallel to the cathode, with a separator or
electrolyte in between (Figure 8j) [75]. The as-fabricated fiber-shaped battery was integrated
with a wearable NO2 gas sensor (Figure 8l) and pressure sensor (Figure 8k) for application.
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printed with permission from ref. [73]. Copyright 2022, American Chemical Society. (g) A schematic 
illustration of the fiber-shaped battery. (h) A photo of the fiber-shaped battery woven into a textile. 
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Figure 8. (a) A photo of a textile woven with the fiber-shaped ZIMBs. Reprinted with permission
from ref. [71]. Copyright 2022, Elsevier. (b) A photo of an LED illuminated by a coaxial device.
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Reprinted with permission from ref. [62]. Copyright 2021, the authors. (c) A photo of a wearable
self-power integrated system. Reprinted with permission from ref. [72]. Copyright 2021, Copyright
2022, Wiley-VCH GmbH. (d) The preparation process of a multifunctional battery. (e) A photo of
the fiber-shaped device. (f) A photo of an electronic watch driven by two fiber-shaped devices in
series. Reprinted with permission from ref. [73]. Copyright 2022, American Chemical Society. (g) A
schematic illustration of the fiber-shaped battery. (h) A photo of the fiber-shaped battery woven
into a textile. (i) Robotic locomotion under magnetic actuation. Reprinted with permission from
ref. [74]. Copyright 2022, Elsevier. (j) A schematic diagram of the fabricated fiber electrode and
fiber-shaped ZIMBs. (k) A photo of the integrated device used to monitor the movement. (l) The
dynamic response of the sensor with the finger moving. Reprinted with permission from ref. [75].
Copyright 2022, Elsevier.

4.2. Two-Dimensional (2D) ZIMBs

At present, two-dimensional (2D) ZIMBs are classified into 2D staked configurations
and 2D interdigital configurations, both of which are commonly accepted for assembling
microdevices. Normally, the 2D staked configuration has a sandwich-like structure that
follows traditional battery design principles. In the early stage, a Zn//MnO2 MB with a
gel electrolyte was developed through direct write printing and this was easily integrated
onto the substrate [76].

Since the application of gel electrolytes in electrochemical energy storage devices, the
development of rechargeable ZIMBs has advanced significantly. Zeng et al. [77] designed
a high-performance quasi-solid-state ZIMB. Owing to the buffer layer of PEDOT and the
Mn2+ neutral electrolyte, the ZIMB achieved admirable energy density and peak power
density values of 34 mW h cm−3 and 8.6 kW kg−1, respectively. Recently, Zheng et al. [78]
presented a novel zinc ion gel (Zn-gel) electrolyte, synthesized via the ethanol vapor-
induced assembly of cellulose molecules, applied to ZIMBs (Figure 9a,b). The Zn-gel
showed exceptional mechanical strength (0.88 MPa), high ion transference (over 0.7), and
superior ionic conductivity (8.39 mS cm−1). The ZIMB with Zn-gel achieved a capacity
of 207.3 mAh g−1 and coulombic efficiency over 93% after 500 cycles without a liquid
electrolyte. These highly safe and wearable ZIMBs provided dependable performances
under harsh conditions. To enhance lifetimes and solve safety issues, an anti-freezing, self-
healing MB was proposed with the help of a cross-linked polyacrylamide polyelectrolyte
(Figure 9c–f) [79]. This electrolyte efficiently improved the lifespan and widened the
working temperature range.

In 2D interdigital ZIMBs, separated parallel electrodes are arranged on an all-in-one
substrate, allowing for speedy and multidirectional ion diffusion without a separator. Thus
far, a number of investigations have concentrated on optimizing the structural design
of microelectrodes so as to shorten ion transport paths and achieve high power density.
Typically, ZIMBs have been exploited by engrafting free-standing VO2-MWCNTs and
zinc nanosheets into interdigital electrodes with facile, cost-efficient, and high-resolution
laser engraving [80]. The ZIMB exhibited a splendid ultrahigh capacity, energy density,
and power density of 315 µAh cm−2, 189 µWh cm−2, and 0.6 mW cm−2, respectively.
Moreover, the ZIMB also demonstrated excellent high temperature stability and mechanical
flexibility. Meanwhile, the authors constructed interdigital A-V2O5/G-ZIMBs, with Zn
powder as the anode and a 2D A-V2O5/G heterostructure film (7 µm) as the cathode, on an
all-in-one substrate via a mask-assisted vacuum filtration strategy [81]. They demonstrated
an ultra-high volumetric capacity of 20 mAh cm−3 at a current density of 1 mA cm−2

and the model retained 80% of its capacity after 3500 cycles. For integrated application,
Zhang [82] printed sweat-activated Zn/MoS2-MnO2 micro-batteries, suitable for power
supply modules in long-duration wearables (Figure 9g,h). Analogously, Lu et al. [59]
fabricated an interactive integrated system resembling electronic skin (Figure 9i). To ensure
reliability and integrability for wearable product applications, stretchable ZIMBs were
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fabricated by incorporating conductive polymer intercalated vanadium oxide in flexible
and elastic cathode materials [83]. The as-fabricated ZIMBs showed superior stretchability
(500% of the pristine length) (Figure 9j) and temperature adaptability (−20 to 60 ◦C)
(Figure 9k). Obviously, the ZIMBs could adapt to extreme environments.
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Figure 9. (a) A schematic diagram of a stacked ZIB. (b) A photo of a ZIB providing power for
LED under bending. Reprinted with permission from ref. [78]. Copyright 2024, Wiley-VCH GmbH.
(c–f) The resistance variation of the cathode before cutting and after self-healing. Reprinted with
permission from ref. [79]. Copyright 2022, Elsevier. (g,h) A photo of on-body trial setup with
the Zn/MoS2-MnO2 batteries mounted on the arm while riding an exercise bike. Reprinted with
permission from ref. [82]. Copyright 2024, Wiley-VCH GmbH. (i) A photo of an interactive integrated
system resembling electronic skin. Reprinted with permission from ref. [59]. Copyright 2024, Wiley-
VCH GmbH. (j) Photos of ZIMBs while stretched up to 5 cm. (k) LED illumination using a ZIMB in
water and ice. Reprinted with permission from ref. [83]. Copyright 2023, Wiley-VCH GmbH.

4.3. Three-Dimensional (3D) ZIMBs

To mitigate the low energy density of 2D ZIMBs, 3D ZIMBs are proposed. Among the
multitudinous configurations, the interdigitated conformation is the most typical due to
its high aspect ratios, which allows for high mass loadings [14]. With the development of
printing techniques, various 3D microelectrodes are constructed layer by layer through
printing. Yao et al. [76] demonstrated a 3D-printed electrode with MnO2 mass loading
up to 182 mg cm−2, achieving a high areal capacity. In addition, these series devices
can power an LED (Figure 10a), proving their feasibility in practical applications. An
energy supply module consisting of four single MBs, connected in series and parallel, is
used to power a miniature motor (Figure 10b) [55], demonstrating strong and durable
powering capability. Li et al. [68] fabricated a flexible Zn- PANI MB with a concentric
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circle structure. The device, integrated with three MBs, can easily power a digital watch
on the wrist (Figure 10c), exhibiting excellent flexibility and wearability. Shi et al. [84]
fabricated all-printed 3DP-Cu@Gr//MnO2 ZIMBs (Figure 10d). Benefiting from the 3D
architecture with customizable geometries, which was beneficial to the reversible cycling
of Zn metal, the as-fabricated device demonstrated up to 91.4% capacity retention and
almost 100% coulombic efficiency after 200 cycles (Figure 10e). In addition, the high energy
density and power density were 48.6 Wh kg−1 and 18.8 W kg−1, respectively. Obviously,
the combination of energy/current output, cycle life, and flexibility is extremely favorable.
Meng et al. [85] utilized surface path planning techniques with five-axis linkage technology,
which expanded the printing capabilities to non-deployable surfaces. A conformal curved
surface functional integrated circuit, including a Zn//MnO2 cell module, a nano-silver
temperature sensor, and a conductive pathway, is displayed in Figure 10f. The printing
process enables the conformal fabrication of functional circuits, making it suitable for
applications with space constraints and laying the groundwork for the miniaturization and
conformal production of self-power wearable electronics.
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Figure 10. (a) A photo of four devices, in series, lighting an LED. Reprinted with permission from
ref. [57]. Copyright 2023, Wiley-VCH GmbH. (b) A module with four individual devices powers
a miniature rotary motor. Reprinted with permission from ref. [55]. Copyright 2023, American
Chemical Society. (c) A watch is powered by three MBs in series. Reprinted with permission from
ref. [68]. Copyright 2020, Wiley-VCH GmbH. (d) Photo and (e) cycle performance of all printed
AZIBs. Reprinted with permission from ref. [84]. Copyright 2024, Wiley-VCH GmbH. (f) Temperature
change test of conformal temperature measurement circuit. Reprinted with permission from ref. [85].
Copyright 2024, Wiley-VCH GmbH.
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5. Conclusions and Prospects
Considering their features, such as large abundance, low cost, environmental sustain-

ability, and being nontoxic, as well as the low redox potential of the Zn anode, ZIMBs are
promising micropower sources for wearable electronics and smart devices. To achieve
extended cycle life, superior energy density, and remarkable power density within a limited
footprint, it is crucial to enhance key components, particularly the cathode. This requires
the use of high-capacity active materials. Significant endeavors have been undertaken to
explore advanced cathode materials and develop microelectrodes to meet these demands.
This review provides a comprehensive analysis of the challenges faced by researchers and
possible strategies for future research and advancement, from the perspectives of material
design, electrode fabrication, and structural configurations for ZIMBs. Additionally, the
applications of ZIMBs in powering electronics, like wearable devices, flexible robots, and
sensors, are discussed. Despite the tremendous advancements that have been made in the
advancement of novel active materials and the design of intelligent microelectrode archi-
tectures, many challenges remain in meeting the requirements for application in flexible
wearable devices, flexible robots, and micro-sensors.

(1) Challenges persist in relation to cathode materials. In order to output more capacity
in a limited space, the bulk energy density of the material must be prioritized. The
materials’ vibration density or compactness should also be given greater attention.
Electrode materials based on conversion or redox reaction mechanisms are likely to
be more promising due to their higher energy density. Additionally, the structure of
electrodes is different, and the factors restricting the performance of the battery are
different. The proportion of conductive additives in an electrode of a few microns
thick may not improve the performance of the MB but rather reduce the specificity
of the MB. Therefore, it is very important to achieve a better understanding of the
material’s electrochemical mechanisms and restriction factors in MB architectures by
advanced in situ or operando characterization techniques.

(2) Challenges persist in relation to cost-effective, time-efficient, accessible, scalable,
and compatible fabrication techniques. The architectures of microelectrodes are
essential for the energy/power density and operational stability of ZIMBs. Although
various innovative fabrication methods, such as photolithography, deposition, laser
scribing, and filtration, have been developed to fabricate microelectrodes, each of
these methods has its respective advantages and drawbacks. Most current downsizing
approaches are complex, tedious, and limited to lab-scale production. Research on
developing facile and efficient approaches for large-scale and cost-effective fabrication
techniques is therefore urgently needed for the commercialization of ZIMBs. Among
the available methods, printing is widely regarded as a promising candidate. However,
there is a shortage of suitable inks with excellent rheological properties that combine
conductive materials and active materials. To date, only a few printable inks have
been developed based on active materials. Consequently, significant efforts should
be focused on the creation of such printable inks. Additionally, achieving a high
printing resolution remains a key challenge for the future development of printing
techniques. Advancements in resolution would enable the fabrication of electrode
architectures with more precise and adaptable structures. The ultimate goal of this
technology is to realize fully printed micro-batteries (MBs), where all components,
such as anode, the cathode, electrolyte, separator, and current collectors, can be printed
simultaneously. Furthermore, constructing a complete fabrication database based
on current fabrication techniques is of great significance, as it would offer crucial
direction and guidance to users. As far as the fabrication methods are concerned, we
can attempt to combine multiple methods, utilizing their respective advantages to
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advance high-performance ZIMBs. For instance, it is possible to achieve electrodes
with a 3D porous structure by directly ink printing the active material, followed by
laser scribing.

(3) Innovative configuration design. The strategy of choosing suitable electrode materials,
fabrication techniques, and innovative configuration designs could lay the foundation
for the development of high-performance ZIMBs. With the advancement of technical
readiness, 2D microelectrodes with planar and stacked architectures are progressively
transitioning to 3D planar and stacked architectures, offering high areal energy and
power densities within a limited footprint. However, successfully transitioning ZIMBs
with architectures of 3D electrodes from the laboratory stage to commercialization
remains a challenging task. A number of challenges must be addressed, including
the further optimization of performance, development of scalable and cost-effective
fabrication methods, complete and uniform electrolyte filling, and the compatible
integration of ZIMBs with microdevices.
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