Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review †
Abstract
:1. Introduction
- (i)
- The large surface area, strong heat resistance, electrical conductivity, and high structural integrity of carbon promotes the performance of LIBs [16].
- (ii)
- Carbon compounds are available in various structures and dimensions, including graphene, graphite, reduced graphene oxide (rGO), carbon nanofibers, and nanotubes each with its own set of physical and chemical characteristics, allowing for a wide range of options for stabilizing electrodes [17].
- (iii)
- Sources for Carbon materials are plentiful and inexpensive [17].
- (iv)
- The light weight and compatibility of carbon compounds ameliorate the electrode space utilization in LIBs [18].
2. Effects of Adding Carbon to LFP Cathodes
2.1. Carbon Sources
2.1.1. MOFs-Derived Carbon
2.1.2. Biomass and Organic-Derived Carbon
2.1.3. Polymer-Derived Carbon
2.2. Dimensions at Nanoscale
2.2.1. One Dimensional (1D) C-LFP
Effects of Synthesis, Particle Size, Diffusion Path and Bonding on 1D C-LFP
Effects of Fabrication Method, Additives, and Surfactant on 1D C/LFP
- (i)
- Mixing of carbon and LFP, post synthesis;
- (ii)
- Depositing or coating carbon structures over LFP via solution/vapor phase;
- (iii)
- In-situ co-formation of LFP carbon composite.
Effects of Surface Functionalization on 1D C-LFP
2.2.2. Two-Dimensional (2D) C-LFP
Effects of Fabrication Methods and Additives
Effects of Particle Size, Thickness, and Surface Functionalities
2.2.3. 3D Carbon LFP Composite
3. Effects of Electrolyte in Performance of C-LFP
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, N.; Allam, N.K. Recent Advances in the Design of Cathode Materials for Li-Ion Batteries. RSC Adv. 2020, 10, 21662–21685. [Google Scholar] [CrossRef] [PubMed]
- Chikkannanavar, S.B.; Bernardi, D.M.; Liu, L. A Review of Blended Cathode Materials for Use in Li-Ion Batteries. J. Power Source 2014, 248, 91–100. [Google Scholar] [CrossRef]
- Gong, Z.; Yang, Y. Recent Advances in the Research of Polyanion-Type Cathode Materials for Li-Ion Batteries. Energy Environ. Sci. 2011, 4, 3223–3242. [Google Scholar] [CrossRef]
- Lithium Iron Phosphate—The Ideal Chemistry for UPS Batteries. Available online: https://datacenterfrontier.com/lithium-iron-phosphate-ups-batteries/ (accessed on 15 July 2022).
- Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144, 1188–1194. [Google Scholar] [CrossRef]
- Manthiram, A.; Goodenough, J.B. Lithium Insertion into Fe2(MO4)3 Frameworks: Comparison of M = W with M = Mo. J. Solid State Chem. 1987, 71, 349–360. [Google Scholar] [CrossRef]
- Preger, Y.; Barkholtz, H.M.; Fresquez, A.; Campbell, D.L.; Juba, B.W.; Romàn-Kustas, J.; Ferreira, S.R.; Chalamala, B. Degradation of Commercial Lithium-Ion Cells as a Function of Chemistry and Cycling Conditions. J. Electrochem. Soc. 2020, 167, 120532. [Google Scholar] [CrossRef]
- [Battery+] Elon Musk Wants LFP Batteries for Tesla. Here’s Why Korean Battery Trio Shouldn’t Produce Them. Available online: https://www.koreaherald.com/view.php?ud=20211114000037&kr=1 (accessed on 15 July 2022).
- List of Elements of the Periodic Table—Sorted by Abundance in Earth’s Crust. Available online: https://www.science.co.il/elements/?s=Earth (accessed on 30 August 2022).
- Lu, J.; Tian, X.; Zhou, Y.; Zhu, Y.; Tang, Z.; Ma, B.; Wu, G.; Jiang, T.; Tu, X.; Chen, G.Z. A Novel “Holey-LFP/Graphene/Holey-LFP” Sandwich Nanostructure with Significantly Improved Rate Capability for Lithium Storage. Electrochim. Acta 2019, 320, 134566. [Google Scholar] [CrossRef]
- Ramasubramanian, B.; Reddy, M.V.; Zaghib, K.; Armand, M.; Ramakrishna, S. Growth Mechanism of Micro/Nano Metal Dendrites and Cumulative Strategies for Countering Its Impacts in Metal Ion Batteries: A Review. Nanomaterials 2021, 11, 2476. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Q.; Guo, S. Composites of Graphene and LiFePO4 as Cathode Materials for Lithium-Ion Battery: A Mini-Review. Nanomicro Lett. 2014, 6, 316–326. [Google Scholar] [CrossRef]
- Balo, L.; Gupta, H.; Singh, S.K.; Singh, V.K.; Tripathi, A.K.; Srivastava, N.; Tiwari, R.K.; Mishra, R.; Meghnani, D.; Singh, R.K. Development of Gel Polymer Electrolyte Based on LiTFSI and EMIMFSI for Application in Rechargeable Lithium Metal Battery with GO-LFP and NCA Cathodes. J. Solid State Electrochem. 2019, 23, 2507–2518. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, W.; Yang, Z. A Review on Cathode Materials for Advanced Lithium Ion Batteries: Microstructure Designs and Performance Regulations. Nanotechnology 2019, 31, 012001. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.K.; Brindha, R.; Nandhini, M.; Selvam, M.; Saminathan, K.; Sakthipandi, K. Water-Suspended Graphene as Electrolyte Additive in Zinc-Air Alkaline Battery System. Ionics 2019, 25, 1699–1706. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, X.J.; Sun, Y.G.; Xu, Y.S.; Chang, B.B.; Liu, C.T.; Cao, A.M.; Wan, L.J. Precise Surface Engineering of Cathode Materials for Improved Stability of Lithium-Ion Batteries. Small 2019, 15, 1901019. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.J.; Alaboina, P.K.; Cho, S.J. Nanostructured Cathode Materials Synthesis for Lithium-Ion Batteries. Mater. Today Energy 2017, 5, 138–157. [Google Scholar] [CrossRef]
- Lan, G.; Yang, J.; Ye, R.P.; Boyjoo, Y.; Liang, J.; Liu, X.; Li, Y.; Liu, J.; Qian, K. Sustainable Carbon Materials toward Emerging Applications. Small Methods 2021, 5, 2001250. [Google Scholar] [CrossRef]
- Fischer, M.G.; Hua, X.; Wilts, B.D.; Castillo-Martínez, E.; Steiner, U. Polymer-Templated LiFePO4/C Nanonetworks as High-Performance Cathode Materials for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 1646–1653. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.; Chen, C.; Pastel, G.; Li, Y.; Song, J.; Mi, R.; Kong, W.; Liu, B.; Jiang, Y.; Yang, K.; et al. Conductive Cellulose Nanofiber Enabled Thick Electrode for Compact and Flexible Energy Storage Devices. Adv. Energy Mater. 2018, 8, 1802398. [Google Scholar] [CrossRef]
- Mauger, A.; Julien, C.M.; Goodenough, J.B.; Zaghib, K. Tribute to Michel Armand: From Rocking Chair—Li-Ion to Solid-State Lithium Batteries. J. Electrochem. Soc. 2020, 167, 070507. [Google Scholar] [CrossRef]
- Ren, J.; Huang, Y.; Zhu, H.; Zhang, B.; Zhu, H.; Shen, S.; Tan, G.; Wu, F.; He, H.; Lan, S.; et al. Recent Progress on MOF-Derived Carbon Materials for Energy Storage. Carbon Energy 2020, 2, 176–202. [Google Scholar] [CrossRef]
- Lin, J.; Sun, Y.H.; Lin, X. Metal-Organic Framework-Derived LiFePO4 Cathode Encapsulated in O,F-Codoped Carbon Matrix towards Superior Lithium Storage. Nano Energy 2022, 91, 106655. [Google Scholar] [CrossRef]
- Song, H.; Shen, L.; Wang, J.; Wang, C. Reversible Lithiation–Delithiation Chemistry in Cobalt Based Metal Organic Framework Nanowire Electrode Engineering for Advanced Lithium-Ion Batteries. J. Mater. Chem. A Mater. 2016, 4, 15411–15419. [Google Scholar] [CrossRef]
- Xu, X.L.; Qi, C.Y.; Hao, Z.D.; Wang, H.; Jiu, J.T.; Liu, J.B.; Yan, H.; Suganuma, K. The Surface Coating of Commercial LiFePO4 by Utilizing ZIF-8 for High Electrochemical Performance Lithium Ion Battery. Nanomicro Lett. 2018, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Sim, G.S.; Nanthagopal, M.; Santhoshkumar, P.; Park, J.W.; Ho, C.W.; Shaji, N.; Kim, H.K.; Lee, C.W. Biomass-Derived Nitrogen-Doped Carbon on LiFePO4 Material for Energy Storage Applications. J. Alloys Compd. 2022, 902, 163720. [Google Scholar] [CrossRef]
- Suarso, E.; Setyawan, F.A.; Subhan, A.; Ramli, M.M.; Ismail, N.S.; Zainuri, M.; Arifin, Z. Darminto Enhancement of LiFePO4 (LFP) Electrochemical Performance through the Insertion of Coconut Shell-Derived RGO-like Carbon as Cathode of Li-Ion Battery. J. Mater. Sci. Mater. Electron. 2021, 32, 28297–28306. [Google Scholar] [CrossRef]
- Ding, Z.; Zhao, L.; Suo, L.; Jiao, Y.; Meng, S.; Hu, Y.S.; Wang, Z.; Chen, L. Towards Understanding the Effects of Carbon and Nitrogen-Doped Carbon Coating on the Electrochemical Performance of Li4Ti5O12 in Lithium Ion Batteries: A Combined Experimental and Theoretical Study. Phys. Chem. Chem. Phys. 2011, 13, 15127–15133. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Bae, G.H.; Lee, S.M.; Ahn, J.H.; Kim, J.K. Properties of Lithium Iron Phosphate Prepared by Biomass-Derived Carbon Coating for Flexible Lithium Ion Batteries. Electrochim. Acta 2019, 300, 18–25. [Google Scholar] [CrossRef]
- Jin, X.; Sheng, L.; Jiang, L.; Xiao, Z.; Wang, D.; Jiang, M.; Lin, X.; Zhang, X.; Duan, X.; Shi, J. Manganese Sulfate-Derived α/γ-MnS Embedded in N-Doped Layered Carbon for High-Performance Lithium-Ion Batteries. Mater. Today Chem. 2022, 24, 100992. [Google Scholar] [CrossRef]
- Gangaraju, V.; Shastri, M.; Shetty, K.; Marilingaiah, N.R.; Anantharaju, K.S.; Doddakunche Shivaramu, P.; Rangappa, D. In-Situ Preparation of Silk-Cocoon Derived Carbon and LiFePO4 Nanocomposite as Cathode Material for Li-Ion Battery. Ceram. Int. 2022, in press. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, Y.; Meng, Y.; Wang, Y.; Ou, J.; Guo, Y.; Xiao, D. Phytic Acid Derived LiFePO4 beyond Theoretical Capacity as High-Energy Density Cathode for Lithium Ion Battery. Nano Energy 2017, 34, 408–420. [Google Scholar] [CrossRef]
- Jayaraman, S.; Madhavi, S.; Aravindan, V. High Energy Li-Ion Capacitor and Battery Using Graphitic Carbon Spheres as an Insertion Host from Cooking Oil. J. Mater. Chem. A Mater. 2018, 6, 3242–3248. [Google Scholar] [CrossRef]
- Nien, Y.H.; Carey, J.R.; Chen, J.S. Physical and Electrochemical Properties of LiFePO4/C Composite Cathode Prepared from Various Polymer-Containing Precursors. J. Power Source 2009, 193, 822–827. [Google Scholar] [CrossRef]
- Shih, J.Y.; Lin, G.Y.; Li, Y.J.J.; Hung, T.F.; Jose, R.; Karuppiah, C.; Yang, C.C. Operando Investigation on the Fast Two-Phase Transition Kinetics of LiFePO4/C Composite Cathodes with Carbon Additives for Lithium-Ion Batteries. Electrochim. Acta 2022, 419, 140356. [Google Scholar] [CrossRef]
- Kolel-Veetil, M.K.; Dominguez, D.D.; Klug, C.A.; Fears, K.P.; Qadri, S.B.; Fragiadakis, D.; Keller, T.M. Hybrid Inorganic-Organic Poly(Carborane-Siloxane-Arylacetylene) Structural Isomers with In-Chain Aromatics: Synthesis and Properties. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 2638–2650. [Google Scholar] [CrossRef]
- Iarchuk, A.R.; Nikitina, V.A.; Karpushkin, E.A.; Sergeyev, V.G.; Antipov, E.V.; Stevenson, K.J.; Abakumov, A.M. Influence of Carbon Coating on Intercalation Kinetics and Transport Properties of LiFePO4. ChemElectroChem 2019, 6, 5090–5100. [Google Scholar] [CrossRef]
- Bezerra, C.A.G.; Davoglio, R.A.; Biaggio, S.R.; Bocchi, N.; Rocha-Filho, R.C. High-Purity LiFePO4 Prepared by a Rapid One-Step Microwave-Assisted Hydrothermal Synthesis. J. Mater. Sci. 2021, 56, 10018–10029. [Google Scholar] [CrossRef]
- Kanagaraj, A.B.; al Shibli, H.; Alkindi, T.S.; Susantyoko, R.A.; An, B.H.; AlMheiri, S.; AlDahmani, S.; Fadaq, H.; Choi, D.S. Hydrothermal Synthesis of LiFePO4 Micro-Particles for Fabrication of Cathode Materials Based on LiFePO4/Carbon Nanotubes Nanocomposites for Li-Ion Batteries. Ionics 2018, 24, 3685–3690. [Google Scholar] [CrossRef]
- Saravanan, K.; Reddy, M.V.; Balaya, P.; Gong, H.; Chowdari, B.V.R.; Vittal, J.J. Storage Performance of LiFePO4 Nanoplates. J. Mater. Chem. 2009, 19, 605–610. [Google Scholar] [CrossRef]
- Rao, R.P.; Reddy, M.v.; Adams, S.; Chowdari, B.V.R. Preparation, Temperature Dependent Structural, Molecular Dynamics Simulations Studies and Electrochemical Properties of LiFePO4. Mater. Res. Bull. 2015, 66, 71–75. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Wang, J.; Banis, M.N.; Xiao, B.; Lushington, A.; Xiao, W.; Li, R.; Sham, T.K.; Liang, G.; et al. Formation of Size-Dependent and Conductive Phase on Lithium Iron Phosphate during Carbon Coating. Nat. Commun. 2018, 9, 929. [Google Scholar] [CrossRef]
- Huynh, L.T.N.; Tran, T.T.D.; Nguyen, H.H.A.; Nguyen, T.T.T.; Tran, V.M.; Grag, A.; Le, M.L.P. Carbon-Coated LiFePO4–Carbon Nanotube Electrodes for High-Rate Li-Ion Battery. J. Solid State Electrochem. 2018, 22, 2247–2254. [Google Scholar] [CrossRef]
- Lu, M.; Yu, F.; Hu, Y.; Zaghib, K.; Schougaard, S.B.; Wang, Z.; Zhou, J.; Wang, J.; Goodenough, J.; Sham, T.K. Correlative Imaging of Ionic Transport and Electronic Structure in Nano Li0.5FePO4 Electrodes. Chem. Commun. 2020, 56, 984–987. [Google Scholar] [CrossRef] [PubMed]
- Ventrapragada, L.K.; Creager, S.E.; Rao, A.M.; Podila, R. Carbon Nanotubes Coated Paper as Current Collectors for Secondary Li-Ion Batteries. Nanotechnol. Rev. 2019, 8, 18–23. [Google Scholar] [CrossRef]
- Zhang, M.; Ning, G.; Xiao, Z. Binder-Assisted Dispersion of Agglomerated Carbon Nanotubes for Efficiently Establishing Conductive Networks in Cathodes of Li-Ion Batteries. Energy Technol. 2020, 8, 2000589. [Google Scholar] [CrossRef]
- Fongy, C.; Jouanneau, S.; Guyomard, D.; Lestriez, B. Carbon Nanofibers Improve Both the Electronic and Ionic Contributions of the Electrochemical Performance of Composite Electrodes. J. Power Source 2011, 196, 8494–8499. [Google Scholar] [CrossRef]
- Adepoju, A.A.; Williams, Q.L. High C-Rate Performance of LiFePO4/Carbon Nanofibers Composite Cathode for Li-Ion Batteries. Curr. Appl. Phys. 2020, 20, 1–4. [Google Scholar] [CrossRef]
- Hagberg, J.; Maples, H.A.; Alvim, K.S.P.; Xu, J.; Johannisson, W.; Bismarck, A.; Zenkert, D.; Lindbergh, G. Lithium Iron Phosphate Coated Carbon Fiber Electrodes for Structural Lithium Ion Batteries. Compos. Sci. Technol. 2018, 162, 235–243. [Google Scholar] [CrossRef]
- Cao, Z.; Sang, M.; Chen, S.; Jia, J.; Yang, M.; Zhang, H.; Li, X.; Yang, S. In Situ Constructed (010)-Oriented LiFePO4 Nanocrystals/Carbon Nanofiber Hybrid Network: Facile Synthesis of Free-Standing Cathodes for Lithium-Ion Batteries. Electrochim. Acta 2020, 333, 135538. [Google Scholar] [CrossRef]
- Wu, R.; Xia, G.; Shen, S.; Zhu, F.; Jiang, F.; Zhang, J. In-Situ Growth of LiFePO4 Nanocrystals on Interconnected Carbon Nanotubes/Mesoporous Carbon Nanosheets for High-Performance Lithium Ion Batteries. Electrochim. Acta 2015, 153, 334–342. [Google Scholar] [CrossRef]
- Qiu, L.; Zou, H.; Wang, X.; Feng, Y.; Zhang, X.; Zhao, J.; Zhang, X.; Li, Q. Enhancing the Interfacial Interaction of Carbon Nanotubes Fibers by Au Nanoparticles with Improved Performance of the Electrical and Thermal Conductivity. Carbon 2019, 141, 497–505. [Google Scholar] [CrossRef]
- Gong, C.; Xue, Z.; Wen, S.; Ye, Y.; Xie, X. Advanced Carbon Materials/Olivine LiFePO4 Composites Cathode for Lithium Ion Batteries. J. Power Source 2016, 318, 93–112. [Google Scholar] [CrossRef]
- Tsai, H.L.; Hsieh, C.; Li, J.; Gandomi, Y.A. Enabling High Rate Charge and Discharge Capability, Low Internal Resistance, and Excellent Cycleability for Li-Ion Batteries Utilizing Graphene Additives. Electrochim. Acta 2018, 273, 200–207. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Z.S.; Chen, J.J.; Zhang, C. Synthesis and Electrochemical Performance of LiFePO4/Graphene Composites by Solid-State Reaction. Mater. Lett. 2012, 71, 54–56. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Wang, D.; Li, X.; Geng, D.; Liang, G.; Gauthier, M.; Li, R.; Sun, X. 3D Porous LiFePO4/Graphene Hybrid Cathodes with Enhanced Performance for Li-Ion Batteries. J. Power Source 2012, 208, 340–344. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Kim, S.W.; Park, K.Y.; Kim, J.; Jeon, S.; Kang, K. Nano-Graphite Platelet Loaded with LiFePO4 Nanoparticles Used as the Cathode in a High Performance Li-Ion Battery. Carbon 2012, 50, 1966–1971. [Google Scholar] [CrossRef]
- de la Torre-Gamarra, C.; Sotomayor, M.E.; Sanchez, J.Y.; Levenfeld, B.; Várez, A.; Laïk, B.; Pereira-Ramos, J.P. High Mass Loading Additive-Free LiFePO4 Cathodes with 500 Μm Thickness for High Areal Capacity Li-Ion Batteries. J. Power Source 2020, 458, 228033. [Google Scholar] [CrossRef]
- Cao, Z.; Zhu, G.; Zhang, R.; Chen, S.; Sang, M.; Jia, J.; Yang, M.; Li, X.; Yang, S. Biological Phytic Acid Guided Formation of Monodisperse Large-Sized Carbon@LiFePO4/Graphene Composite Microspheres for High-Performance Lithium-Ion Battery Cathodes. Chem. Eng. J. 2018, 351, 382–390. [Google Scholar] [CrossRef]
- Bao, L.; Xu, G.; Wang, M. Controllable Synthesis and Morphology Evolution of Hierarchical LiFePO4 Cathode Materials for Li-Ion Batteries. Mater. Charact. 2019, 157, 109927. [Google Scholar] [CrossRef]
- Kashi, R.; Khosravi, M.; Mollazadeh, M. Effect of Carbon Precursor on Electrochemical Performance of LiFePO4-C Nano Composite Synthesized by Ultrasonic Spray Pyrolysis as Cathode Active Material for Li Ion Battery. Mater. Chem. Phys. 2018, 203, 319–332. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Tang, Y.; Wang, D.; Li, X.; Hu, Y.; Li, R.; Liang, G.; Sham, T.K.; Sun, X. LiFePO4—Graphene as a Superior Cathode Material for Rechargeable Lithium Batteries: Impact of Stacked Graphene and Unfolded Graphene. Energy Environ. Sci. 2013, 6, 1521–1528. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A.; Thommes, M.; et al. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332, 1537–1541. [Google Scholar] [CrossRef] [Green Version]
- Ha, J.; Park, S.K.; Yu, S.H.; Jin, A.; Jang, B.; Bong, S.; Kim, I.; Sung, Y.E.; Piao, Y. A Chemically Activated Graphene-Encapsulated LiFePO4 Composite for High-Performance Lithium Ion Batteries. Nanoscale 2013, 5, 8647–8655. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Y.; Boyle, D.T.; Jeong, Y.K.; Xu, R.; de Vasconcelos, L.S.; Huang, Z.; Wang, H.; Wang, H.; Huang, W.; et al. Free-Standing Ultrathin Lithium Metal–Graphene Oxide Host Foils with Controllable Thickness for Lithium Batteries. Nat. Energy 2021, 6, 790–798. [Google Scholar] [CrossRef]
- Yang, W.W.; Liu, J.G.; Zhang, X.; Chen, L.; Zhou, Y.; Zou, Z.G. Ultrathin LiFePO4 Nanosheets Self-Assembled with Reduced Graphene Oxide Applied in High Rate Lithium Ion Batteries for Energy Storage. Appl. Energy 2017, 195, 1079–1085. [Google Scholar] [CrossRef]
- Weng, S.; Huo, T.; Liu, K.; Zhang, J.; Li, W. In-Situ Polymerization of Hydroquinone-Formaldehyde Resin to Construct 3D Porous Composite LiFePO4/Carbon for Remarkable Performance of Lithium-Ion Batteries. J. Alloys Compd. 2020, 818, 152858. [Google Scholar] [CrossRef]
- Stenina, I.; Minakova, P.; Kulova, T.; Yaroslavtsev, A. Electrochemical Properties of LiFePO4 Cathodes: The Effect of Carbon Additives. Batteries 2022, 8, 111. [Google Scholar] [CrossRef]
- Xing, Y.; He, Y.B.; Li, B.; Chu, X.; Chen, H.; Ma, J.; Du, H.; Kang, F. LiFePO4/C Composite with 3D Carbon Conductive Network for Rechargeable Lithium Ion Batteries. Electrochim. Acta 2013, 109, 512–518. [Google Scholar] [CrossRef]
- Bai, N.; Xiang, K.; Zhou, W.; Lu, H.; Zhao, X.; Chen, H. LiFePO4/Carbon Nanowires with 3D Nano-Network Structure as Potential High Performance Cathode for Lithium Ion Batteries. Electrochim. Acta 2016, 191, 23–28. [Google Scholar] [CrossRef]
- Dimesso, L.; Spanheimer, C.; Jaegermann, W.; Zhang, Y.; Yarin, A.L. LiFePO4—3D Carbon Nanofiber Composites as Cathode Materials for Li-Ions Batteries. J. Appl. Phys. 2012, 111, 064307. [Google Scholar] [CrossRef]
- He, L.; Zha, W.; Chen, D. Fabrication and Electrochemical Properties of 3D Nano-Network LiFePO4@multiwalled Carbon Nanotube Composite Using Risedronic Acid as the Phosphorus Source. Prog. Nat. Sci. Mater. Int. 2019, 29, 156–162. [Google Scholar] [CrossRef]
- Chen, S.; Tang, Q.; Chen, X.; Tan, L. Nitrogen-Doped Carbon Coated LiFePO4/Carbon Nanotube Interconnected Nanocomposites for High Performance Lithium Ion Batteries. New J. Chem. 2015, 39, 9782–9788. [Google Scholar] [CrossRef]
- Cao, J.; Liu, R.; Guo, H.; Tian, S.; Zhang, K.; Ren, X.; Wang, Y.; Liang, G. High-Temperature Solid-Phase Synthesis of Lithium Iron Phosphate Using Polyethylene Glycol Grafted Carbon Nanotubes as the Carbon Source for Rate-Type Lithium-Ion Batteries. J. Electroanal. Chem. 2022, 907, 116049. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, S.Z.; Jin, J.; Liu, J.; Li, Y.; Wang, H.E.; Chen, L.H.; Wang, B.J.; Su, B.L. Engineering 3D Bicontinuous Hierarchically Macro-Mesoporous LiFePO4/C Nanocomposite for Lithium Storage with High Rate Capability and Long Cycle Stability. Sci. Rep. 2016, 6, 25942. [Google Scholar] [CrossRef] [PubMed]
- Saikia, D.; Deka, J.R.; Chou, C.J.; Lin, C.H.; Yang, Y.C.; Kao, H.M. Encapsulation of LiFePO4 Nanoparticles into 3D Interpenetrating Ordered Mesoporous Carbon as a High-Performance Cathode for Lithium-Ion Batteries Exceeding Theoretical Capacity. ACS Appl. Energy Mater. 2019, 2, 1121–1133. [Google Scholar] [CrossRef]
- Ha, S.H.; Lee, Y.J. Core–Shell LiFePO4/Carbon-Coated Reduced Graphene Oxide Hybrids for High-Power Lithium-Ion Battery Cathodes. Chemistry 2015, 21, 2132–2138. [Google Scholar] [CrossRef]
- Kuk, Y.; Hwang, J.; Nam, D.; Kim, J. Facile Synthesis of High-Performance LiFePO4-Reduced Graphene Oxide Composites Using Ball Milling. Ionics 2020, 26, 2803–2812. [Google Scholar] [CrossRef]
- Fu, Y.; Wei, Q.; Zhang, G.; Zhong, Y.; Moghimian, N.; Tong, X.; Sun, S. LiFePO4-Graphene Composites as High-Performance Cathodes for Lithium-Ion Batteries: The Impact of Size and Morphology of Graphene. Materials 2019, 12, 842. [Google Scholar] [CrossRef]
- Zhang, K.; Lee, J.T.; Li, P.; Kang, B.; Kim, J.H.; Yi, G.R.; Park, J.H. Conformal Coating Strategy Comprising N-Doped Carbon and Conventional Graphene for Achieving Ultrahigh Power and Cyclability of LiFePO4. Nano Lett. 2015, 15, 6756–6763. [Google Scholar] [CrossRef]
- Li, C.; Yuan, H.; Yang, Z. Enhanced Electrochemical Performance of Boron-Doped Graphene-Decorated LiFePO4@C Cathode Material for Lithium-Ion Batteries. Solid State Ion. 2020, 352, 115366. [Google Scholar] [CrossRef]
- Rousselot, S.; Antitomaso, P.; Savignac, L.; Généreux, S.; Taylor, L.W.; Bibienne, T.; Pasquali, M.; Schougaard, S.B.; Dollé, M. PEDOT Assisted CNT Self-Supported Electrodes for High Energy and Power Density. Electrochim. Acta 2020, 349, 136418. [Google Scholar] [CrossRef]
- Xu, J.; Chen, G.; Li, X. Electrochemical Performance of LiFePO4 Cathode Material Coated with Multi-Wall Carbon Nanotubes. Mater. Chem. Phys. 2009, 118, 9–11. [Google Scholar] [CrossRef]
- Wu, S.X.; Chiang, C.L.; Wang, C.C.; Chen, C.Y. Functionalization of MWCNTs by Plasma Treatment and Use as Conductive Additives for LiFePO4 Electrode. J. Taiwan Inst. Chem. Eng. 2018, 89, 208–214. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, L. Outstanding Li-Storage Performance of LiFePO4@MWCNTs Cathode Material with 3D Network Structure for Lithium-Ion Batteries. J. Phys. Chem. Solids 2018, 116, 216–221. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Zhang, H.; Liang, F.; Yao, Y.; Zhang, K. Freeze Drying under Vacuum Assisted Synthesis of LiFePO4@MWCNTs Composite with Phytic Acid as Phosphorus Source for Advanced Li-Storage. Vacuum 2021, 193, 110541. [Google Scholar] [CrossRef]
- Susantyoko, R.A.; Alkindi, T.S.; Kanagaraj, A.B.; An, B.; Alshibli, H.; Choi, D.; Aldahmani, S.; Fadaq, H.; Almheiri, S. Performance Optimization of Freestanding MWCNT-LiFePO4 Sheets as Cathodes for Improved Specific Capacity of Lithium-Ion Batteries. RSC Adv. 2018, 8, 16566–16573. [Google Scholar] [CrossRef] [PubMed]
- Kanagaraj, A.B.; Chaturvedi, P.; Kim, H.J.; Choi, D.S. Controllable Synthesis of LiFePO4 Microrods and Its Superior Electrochemical Performance. Mater. Lett. 2021, 283, 128737. [Google Scholar] [CrossRef]
- Qiao, Y.Q.; Feng, W.L.; Li, J.; Shen, T. de Ultralong Cycling Stability of Carbon-Nanotube/LiFePO4 Nanocomposites as Electrode Materials for Lithium-Ion Batteries. Electrochim. Acta 2017, 232, 323–331. [Google Scholar] [CrossRef]
- Kim, J.K.; Jeong, S.M. Physico-Electrochemical Properties of Carbon Coated LiFePO4 Nanoparticles Prepared by Different Preparation Method. Appl. Surf. Sci. 2020, 505, 144630. [Google Scholar] [CrossRef]
- Swain, P.; Viji, M.; Mocherla, P.S.V.; Sudakar, C. Carbon Coating on the Current Collector and LiFePO4 Nanoparticles—Influence of Sp2 and Sp3-like Disordered Carbon on the Electrochemical Properties. J. Power Source 2015, 293, 613–625. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Z.; Huang, J.; Deng, W.; Li, X.; Zhang, H.; Wen, Z. Graphene-Decorated Carbon-Coated LiFePO4 Nanospheres as a High-Performance Cathode Material for Lithium-Ion Batteries. Carbon 2018, 127, 149–157. [Google Scholar] [CrossRef]
- Jiang, G.; Hu, Z.; Xiong, J.; Zhu, X.; Yuan, S. Enhanced Performance of LiFePO4 Originating from the Synergistic Effect of Graphene Modification and Carbon Coating. J. Alloys Compd. 2018, 767, 528–537. [Google Scholar] [CrossRef]
- Li, L.; Tan, H.; Yuan, X.; Ma, H.; Ma, Z.; Zhao, Y.; Zhao, J.; Wang, X.; Chen, D.; Dong, Y. Direct Ink Writing Preparation of LiFePO4/MWCNTs Electrodes with High-Areal Li-Ion Capacity. Ceram. Int. 2021, 47, 21161–21166. [Google Scholar] [CrossRef]
- Duan, W.; Zhao, M.; Mizuta, Y.; Li, Y.; Xu, T.; Wang, F.; Moriga, T.; Song, X. Superior Electrochemical Performance of a Novel LiFePO4/C/CNTs Composite for Aqueous Rechargeable Lithium-Ion Batteries. Phys. Chem. Chem. Phys. 2020, 22, 1953–1962. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Ma, Z.; Shao, G.; Kong, L.; Gao, W. Synthesis of LiFePO4@carbon Nanotube Core–Shell Nanowires with a High-Energy Efficient Method for Superior Lithium Ion Battery Cathodes. J. Power Source 2015, 291, 209–214. [Google Scholar] [CrossRef]
- Tian, R.; Liu, H.; Jiang, Y.; Chen, J.; Tan, X.; Liu, G.; Zhang, L.; Gu, X.; Guo, Y.; Wang, H.; et al. Drastically Enhanced High-Rate Performance of Carbon-Coated LiFePO4 Nanorods Using a Green Chemical Vapor Deposition (CVD) Method for Lithium Ion Battery: A Selective Carbon Coating Process. ACS Appl. Mater. Interfaces 2015, 7, 11377–11386. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gu, Y.J.; Kong, W.L.; Liu, H.Q.; Chen, Y.B.; Liu, W. Effect of Carbon Coating on the Crystal Orientation and Electrochemical Performance of Nanocrystalline LiFePO4. Solid State Ion. 2018, 327, 11–17. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, B.; Shen, Q.; Jiang, Z.J. In-Situ Plasma Assisted Formation of Graphitic Nanosheet Supported N-Doped Carbon-Coated Antisite Defectless LiFePO4 as a High-Performance Cathode Material for Lithium-Ion Batteries. J. Alloys Compd. 2019, 806, 864–873. [Google Scholar] [CrossRef]
- Huynh, L.T.N.; Nguyen, H.H.A.; Tran, T.T.D.; Nguyen, T.T.T.; Nguyen, T.M.A.; La, T.H.; Tran, V.M.; Le, L.P. Electrode Composite LiFePO4@carbon: Structure and Electrochemical Performances. J. Nanomater. 2019, 2019, 2464920. [Google Scholar] [CrossRef]
- Patil, V.; Oh, W.; Yoo, J.W.; Pu, L.; Park, J.H.; Yoon, W.S.; Yi, G.R. Carbon-Coated Supraballs of Randomly Packed LiFePO4 Nanoplates for High Rate and Stable Cycling of Li-Ion Batteries. Part. Part. Syst. Charact. 2019, 36, 1900149. [Google Scholar] [CrossRef]
- Pratheeksha, P.M.; Rajeshwari, J.S.; Daniel, P.J.; Rao, T.N.; Anandan, S. Investigation of In-Situ Carbon Coated LiFePO 4 as a Superior Cathode Material for Lithium Ion Batteries. J. Nanosci. Nanotechnol. 2018, 19, 3002–3011. [Google Scholar] [CrossRef]
- Huang, X.; Du, Y.; Qu, P.; Liang, F.; Dai, Y.; Yao, Y. Effect of Carbon Coating on the Properties and Electrochemical Performance of LiFePO4/C Composites by Vacuum Decomposition Method. Int. J. Electrochem. Sci. 2017, 12, 7183–7196. [Google Scholar] [CrossRef]
- Xu, X.L.; Hao, Z.D.; Wang, H.; Xie, Y.; Liu, J.B.; Yan, H. A Facile Synthetic Route of Nitrogen-Doped Graphite Derived from Chitosan for Modifying LiFePO4 Cathode. J. Mater. Sci. Mater. Electron. 2018, 29, 16630–16638. [Google Scholar] [CrossRef]
- Xin, Y.-M.; Xu, H.-Y.; Ruan, J.-H.; Li, D.-C.; Wang, A.-G.; Sun, D.-S. A Review on Application of LiFePO4 Based Composites as Electrode Materials for Lithium Ion Batteries. Int. J. Electrochem. Sci. 2021, 16, 210655. [Google Scholar] [CrossRef]
- Ma, Z.; Fan, Y.; Shao, G.; Wang, G.; Song, J.; Liu, T. In Situ Catalytic Synthesis of High-Graphitized Carbon-Coated LiFePO4 Nanoplates for Superior Li-Ion Battery Cathodes. ACS Appl. Mater. Interfaces 2015, 7, 2937–2943. [Google Scholar] [CrossRef]
- Téliz, E.; Martínez, M.; Faccio, R.; Pignanelli, F.; Zinola, F.; Díaz, V. Electrochemical Response of Carbon Doped LiFePO4 Olivine Nanoparticles: Cobalt Doping and Temperature Calcination Effects. J. Electroanal. Chem. 2020, 878, 114581. [Google Scholar] [CrossRef]
- Triwibowo, J.; Priyono, S.; Purawiardi, I.; Lestariningsih, T.; Ratri, C.R. Study on Electrochemical Performance of Carbon-Coated LiFePO4 as Cathode Material for Lithium Ion Batteries. AIP Conf. Proc. 2016, 1755, 150009. [Google Scholar] [CrossRef]
- Mo, Y.; Liu, J.; Meng, C.; Xiao, M.; Ren, S.; Sun, L.; Wang, S.; Meng, Y. Stable and Ultrafast Lithium Storage for LiFePO4/C Nanocomposites Enabled by Instantaneously Carbonized Acetylenic Carbon-Rich Polymer. Carbon 2019, 147, 19–26. [Google Scholar] [CrossRef]
- Zhou, Y.; Gu, C.D.; Zhou, J.P.; Cheng, L.J.; Liu, W.L.; Qiao, Y.Q.; Wang, X.L.; Tu, J.P. Effect of Carbon Coating on Low Temperature Electrochemical Performance of LiFePO4/C by Using Polystyrene Sphere as Carbon Source. Electrochim. Acta 2011, 56, 5054–5059. [Google Scholar] [CrossRef]
- Sun, J.; Li, Z.; Ren, X.; Wang, L.; Liang, G. High Volumetric Energy Density of LiFePO4/C Microspheres Based on Xylitol-Polyvinyl Alcohol Complex Carbon Sources. J. Alloys Compd. 2019, 773, 788–795. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Z.; Hou, X.; Liu, L.; He, M.; He, X.; Huang, J.; Wen, Z. Fluorine Doped Carbon Coating of LiFePO4 as a Cathode Material for Lithium-Ion Batteries. Chem. Eng. J. 2020, 379, 122371. [Google Scholar] [CrossRef]
- Bao, J.J.; Zou, B.K.; Cheng, Q.; Huang, Y.P.; Wu, F.; Xu, G.W.; Chen, C.H. Flexible and Free-Standing LiFePO4/TPU/SP Cathode Membrane Prepared via Phase Separation Process for Lithium Ion Batteries. J. Memb. Sci. 2017, 541, 633–640. [Google Scholar] [CrossRef]
- Dhaybi, S.; Marsan, B.; Hammami, A. A Novel Low-Cost and Simple Colloidal Route for Preparing High-Performance Carbon-Coated LiFePO4 for Lithium Batteries. J. Energy Storage 2018, 18, 259–265. [Google Scholar] [CrossRef]
- Meng, Y.; Han, W.; Zhang, Z.; Zhu, F.; Zhang, Y.; Wang, D. LiFePO4 Particles Coated with N-Doped Carbon Membrane. J. Nanosci. Nanotechnol. 2017, 17, 2000–2005. [Google Scholar] [CrossRef]
- Li, W.; Hwang, J.; Chang, W.; Setiadi, H.; Chung, K.Y.; Kim, J. Ultrathin and Uniform Carbon-Layer-Coated Hierarchically Porous LiFePO4 Microspheres and Their Electrochemical Performance. J. Supercrit. Fluids 2016, 116, 164–171. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, Z.; Han, W.; Zhang, Y.; Zhu, F.; Wang, D. Synthesis of Carbon-Coated LiFePO4 Cathode Material by One-Step Microwave-Assisted Pyrolysis of Ionic Liquid Process. Nano 2016, 11, 1650004. [Google Scholar] [CrossRef]
- Xia, J.; Zhu, F.; Wang, G.; Wang, L.; Meng, Y.; Zhang, Y. Synthesis of LiFePO4/C Using Ionic Liquid as Carbon Source for Lithium Ion Batteries. Solid State Ion. 2017, 308, 133–138. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, G.; Li, Z.; Sheng, W.; Zhang, Y.; Gu, J.; Zheng, X.; Cao, F. Improved Electrochemical Performance of LiFePO4@N-Doped Carbon Nanocomposites Using Polybenzoxazine as Nitrogen and Carbon Sources. ACS Appl. Mater. Interfaces 2016, 8, 26908–26915. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Jiang, A.; Liu, G.; Yu, W.; Dong, X.; Wang, J. A Versatile Nitrogen-Doped Carbon Coating Strategy to Improve the Electrochemical Performance of LiFePO4 Cathodes for Lithium-Ion Batteries. J. Alloys Compd. 2019, 810, 151889. [Google Scholar] [CrossRef]
- Meng, Y.; Li, Y.; Xia, J.; Hu, Q.; Ke, X.; Ren, G.; Zhu, F. F-Doped LiFePO4@N/B/F-Doped Carbon as High Performance Cathode Materials for Li-Ion Batteries. Appl. Surf. Sci. 2019, 476, 761–768. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Luo, L.; Zhao, J.; He, J.; Zhao, X.; Liu, H.; Qin, Y.; Wang, F.; Song, J. Hierarchically Porous MXene Decorated Carbon Coated LiFePO4 as Cathode Material for High-Performance Lithium-Ion Batteries. J. Alloys Compd. 2021, 876, 160210. [Google Scholar] [CrossRef]
- Aldalur, I.; Martinez-Ibañez, M.; Piszcz, M.; Rodriguez-Martinez, L.M.; Zhang, H.; Armand, M. Lowering the Operational Temperature of All-Solid-State Lithium Polymer Cell with Highly Conductive and Interfacially Robust Solid Polymer Electrolytes. J. Power Source 2018, 383, 144–149. [Google Scholar] [CrossRef]
- Zhang, H.; Oteo, U.; Judez, X.; Eshetu, G.G.; Martinez-Ibañez, M.; Carrasco, J.; Li, C.; Armand, M. Designer Anion Enabling Solid-State Lithium-Sulfur Batteries. Joule 2019, 3, 1689–1702. [Google Scholar] [CrossRef]
- Meabe, L.; Huynh, T.V.; Mantione, D.; Porcarelli, L.; Li, C.; O’Dell, L.A.; Sardon, H.; Armand, M.; Forsyth, M.; Mecerreyes, D. UV-Cross-Linked Poly(Ethylene Oxide Carbonate) as Free Standing Solid Polymer Electrolyte for Lithium Batteries. Electrochim. Acta 2019, 302, 414–421. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, C.; Zheng, L.; Xu, F.; Feng, W.; Li, H.; Huang, X.; Armand, M.; Nie, J.; Zhou, Z. Lithium Bis(Fluorosulfonyl)Imide/Poly(Ethylene Oxide) Polymer Electrolyte. Electrochim. Acta 2014, 133, 529–538. [Google Scholar] [CrossRef]
- Kaboli, S.; Demers, H.; Paolella, A.; Darwiche, A.; Dontigny, M.; Clément, D.; Guerfi, A.; Trudeau, M.L.; Goodenough, J.B.; Zaghib, K. Behavior of Solid Electrolyte in Li-Polymer Battery with NMC Cathode via in-Situ Scanning Electron Microscopy. Nano Lett. 2020, 20, 1607–1613. [Google Scholar] [CrossRef]
Carbon Sources | Synthesis Method | Morphology | Particle Size (LFP and C-LFP) | Mass Loading of C-LFP | Discharge Capacity | Reference |
---|---|---|---|---|---|---|
Sericin | Solid state synthesis and calcination | Spherical | -- | 0.5 wt% | 113.51 mAh g−1 at 1 C | [26] |
Orange peel | Mechincal activation process | Spherical | LFP—140 nm C-LFP—90 nm | 2.7 mg cm−2 | 139.8 mAh g−1 at 1 C-rate | [29] |
Glucose | in situ solvothermal and calcination process | Microcavity pores | LFP—100 to 300 nm | 85 wt% | 192 mA h g−1 at 0.1 C | [32] |
Vegetable cooking oil | Catalytic process and chemical vapour deposition | Spherical | Carbon >200 nm | 80 wt% | 102 mA h g−1 at 50 mA g−1 | [33] |
Source of Carbon | Type of Carbon/LFP | Preparation Methods | Performance | Reference |
---|---|---|---|---|
Graphite | C-rGO/LFP | Modified Hummer’s method, In-situ polymerization | 168 mAh g−1 at 0.05 C | [77] |
Graphite | rGO/LFP | Ball milling, modified Hummer’s method | 158 mAh g−1 at 0.1 C | [78] |
Graphite | Graphene/LFP | Graphite oxidation, thermal treatment, and chemical reduction | 142 mAh g−1 at 0.1 C | [79] |
Graphite | Nitrogen doped C/LFP | Electrostatic grafting | 171.9 mAh g−1 at 0.1 C | [80] |
Graphite | Boron doped C/LFP | Solgel, Thermal treatment, Modified Hummers method | 162.2 mAh g−1 at 0.1 C | [81] |
Commercial | LFP/MWCNT | Hydrothermal | 121 mA h g-1 at 1 C | [82] |
Commercial | LFP/MWCNT | Hydrothermal, heat treatment | 160.3 mAh g−1 at 0.3 C | [83] |
Commercial | LFP/MWCNT | Plasma treatment | 114 mAh g−1 at 1 C | [84] |
Commercial | LFP/MWCNT | Spray drying | 157.4 mAh g−1 at 0.2 C | [85] |
Commercial | LFP/MWCNT | Vacuum freeze drying/solvothermal | 152.7 mAh g−1 at 1 C | [86] |
Commercial | LFP/MWCNT | tape-cast fabrication | 144.9 mA h g−1 at 0.1 C | [87] |
Commercial | LFP/MWCNT | Chemical synthesis | ~192 mAh g at 0.1 C | [88] |
Commercial | LFP/CNT | Co-precipitation | 195 mAh g−1 | [43] |
Commercial | 3D LFP/CNT-PVP | CVD, Vacuum drying | 123 mAh g−1 | [89] |
Commercial | C-LFP | Wet processing | 143.8 mAh g−1 at 1 C | [90] |
Commercial | C/LFP | Solgel | 150 mAh g−1 | [91] |
Graphene | G/LFP/C | Ball mill, solid state reaction | 163.8 mAh g−1 at 0.1 C | [92] |
Graphene oxide | LFP/C/rGO | Solvothermal, carbon coating | 129 mAh g−1 | [93] |
CNT | LFP/MWCNT | 3D printing | 1.44 mA h cm−2 at 0.5 C | [94] |
CNT | LFP/C/CNT | Sol-gel | 158 mA h g−1 at a rate of 1 C | [95] |
CNT | LFP/Core shell | Solvothermal, liquid deposition | 132.8 mAh g−1 at 0.2 C | [96] |
Glucose | LFP/C | CVD, Thermal processing | 89.69 mAh g–1 at 200 C | [97] |
Glucose | C/LFP | Hydrothermal synthesis | 162 mAh g−1 at 1 C | [98] |
Glucose | Graphite sheet/N doped C/LFP | Insitu plasma treatment | 100.7 mAh g−1 at 150 C | [99] |
Glucose | C/LFP | Hydrothermal, calcination | 170 mAh g−1 | [100] |
Glucose | C-LFPsupra balls | Solvothermal, Thermal treatment | 162 mAh g−1 at 1 C | [101] |
Fructose | C/LFP | Hydrothermal | 98 mAh g−1 at 0.1 C | [102] |
Sucrose | C/LFP | Vacuum deposition | 123.9 mAh g−1 at 5 C | [103] |
Chitosan | C/LFP | Freeze drying, thermal processing | 155.5 mAh g−1 at 0.1 C | [104] |
Citric acid | C/LFP | Ball mill, heat treatment | 148.3 mAh g−1 at 0.1 C | [105] |
Citric acid | Graphitized LFP/C | Insitu synthesis | 164 mAh g−1 at 2 C | [106] |
Citrate | Co doped C-LFP | Combustion method | 49 mAh.g−1 at 2.4 mg.cm−2 | [107] |
Citric acid | LFP/C | Solgel | 93.54 mAh g−1 | [108] |
Polymer | C/LFP Core-shell | Chemical synthesis | 120.2 mAh·g−1 | [109] |
Polystyrene | C/LFP | Carbothermal reduction | 147 mAh·g−1 at 0.1 C | [110] |
xylitol-PVA | C/LFP | Ball mill, Chemical treatment | Volumetric energy density17.8 Wh L−1 at 10 C | [111] |
PVDF | Fluorine doped C-LFP | Ball mill, rheological solid state phase method | 100.2 mA h g–1 at 20 C | [112] |
Thermoplastic polyurethane/Super P | LFP/C | phase separation | 153 mAh g−1 at 0.2 C | [113] |
N-methylimidazole | C-LFP | Colloidal synthesis | 164 mAh g−1 | [114] |
butyl-3-methylimidazolium dicyanamide | Nitrogen doped C/LFP | microwave pyrolysis | 133.6 mAh g−1 | [115] |
Oleylamine | LFP/C | Supercritical alcohol, calcination | 84 mAh g−1 at 20 C | [116] |
[BMIm]N(CN)2—Ionic liquid | C-LFP | microwave-assisted pyrolysis | 149.4 mAh g−1 | [117] |
[VEIm]NTf2—Ionic liquid | C/LFP | Hydrothermal | 136.4 mAhg− 1 at 0.1 C | [118] |
Polybenzoxazine | LFP/Nitrogen doped C | Thermal treatment | 156.9 mA h g−1 | [119] |
Dopamine, polyethylene glycol | Nitrogen doped C-LFP | Spray drying | 156 mAh g−1 at 0.1 C | [120] |
[BMIM]BF4—Ionic liquid | Fluorine doped N-C-LFP | Hydrothermal | 162.2 mAh g−1 at 0.1 C | [121] |
Mxene | Mxene/LFP/C | Electrostatic self-assembly | 156.6 mAh·g−1 at 1 C | [122] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramasubramanian, B.; Sundarrajan, S.; Chellappan, V.; Reddy, M.V.; Ramakrishna, S.; Zaghib, K. Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review. Batteries 2022, 8, 133. https://doi.org/10.3390/batteries8100133
Ramasubramanian B, Sundarrajan S, Chellappan V, Reddy MV, Ramakrishna S, Zaghib K. Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review. Batteries. 2022; 8(10):133. https://doi.org/10.3390/batteries8100133
Chicago/Turabian StyleRamasubramanian, Brindha, Subramanian Sundarrajan, Vijila Chellappan, M. V. Reddy, Seeram Ramakrishna, and Karim Zaghib. 2022. "Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review" Batteries 8, no. 10: 133. https://doi.org/10.3390/batteries8100133
APA StyleRamasubramanian, B., Sundarrajan, S., Chellappan, V., Reddy, M. V., Ramakrishna, S., & Zaghib, K. (2022). Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review. Batteries, 8(10), 133. https://doi.org/10.3390/batteries8100133