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Abstract: In this study, the efficiency of an immersion cooling system for controlling the
temperature of 5S7P battery modules at high charge and discharge C-rates was experimen-
tally evaluated. The study was conducted in three main stages including the evaluation of
different coolant oils followed by the proposition of an optimal volume flow rate (VFR) and
cooling performance evaluation under high charging/discharging C-rates. In the first stage,
three coolant oils, including Therminol D-12, Pitherm 150B, and BOT 2100, were compared.
The Therminol D-12 achieved superior cooling performance, with the highest heat transfer
coefficient (HTC) of 2171.93 W/m2·K and the ability to maintain the maximum temperature
(Tmax) and temperature difference (∆T) of the battery module within the safe range. In the
next stage, VFR was varied between 0.4 LPM and 1.0 LPM for the selected best coolant
oil of Therminol D-12. The 0.8 LPM VFR was determined to be optimal with the highest
HTC of 2445.73 W/m2·K and an acceptable pressure drop of 12,650 Pa, ensuring a balance
between cooling performance and energy consumption. Finally, the cooling performance
was evaluated at high charging/discharging C-rates from 1.5C to 3.0C for the proposed
best coolant oil and VFR. The immersion cooling system with Therminol D-12 and a VFR
of 0.8 LPM is an effective combination to achieve the desired performance of the battery
module under extreme C-rate working conditions. The immersion cooling system with the
proposed effective combination maintains the Tmax and ∆T at 38.6 ◦C and 4.3 ◦C under a
charging rate of 3.0C and to 43.0 ◦C and 5.5 ◦C under a discharging rate of 3.0C.

Keywords: charging/discharging; high C-rate; immersion cooling; lithium-ion battery;
thermal management

1. Introduction
Growing global concerns about energy depletion and the urgent need to mitigate

climate change have played a pivotal role in driving the rapid development and adoption
of electric vehicles (EVs) [1]. Lithium-ion batteries (LIBs) are at the heart of this transforma-
tional change, with their exceptional benefits of high energy density, good performance,
extended cycle life, no memory impact, and fast charging and discharging capabilities [2,3].
However, the performance of LIBs is significantly dependent on their temperature during
charge/discharge cycles. To ensure optimal performance, LIBs must be maintained within
a safe range of 25–40 ◦C, and the ∆T within the battery module should not be greater
than 5 ◦C [4,5]. Operating at lower temperatures significantly reduces the battery capacity
and charging efficiency. In contrast, higher temperatures cause faster cycle life loss and
cause dangerous thermal problems [6–8]. Furthermore, the ∆T in the battery module also
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plays a significant part in ensuring its performance and safety during operation. High
temperature differences can lead to an uneven depth of discharge between battery cells,
leading to a reduction in the battery module’s overall performance. An uneven state of
charge between battery cells leads to overcharge or over-discharge, resulting in a decrease
in battery life [9,10]. According to studies, for every 5% increase in temperature difference,
capacity can decrease by 2% [11]. In addition, the continuous development of electric
vehicles with higher battery capacity and power has placed more stringent requirements
on fast charging and discharging issues [12]. At higher charge and discharge rates, the
heat generated by the battery also increases. Suppose the generated heat is not released
in time. In that case, it may lead to heat accumulation, which increases internal chemical
reactions, rapidly increases battery temperature, and could result in a thermal runaway and
destruction of the battery pack [13–15]. Consequently, the investigation and advancement
of battery thermal management systems (BTMS) are necessary to enhance the safety and
optimal performance of LIBs [16,17].

Popular BTMSs are classified into air cooling, PCM cooling, and liquid cooling
systems [18,19]. Because of its many benefits, including its straightforward design, low
operating costs, and ease of maintenance, air cooling is frequently employed. However,
because of its low specific heat capacity and poor thermal conductivity, air cooling is
only appropriate for applications requiring little heat dissipation. Under harsh operating
conditions, air cooling cannot meet the heat dissipation needs and is at risk of triggering
dangerous thermal runaway in the battery module [12,20]. With the outstanding advantage
of high latent heat, PCM cooling can maintain excellent temperature uniformity in the
battery module through heat absorption and phase change mechanisms. This passive
cooling method also offers advantages such as a compact structure and cost-effectiveness.
However, the challenge facing PCM cooling systems is that they cannot effectively dissipate
heat due to their low thermal conductivity, especially under harsh working conditions.
Potential solutions to improve the thermal conductivity of PCMs include the incorporation
of carbon, metal, or their oxide materials [21,22].

Direct and indirect liquid cooling are two categories of liquid cooling technologies [23].
With indirect liquid cooling, heat is exchanged with the battery module through cooling
plates, cooling channels, and cooling jackets. In an indirect cooling system, the coolant
is usually water or a water–ethylene glycol mixture. Compared with air-cooled systems,
indirect liquid cooling has a higher specific heat capacity and thermal conductivity, which
greatly improves the temperature uniformity and cooling performance of the battery mod-
ule. However, the main obstacle of indirect cooling is the high thermal resistance between
the battery module and the coolant, which significantly reduces the heat dissipation effi-
ciency. In addition, the indirect cooling system also faces problems such as fluid leakage, a
complex structure, and increased weight [24,25].

A direct liquid cooling system—also referred to as an immersion cooling system—
improves cooling efficiency, temperature uniformity, and thermal resistance by submerging
the battery cells in a dielectric coolant medium. This is because all of the battery cells’
surfaces are directly exposed to the coolant. Especially under harsh operating conditions,
immersion cooling systems can prevent and inhibit the propagation of thermal runaway
phenomena, thus improving the reliability of LIB battery modules [26,27]. Furthermore,
immersion cooling has the advantages of a simple structure, easy maintenance, and energy
saving. Commonly used coolants in immersion cooling systems are mineral oil, silicone
oil, ester, hydrocarbon oil, or fluorocarbon. Therefore, an immersion cooling system is
considered a potential BTMS to provide efficient and safe thermal management for LIB
battery packs with large capacities and those operating under harsh conditions [28,29].
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For a six-cell battery module, Yanhui et al. suggested an immersion cooling technique
that outperformed conventional air cooling by keeping the battery temperature under 40 ◦C
and controlling ∆T below 3 ◦C during a 3.0C discharge [30]. The battery module transformer
oil immersion cooling technique developed by Luyao et al. was examined. The findings
indicated that at a 2.0C discharge rate, the battery module temperature was reduced by
26.3% compared to a natural air-cooling system [4]. Jiahao et al. assessed a mineral oil
immersion cooling system’s cooling effectiveness for a 16-cell lithium-ion battery module.
According to the results, the immersion cooling system provided better cooling efficiency
for the battery module than natural convection, reducing the maximum temperature rise
for 1.0C, 2.0C, and 3.0C discharge rates by 40%, 45%, and 38%, respectively [31]. An
immersion cooling structure was suggested by Choi et al. to enhance battery thermal
management performance in harsh charging circumstances. This design maintains an ideal
battery temperature at 3.0C charging while reducing the pressure drop by 45.4% and energy
usage by 61.0% when compared to the baseline structure. Furthermore, in comparison
to the traditional technique, immersion cooling lowers the Tmax by 6.7 ◦C and the ∆T by
3.0 K [32]. Using synthetic ester oil, Hemavathi et al. assessed the single-phase forced
immersion cooling (FFIC) method for controlling the temperature of 4S2P Li-ion battery
packs, particularly in situations involving rapid discharge. The findings demonstrated that
at a 3.0C discharge rate, FFIC produced an ideal temperature of 31.3 ◦C with outstanding
∆T. Furthermore, FFIC decreased the temperature increase by 35% when compared to static
flow immersion cooling (SFIC) and 51% when compared to natural air convection [33]. The
lithium-ion battery cooling technologies proposed by Satyanarayana et al. include mineral
oil cooling (MOC), thermal oil cooling (TOC), and forced air cooling (FAC). When compared
at a 3.0C discharge rate, the results show that FAC, TOC, and MOC significantly reduce the
Tmax of the battery module by 43.83%, 49.17%, and 51.54%, respectively, compared with
the natural air-cooled system. This shows that low-cost liquid dielectric cooling is safe and
suitable for high-capacity lithium-ion battery applications [34].

Although great progress has been made in the research of immersion cooling for the
thermal management of lithium-ion batteries, there are still some gaps that need to be
addressed. Most studies, such as those of Yanhui [30], Luyao [4], and Jiahao [31], have
focused on battery modules with limited cell counts, failing to fully evaluate the cooling
efficiency in larger modules with complex structures, such as the 5S7P module in the
current study. In addition, a few studies, such as those of Choi [32] and Hemavathi [33],
have tested different designs and coolant oils, but they have not fully considered the impact
of harsh operating conditions such as a high charging/discharging C-rate, especially up
to 3.0C as in this study. Moreover, the impact of coolant oil and VFR on the operation of
battery modules with immersion cooling systems under high charging and discharging
rates has not been thoroughly examined in prior research. This study addresses these
gaps by experimentally evaluating the thermal management capabilities of an immersion
cooling system for a larger 5S7P battery module under severe operating conditions at
both high charging and discharging rates up to 3.0C. The novelty of the study lies in
the identification and proposition of an optimal coolant oil and the optimal VFR for
maintaining the desired cooling performance of the battery module at both high charging
and discharging rates. The study not only provides comprehensive experimental data on
the Tmax and ∆T under these conditions but also evaluates the trade-off between cooling
performance and energy consumption, which has not been fully investigated previously.
This provides new insights and practical applications for high-energy density battery
systems operating under extreme conditions.
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2. Experiment Method
2.1. Battery Module and Coolant Oil

In the current investigation, a 21700-type battery cell (INR21700-48X-SDI-2) manufac-
tured by Samsung SDI Co., Ltd. (Yongin-si, Republic of Korea) at the Cheonan Factory,
Korea with a nominal capacity of 4.8 Ah was used for the evaluation with the immersion
cooling method. The battery module consisted of 35 cells with a 5S7P configuration, of
which five cells were linked together in series and seven cells were linked together in paral-
lel as illustrated in Figure 1a. The 5S7P configuration was chosen in this study to balance
the experimental feasibility and representativeness of real battery modules. The smaller
size makes it easier to conduct experiments in the laboratory with available equipment,
ensuring safety and good control of temperature, voltage, current, and pressure. Although
the 5S7P configuration is smaller than modules commonly used in EVs, it still provides a
suitable model for studying heat transfer and cooling performance, allowing the results
to be applied to predict the behavior of larger modules. At the same time, using the 5S7P
module helps to shrink the problem, saving costs and time while maintaining the important
characteristics of real modules, thereby creating a foundation for future scalable studies
and larger-scale applications. The characteristics of the cells and battery module taken into
consideration in the investigation are shown in Table 1. The battery cells were arranged
in an aligned configuration in an aluminum box with 163.0 × 117.0 × 90 mm dimensions.
The distance between the parallel and series connection configurations between the battery
cells was 2 mm, and the distance between the battery cell and the aluminum box was
2 mm. With the benefits of low cost and great cooling efficiency, Therminol D-12, Pitherm
150B, and BOT 2100 were selected as coolant oils for battery modules with immersion
cooling systems. Table 2 presents the properties of the coolant oils used in the present
study. A 3-inlet and 3-outlet configuration of the coolant oil was established to ensure
uniform distribution in the battery module. One crucial element that has a large impact
on the battery module cooling effectiveness in immersion cooling systems is the coolant
flow direction. The effect of flow direction on the thermal performance of LIB battery
modules has been assessed in numerous studies. According to the study’s findings, the
bottom-to-top flow direction offers more cooling efficiency than the top-to-bottom flow
path. A more even distribution of coolant is made possible by the bottom-to-top flow
design, which raises the heat transfer coefficient, boosts cooling effectiveness, and keeps the
battery module’s temperature extremely consistent [32,35]. Therefore, the bottom-to-top
coolant flow direction was adopted in the present experimental study. The height of the
coolant inlet was set to 15 mm from the bottom of the aluminum box, and the height of the
coolant outlet was set to 75 mm from the bottom of the aluminum box. As illustrated in
Figure 1a, nine T-type thermocouples (T1–T9) were affixed to the surface of nine battery
cells at various locations to gather temperature data during the experiment processes to
assess the thermal performance of the battery module with an immersion cooling system
under various circumstances. According to the studies, the temperature distribution of
the cylindrical battery is considered to be uniform, with no significant difference between
the top, middle, and bottom positions. The temperature at the middle location can be con-
sidered as the representative temperature of the entire battery surface [36–38]. Therefore,
in this study, the thermocouples were attached to the middle position of the battery cells.
Figure 1b displays the schematic diagram of the thermocouple mounting sites.
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Figure 1. (a) Configuration of 5S7P battery module with immersion cooling; (b) Location of thermo-
couple installation in battery surface. 
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Figure 1. (a) Configuration of 5S7P battery module with immersion cooling; (b) Location of thermo-
couple installation in battery surface.

Table 1. Details of the battery module and cell used in the investigation.

Specifications Value Unit

Battery cell
Nominal capacity 4.8 Ah
Nominal voltage 3.64 V

Maximum charge voltage 4.2 V
Discharge cut-off voltage 2.5 V

Diameter 21.15 ± 0.2 mm
Height 70.65 ± 0.15 mm
Weight 68.0 ± 1.5 g

Battery module
Number of cells/modules 35

Nominal battery module voltage 18.2 V
Maximum battery module voltage 21 V
Nominal battery module capacity 705.6 Wh

Table 2. Properties of coolant oils used in the present study.

Specifications Therminol
D-12

Pitherm
150B

BOT
2100

Density (kg/m3) 758.5 785.99 797.0
Viscosity (kg/m·s) 0.001165 0.00632 0.00476

Specific heat capacity (J/kg·K) 2110 2188.3 2055
Thermal conductivity (W/m·K) 0.1092 0.1363 0.1377
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2.2. Configuration for the Immersion Cooling 5S7P Battery Module Experiment

The immersion cooling experimental setup schematic diagram for the 5S7P battery
module is displayed in Figure 2. A TOYOTECH TEX60-400 power supply (Aichi, Japan)
was used to charge the battery module. The power supply had a maximum operating
power of 24 kW, with operating voltage and current ranges of 60 V and 400 A, respectively.
The battery module was discharged using a TOYOTECH TLF5000-A electric loader. The
electric loader had a maximum operating power of 5 kW with operating voltage and current
ranges of 150 V and 800 A, respectively. The coolant oil was cooled using a 5 kW JWT-30
chiller and heat exchanger, which also controlled and maintained the coolant oil’s inlet
temperature. To circulate the coolant oil in the immersion cooling system, a JIHPUMP
peristaltic pump was utilized, which has an operating range of 0.4 mLPM to 2200 mLPM.
The Data Logger GL820 was used to collect voltage, temperature, and pressure data of the
battery module during the experiment. Nine T-type thermocouples were attached to the
surface of different battery cells with an operating range of temperature from −220 ◦C to
400 ◦C. All experiments were carried out with an ambient temperature setting of 25 ◦C in a
constant temperature and humidity chamber.
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Figure 2. Diagrammatic representation of the experimental configuration for the immersion-cooled
5S7P battery module.

The constant current–constant voltage, or CC–CV, charging technique was used during
the battery module charging process. The battery module’s highest charging voltage
during the CC charging procedure was 21 V. The charging process ended when the current
reached the charge cut-off current status of the battery module at 0.84 A during the CV
charging process. The battery module discharging process applied the CC (constant current)
discharge method. The battery module fully charged at 21 V was discharged at different
discharge rates. The discharge process ended when the voltage reached the discharge
cut-off voltage of the battery module at 12.5 V. The charge/discharge rates conducted in
the present study included 1.0C (33.6 A), 1.5C (50.4 A), 2.0C (67.2 A), 2.5C (84 A), and 3.0C
(100.8 A).

To assess the efficiency of immersion cooling for battery modules, thermal and hy-
draulic performance criteria including Tmax, ∆T, HTC, and pressure drop (∆P) were con-
sidered. Firstly, three types of coolant oils were experimentally investigated, namely,
Therminol D-12, Pitherm 150B, and BOT 2100, with the coolant oil volume flow rate (VFR)
at 0.6 LPM. Then, the optimal coolant oil was proposed for experimental investigation with
different coolant oil VFR values from 0.4 LPM to 1 LPM. Finally, the optimal coolant oil
with the optimal VFR was tested and evaluated for thermal management efficiency for
battery modules at high charge/discharge rates up to 3.0C rates.
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2.3. Data Reduction and Uncertainty Analysis

During the operating process, the battery’s total heat generation (Qgen) is computed
by adding the heat from irreversible heating (Qirr) and reversible heating (Qrev), where
irreversible heating is caused by Joule heating and reversible heating is caused by entropy
generation [39].

Qgen = Qirr + Qrev = I(Uoc − Vbat)− IT
dUoc

dT
(1)

Here, I stands in for the battery current as it is being charged or discharged. Vbat

and Uoc represent battery and open-circuit voltages, respectively. T stands for battery
temperature. The entropic coefficient is represented as dUoc

dT .
The ∆T in the battery module during the experiment is calculated as follows [40]:

∆T = Tmax,battery − Tmin,battery (2)

where Tmax,battery denotes the battery cells’ maximum temperature and Tmin,battery denotes
their minimum temperature.

The HTC is calculated as follows [40]:

h =
Qconv,oil

Abattery
(
Tmean,battery − Tmean,oil

) (3)

The coolant oil mean temperature is calculated as follows [40]:

Tmean,oil =
Tinlet,oil + Toutlet,oil

2
(4)

The heat generated from the battery absorbed by the coolant oil is calculated as
follows [40]:

Qconv,oil =
.

moilCp,oil(Toutlet,oil − Tinlet,oil) (5)

The following formula is used to determine the pressure drop of coolant oil [41]:

∆Poil = Pinlet,oil − Poutlet,oil (6)

where Abattery indicates the area of the battery surface; Tmean,battery indicates the mean
temperature of the battery; Tmean,oil indicates the mean temperature of coolant oil; Toutlet,oil

and Tinlet,oil indicate outlet and inlet temperatures of coolant oil;
.

moil, Cp,oil indicate the mass
flow rate and heat capacity of coolant oil; and Pinlet,oil and Poutlet,oil indicate the inlet and
outlet pressure of coolant oil.

Factors such as measurement error, deviation in probe position, environmental condi-
tions, and inadequate calibration can lead to inaccuracies in the measured experimental
parameters [38]. To ensure the accuracy and reliability of the data, the study performed an
uncertainty analysis based on the parameters provided in the manufacturer’s datasheet.
Specifically, the accuracy of the DC electronic loader, T-type thermocouple, Pt-100 tempera-
ture sensor, peristaltic pump, and data logger were ±0.1%, ±0.5%, ±0.25%, ±0.2%, and
±0.1%, respectively.

Uncertainty analysis was performed based on the experimental equipment used and
factors such as probe position, calibration, and measurement error. The uncertainties of the
main experimental parameters are calculated through Equation (7) [40]:

UR =

[(
∂R
∂X1

U1

)2
+

(
∂R
∂X2

U2

)2
+

(
∂R
∂X3

U3

)2
+ · · ·+

(
∂R

∂Xn
Un

)2
] 1

2

(7)
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where R is the dependent experimental parameter, UR is the uncertainty of this pa-
rameter, and X1, X2, X3, . . . , Xn are the independent experimental parameters, with
U1, U2, U3, . . . , Un being the corresponding uncertainties.

The results showed that the uncertainties of the evaluated parameters were as follows:
temperature ±1.31%, pressure ±1.14%, and heat transfer coefficient ±4.07%, respectively.
All devices and sensors in this study were carefully calibrated before conducting the
experiment to minimize measurement errors.

3. Results and Discussion
This part assessed the 5S7P battery module’s thermal and hydraulic performance

using the Tmax, ∆T, HTC, and ∆P criteria under various immersion cooling system oper-
ating circumstances. First, the thermal management efficiency of immersion cooling was
evaluated with different coolant oils, including Therminol D-12, Pitherm 150B, and BOT
2100, to propose the optimal coolant oil in Section 3.1. In Section 3.2, with the proposed
optimal coolant oil, the impact of various VFR values on the cooling efficiency of immer-
sion cooling was considered from 0.4 LPM to 1 LPM. Finally, the cooling efficiency for the
battery module using immersion cooling based on the optimized coolant oil and VFR was
considered and evaluated at high charge/discharge rates up to 3.0C in Section 3.3.

3.1. Different Coolant Oils

In this section, the impact of different types of coolant oils on the cooling efficiency
of immersion cooling for 5S7P battery modules was evaluated including Therminol D-12,
Pitherm 150B, and BOT 2100. The parameters evaluated included Tmax, ∆T, HTC, and
∆P. Experiments with different coolant oils were conducted under the same conditions
of a 0.6 LPM volume flow rate, a constant coolant oil inlet temperature, and ambient
temperature maintained at 25 ◦C.

The temperature distribution in the immersion cooling battery module with different
types of coolant oils is shown in Figure 3. The findings indicate that the temperature in the
battery module tends to increase gradually along the coolant oil flow direction. Specifically,
the temperature of the battery cells near the coolant oil inlet (T1–T3) is the lowest due to
direct contact with the coolant oil at low temperatures. On the other hand, the battery cells
in the middle and end regions of the module (T4–T6 and T7–T9) have higher temperatures,
with the highest values at the locations near the coolant oil outlet (T7–T9). This difference is
explained by the decreasing heat dissipation efficiency along the flow direction. In the area
near the coolant oil inlet, the high-temperature gradient between the coolant oil and the
battery cells enhances the heat transfer process, resulting in a lower temperature. However,
in the area near the outlet, the coolant oil has exchanged heat with the previous battery
cells, causing its temperature to increase. This reduces the temperature gradient between
the coolant oil and the battery cells, resulting in lower heat dissipation efficiency and higher
temperatures. Notably, the temperatures at locations T5 and T8 were found to be the
highest in the battery module. This is mainly because these locations are located in the
center and near the outlet of the coolant flow, where the most heat accumulates during
operation. This explains the appearance of hot spots in the module, especially in the central
and near-end regions of the flow.

The variation in the Tmax and ∆T of the immersion cooling battery module with
different types of coolant oils is illustrated in Figure 4. Due to their superior specific heat
capacity and thermal conductivity, the selected coolant oils demonstrated outstanding
cooling performance, effectively maintaining the Tmax and ∆T of the battery module within
an optimal range at a discharge rate of 1.0C. Among the oils, Therminol D-12 exhibited
the most effective thermal management, achieving the lowest Tmax and ∆T of 31.1 ◦C and
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2.1 ◦C, respectively, representing reductions of 8.52% and 52.2% compared to BOT 2100.
In contrast, the other two coolant oils, Pitherm 150B and BOT 2100, resulted in higher
Tmax values of 33.7 ◦C and 34.0 ◦C and higher ∆T values of 4.0 ◦C and 4.4 ◦C, respectively.
These differences can be attributed to the lower viscosity and density of Therminol D-12,
which facilitates a more uniform distribution of the coolant oil and allows it to flow more
efficiently within the battery module. Consequently, this enhances heat dissipation and
accelerates heat removal from the battery module, resulting in a significant reduction in
temperature compared to the other two coolant oils.
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Figure 5 displays the change in the HTC over time for various coolant oil types. The
HTC showed a clear difference between the oils based on their physical and thermal
properties. Therminol D-12 achieved the highest heat transfer efficiency, with an HTC
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of 2171.93 W/m2·K. This can be explained by the superior properties of Therminol D-12,
including high specific heat capacity and thermal conductivity, along with low viscosity
and density, which optimize the heat transfer process. In contrast, although Pitherm
150B and BOT 2100 have a higher specific heat capacity and thermal conductivity than
Therminol D-12, they are limited by their higher density and viscosity. These factors
increase the resistance to heat transfer, resulting in lower HTC values of 1462.58 W/m2·K
and 1183.52 W/m2·K. This result emphasizes the importance of balancing the fluid’s
thermophysical and dynamic properties in improving the system’s cooling performance.
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Pressure drop is a crucial factor for evaluating the energy efficiency of cooling systems.
Cooling systems with lower pressure drops consume less energy, whereas higher pressure
drops result in greater energy consumption. The variation in the pressure drops of the
immersion cooling system with different coolant oils is presented in Figure 6. Research
findings indicated that Therminol D-12 achieved the lowest pressure drop, at 8880 Pa, while
Pitherm 150B and BOT 2100 exhibited higher pressure drops of 9840 Pa and 10,310 Pa,
respectively. This result is attributable to the lower density and viscosity of Therminol
D-12, which improved flow efficiency within the battery module and reduced the pressure
differential compared to the other coolants. These findings highlight the significant influ-
ence of the thermophysical properties of coolant oils on cooling performance and energy
consumption in cooling systems, particularly in immersion cooling methods.

Based on the research results, Therminol D-12 was identified as the optimal coolant
oil for use in immersion cooling systems for 5S7P lithium-ion battery modules due to its
outstanding thermophysical properties and superior cooling performance, proven through
numerous experiments. Therminol D-12 possesses superior thermophysical properties,
including low viscosity (0.001165 kg/m·s at 25 ◦C), high specific heat capacity (2110 J/kg·K
at 25 ◦C), and good thermal conductivity (0.1092 W/m·K at 25 ◦C). These properties
play an important role in improving heat transfer efficiency. Low viscosity allows the
oil to flow easily through the system, minimizing pressure drops and pumping energy
consumption. The high specific heat capacity enables Therminol D-12 to absorb and store a
larger amount of heat, while the high thermal conductivity ensures efficient heat transfer
between the cell surface and the coolant oil. In the experiments, Therminol D-12 achieved
the highest heat transfer coefficient (2171.93 W/m²·K), the lowest Tmax (31.1 ◦C), and the
smallest ∆T between cells in the battery module (2.1 ◦C), demonstrating superior thermal
control performance. At the same time, the oil achieved the lowest pressure drop (8880 Pa),
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which reduced energy consumption during operation and improved the overall energy
efficiency of the cooling system. These factors were quantitatively correlated with the
cooling performance of Therminol D-12, demonstrating the optimal balance between heat
transfer efficiency and energy consumption. These results not only ensure efficient cooling
but also reduce energy consumption, making Therminol D-12 a superior coolant choice for
further experiments with higher charge/discharge rates. In addition, the study also shows
that optimizing the thermophysical properties of the coolant can play an important role in
improving the cooling performance of immersion systems in future applications.
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3.2. Volume Flow Rates

In this section, the influence of the optimal coolant oil proposed in Section 3.1 with
different VFR values on the cooling effectiveness of immersion cooling was analyzed.
Specifically, Therminol D-12 with different VFR values, ranging from 0.4 LPM to 1.0 LPM,
was studied under the condition of discharge rate of 1.0C. The coolant oil and ambient
temperature were maintained at 25 ◦C.

The variation in Tmax and ∆T at different VFRs is demonstrated in Figure 7. The
results show that Therminol D-12 achieved superior cooling performance, maintaining the
Tmax and ∆T in the battery module at optimal levels at all VFRs from 0.4 LPM to 1.0 LPM.
Specifically, larger flow rates resulted in higher cooling efficiency, with the Tmax and ∆T
ranging from 31.1 ◦C to 31.2 ◦C and from 1.9 ◦C to 2.1 ◦C as the VFR increased from 0.6 LPM
to 1.0 LPM. In contrast, at lower VFRs, the cooling efficiency decreased significantly, with
the Tmax and ∆T being 31.4 ◦C and 2.4 ◦C, respectively, at 0.4 LPM.

The explanation for this phenomenon is that the larger VFRs increase the heat ex-
change rate of the battery cells with the coolant oil, which helps to remove heat from
the battery more quickly and efficiently, thereby improving the heat dissipation capacity
and significantly reducing the battery temperature. However, increasing the coolant oil
VFR to high values does not mean that the cooling efficiency will continue to improve,
as this efficiency tends to be saturated when reaching a certain VFR. The research results
show that when the coolant oil VFR increases from 0.8 LPM to 1.0 LPM, the difference
in Tmax and ∆T is only 0.1 ◦C, which is negligible. In addition, increasing the coolant oil
VFR also results in a significant increase in the pressure drop, thereby increasing energy
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consumption. Consequently, determining and evaluating the appropriate coolant oil VFR
is essential to ensure a balance between cooling effectiveness and energy consumption in
the immersion cooling system.

Batteries 2025, 11, x FOR PEER REVIEW 13 of 19 
 

  

Figure 7. Variation in the Tmax and ∆T of the immersion cooling battery module with different vol-
ume flow rates. 

 

Figure 8. Variation in HTC with different volume flow rates. 

The variation in pressure drops with different VFRs of Therminol D-12 at a discharge 
rate of 1.0C in Figure 9 demonstrates the clear impact of the flow rate on the energy effi-
ciency of the system. At a VFR of 0.4 LPM, the pressure drop reached its lowest level, only 
8060 Pa, due to the slow flow, minimizing resistance in the system. As the VFR increased 
to 0.6 and 0.8 LPM, the pressure drop increased to 8880 Pa and 12,650 Pa, respectively, 
due to the increasing resistance from the faster flow. Notably, at the highest VFR of 1.0 
LPM, the pressure drop increased sharply to 17,700 Pa, reflecting the influence of oil vis-
cosity and density on effective flow resistance. This result highlights that, although higher 
VFRs can enhance heat transfer efficiency, they also lead to higher energy consumption 
due to increased pressure drops. Therefore, VFR optimization is essential to achieve a 
trade-off between cooling efficiency and energy consumption, with a medium VFR such 
as 0.6–0.8 LPM being the optimal choice in this case. 

 

Figure 7. Variation in the Tmax and ∆T of the immersion cooling battery module with different
volume flow rates.

Figure 8 shows the variation in the HTC of Therminol D-12 with different VFRs at a
discharge rate of 1.0C, demonstrating the significant impact of VFR on cooling performance.
At a VFR of 0.4 LPM, the HTC reached 1370.25 W/m2·K, the lowest among the flow rates,
due to the slow flow rate resulting in limited heat exchange capacity. When the VFR was
increased to 0.6 LPM and 0.8 LPM, the HTC increased significantly to 2171.93 W/m2·K
and 2445.73 W/m2·K due to the improvement in convection capacity and heat transfer
efficiency. However, at 1.0 LPM, the HTC decreased slightly to 2354.39 W/m2·K, possibly
due to the occurrence of heat transfer efficiency degradation when the coolant flow rate
was too high, causing flow disturbance and reducing the heat contact time. This result
emphasizes that, although increasing the coolant oil VFR improves the cooling efficiency, it
is necessary to optimize the VFR to achieve a balance between heat transfer efficiency and
energy efficiency, with the optimal VFR in this case being approximately 0.8 LPM.
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The results in Figure 8 show that as the coolant VFR increases, the HTC in the battery
module improves significantly. However, this improvement is not clearly shown in Figure 7
when considering the Tmax or ∆T. Specifically, when increasing the VFR from 0.4 LPM to



Batteries 2025, 11, 59 13 of 18

0.8 LPM, the Tmax decreases from 31.4 ◦C to 31.1 ◦C, while the ∆T decreases from 2.4 ◦C to
1.9 ◦C. The main reason is that the battery module is operated at a discharge rate of 1.0C
in this case. This normal discharge rate causes a relatively low amount of heat generation
during the operation of the battery module. With this low amount of heat generated,
when increasing the VFR, the heat is removed faster and the temperature distribution is
improved. Still, these changes are not large enough to cause a significant difference in the
Tmax or ∆T. In addition, the immersion cooling system is highly efficient due to the coolant
being in direct contact with the battery cell surface, which helps to maintain a uniform
temperature distribution even when the VFR changes. Therefore, at a discharge rate of
1.0C, the difference in temperature distribution between VFR levels within the study range
is negligible, as shown in Figure 7.

The variation in pressure drops with different VFRs of Therminol D-12 at a discharge
rate of 1.0C in Figure 9 demonstrates the clear impact of the flow rate on the energy efficiency
of the system. At a VFR of 0.4 LPM, the pressure drop reached its lowest level, only 8060 Pa,
due to the slow flow, minimizing resistance in the system. As the VFR increased to 0.6 and
0.8 LPM, the pressure drop increased to 8880 Pa and 12,650 Pa, respectively, due to the
increasing resistance from the faster flow. Notably, at the highest VFR of 1.0 LPM, the
pressure drop increased sharply to 17,700 Pa, reflecting the influence of oil viscosity and
density on effective flow resistance. This result highlights that, although higher VFRs
can enhance heat transfer efficiency, they also lead to higher energy consumption due
to increased pressure drops. Therefore, VFR optimization is essential to achieve a trade-
off between cooling efficiency and energy consumption, with a medium VFR such as
0.6–0.8 LPM being the optimal choice in this case.
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flow rates.

The study results showed a significant impact of different coolant VFRs on the ther-
mal performance of the battery module with immersion cooling. When increasing the
VFR from 0.4 LPM to 0.8 LPM, the heat transfer performance of the system was signif-
icantly improved. Specifically, HTC increased from 1370.25 W/m²·K at 0.4 LPM to a
maximum of 2445.73 W/m²·K at 0.8 LPM, with an increase of 12.60% compared to 0.6 LPM
(2171.93 W/m²·K). At the same time, the Tmax in the battery module was maintained at a
minimum of 31.1 ◦C, while the ∆T between cells decreased from 2.1 ◦C at 0.6 LPM to 1.9 ◦C
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at 0.8 LPM. These results demonstrate that 0.8 LPM provides superior thermal control per-
formance in maintaining uniform temperature distribution in the battery module. Although
the ∆T between 0.6 LPM and 0.8 LPM is not significant at a discharge rate of 1.0C due to the
relatively low heat generated at normal discharge rates, at higher charge/discharge rates,
with larger heat generated, higher coolant flow rates (i.e., 0.8 LPM) are expected to demon-
strate superior cooling performance. This is because the higher HTC at 0.8 LPM improves
the heat exchange efficiency and maintains a better temperature distribution. In addition,
when the VFR increases to 1.0 LPM, although the HTC remains high (2354.39 W/m²·K),
the cooling performance does not improve significantly compared to 0.8 LPM, while the
pressure drop increases sharply to 17,700 Pa, resulting in higher energy consumption and
lower overall efficiency. At 0.8 LPM, the pressure drop only reaches 12,650 Pa, which is
within the acceptable range, ensuring a balance between cooling performance and energy
consumption. Therefore, 0.8 LPM is determined to be the optimal VFR for the immersion
cooling system in this study and is proposed for application in subsequent experiments at
higher charge/discharge rates to further demonstrate the efficiency of the system.

3.3. Effectiveness of Thermal Management Under High C-Rate Charging Conditions

This section focuses on evaluating the thermal performance of the immersion cooling
battery module at high charging rates ranging from 1.5C to 3.0C. To control the Tmax and
∆T of the battery module within the optimal range, the experiments were conducted using
Therminol D-12 coolant oil, which was identified as optimal in the previous sections due to
its superior cooling performance, along with a VFR of 0.8 LPM. The choice of high charging
rates helps to evaluate the system’s ability to manage heat under harsh operating conditions
and confirms the effectiveness and practical applicability of the immersion cooling system.

The results in Figure 10 show that the immersion cooling system with Therminol
D-12 oil and an optimized VFR of 0.8 LPM maintained the Tmax of the battery module
within the control range even at high charging rates. Specifically, the Tmax values measured
were 32.7 ◦C, 35.1 ◦C, 37.0 ◦C, and 38.6 ◦C at charging rates of 1.5C, 2.0C, 2.5C, and 3.0C,
respectively. These values are all below the optimal temperature threshold for lithium-ion
batteries, ensuring thermal safety and minimizing the risk of performance degradation or
battery failure. The increase in temperature with the charging rate is inevitable due to the
larger current, but the immersion cooling system demonstrated effective thermal control,
ensuring that the maximum temperature did not exceed the dangerous threshold. This
confirms the important role of the immersion cooling system in ensuring stable battery
operation even under harsh charging conditions.
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In addition to Tmax control, the immersion cooling system also maintains the ∆T in the
battery module at an optimal level, ensuring temperature uniformity between battery cells.
The recorded ∆T values were 2.9 ◦C, 3.6 ◦C, 4.4 ◦C, and 4.3 ◦C at charging rates of 1.5C,
2.0C, 2.5C, and 3.0C, respectively. At the highest charging rate (3.0C), the ∆T decreased
slightly compared to 2.5C, demonstrating the ability of the immersion cooling system to
distribute heat evenly even under high thermal load conditions. This ability to control the
∆T not only increases battery life and performance but also minimizes the risk of thermal
imbalance between cells. This once again confirms the outstanding performance of the
immersion cooling system in this study, meeting the stringent requirements for thermal
management at high charging rates.

3.4. Effectiveness of Thermal Management Under High C-Rate Discharging Conditions

This section focuses on evaluating the effectiveness of an immersion cooling system for
5S7P battery modules operating at high discharge rates from 1.5C to 3.0C. The experiments
were conducted with Therminol D-12 coolant oil—which has been identified as optimal
due to its superior cooling performance—along with a VFR of 0.8 LPM, as proposed in
previous research sections. The objective is to control the Tmax and ∆T parameters of the
battery module within the ideal range to ensure the efficiency and safety of the battery
even when operating at high discharge conditions, which often generate large amounts of
heat and pose a risk of overheating.

The Therminol D-12 oil immersion cooling system and 0.8 LPM VFR demonstrated
the ability to maintain the Tmax of the battery module inside the near-optimal range at
high discharge rates, as shown in Figure 11. Specifically, the Tmax reached 33.8 ◦C, 36.8 ◦C,
39.8 ◦C, and 43.0 ◦C at discharge rates of 1.5C, 2.0C, 2.5C, and 3.0C, respectively. While the
Tmax from 1.5C to 2.5C was within the ideal range (below 40 ◦C), the temperature at 3.0C
(43.0 ◦C) was slightly above this range. However, this temperature level was still acceptable
and did not pose a serious risk of overheating. This result confirms the effectiveness of
the immersion cooling system in temperature control, helping to maintain stability and
safety for the battery even when operating at high discharge rates where rapid temperature
increases are inevitable.
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In addition to Tmax control, the immersion cooling system also ensures temperature
uniformity within the battery module, as demonstrated by a well-controlled ∆T. The ∆T
values were 3.0 ◦C, 3.6 ◦C, 4.7 ◦C, and 5.5 ◦C at 1.5C, 2.0C, 2.5C, and 3.0C discharge rates,
respectively. The ∆T from 1.5C to 2.5C is within the ideal range (below 5 ◦C), which helps
to maintain uniformity between the battery cells and minimize the possibility of thermal
imbalance. Although the ∆T at 3.0C (5.5 ◦C) slightly exceeds the optimum threshold, it is
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still within the acceptable range. The ability to effectively control the temperature difference
even at high discharge rates emphasizes the superiority of the immersion cooling system in
ensuring thermal safety and increasing the life and performance of lithium-ion batteries
when operating under harsh conditions.

4. Conclusions
This study focuses on the performance evaluation of an immersion cooling system for

a 5S7P battery module under various operating conditions, including different coolant oil
types, different volume flow rates, and high charging/discharging rates. The following
highlights the study’s primary findings:

(a) Therminol D-12 maintains the Tmax of the battery module at 31.1 ◦C, which increased
to 33.7 ◦C and 34.0 ◦C in the cases of Pitherm 150B and BOT 2100. Therminol D-12
achieved the highest HTC of 2171.93 W/m2·K and the lowest pressure drop of 8880 Pa
compared to other coolant oils. Hence, Therminol D-12 was determined to be the best
coolant oil for the immersion cooling system.

(b) Therminol D-12 at a 0.8 LPM volume flow rate achieved an HTC of 2445.73 W/m2·K
and maintained the Tmax and ∆T of the battery module within the optimal range. The
0.4 LPM flow rate resulted in low cooling performance, while the 1.0 LPM flow rate
resulted in a high pressure drop. Therefore, the 0.8 LPM flow rate was proposed as
the optimal volume flow rate to ensure a balance between cooling performance and
energy consumption.

(c) The immersion cooling system with Therminol D-12 could maintain Tmax values of
32.7 ◦C, 35.1 ◦C, 37.0 ◦C, and 38.6 ◦C and ∆T values of 2.9 ◦C, 3.6 ◦C, 4.4 ◦C, and 4.3
◦C for battery module charging under 1.5C, 2.0C, 2.5C, and 3.0C rates, respectively.
These values are all below the optimal temperature threshold, emphasizing the cooling
system’s effectiveness in thermal management and ensuring the thermal safety of the
battery module even at high charging rates.

(d) The Tmax values of 33.8 ◦C, 36.8 ◦C, 39.8 ◦C, and 43.0 ◦C and ∆T values of 3.0 ◦C,
3.6 ◦C, 4.7 ◦C, and 5.5 ◦C were observed for the battery module under discharging
rates of 1.5C, 2.0C, 2.5C, and 3.0C, respectively. Although the Tmax and ∆T at the
3.0C discharge rate were slightly above the optimal threshold (40 ◦C and 5 ◦C), they
were still within acceptable ranges, indicating that the immersion cooling system can
operate effectively even under high thermal loads.

This study demonstrated the superior performance of the immersion cooling system in
controlling the Tmax and ∆T of the battery module within a safe range even under extreme
operating conditions such as high charge/discharge values. With Therminol D-12 coolant
oil and a VFR of 0.8 LPM, the cooling system ensures optimal cooling performance, helping
to maintain the thermal safety and long-term performance of the LIBs. In the future, the
study can be extended to test the cooling performance of the system with different battery
module designs and more optimized immersion cooling configurations, as well as the
applicability under real-world environmental conditions.
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