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Abstract: Applications of lithium-ion batteries are widespread, ranging from electric vehicles to
energy storage systems. In spite of nearly meeting the target in terms of energy density and cost,
enhanced safety, lifetime, and second-life applications, there remain challenges. As a result of the
difference between the electric characteristics of the cells, the degradation process is accelerated
for battery packs containing many cells. The development of new generation battery solutions for
transportation and grid storage with improved performance is the goal of this paper, which introduces
the novel concept of Smart Battery that brings together batteries with advanced power electronics
and artificial intelligence (Al). The key feature is a bypass device attached to each cell that can insert
relaxation time to individual cell operation with minimal effect on the load. An advanced Al-based
performance optimizer is trained to recognize early signs of accelerated degradation modes and to
decide upon the optimal insertion of relaxation time. The resulting pulsed current operation has been
proven to extend lifetime by up to 80% in laboratory aging conditions. The Smart Battery unique
architecture uses a digital twin to accelerate the training of performance optimizers and predict
failures. The Smart Battery technology is a new technology currently at the proof-of-concept stage.
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1. Introduction
Due to their high power density (=1500 W /kg) and energy density (=250 Wh/kg),
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high energy efficiency (>95%), and also relatively long cycle life measured in thousands
Academic Editor: Carlos Ziebert of cycles, Li-ion batteries are the accepted solution for electronics, transportation, and
Received: 26 August 2022 grid storage. Battery packs are composed of a string of series and parallel connected cells
Accepted: 30 September 2022 to meet the power requirements of the applications. Cells cannot be manufactured with
Published: 9 October 2022 identical electrical characteristics, and these differences get amplified during operation,

leading to a large unbalance in state of health (SOH) and premature lifetime termination.
Therefore, it is essential to find a strategy that is able to operate with cells having unequal
characteristics without limitation in performance. For achieving this goal, the concept of
Smart Battery technology is proposed in this paper, using power electronics for the bypass
device and artificial intelligence for performance optimization.

) In the first stage, we explored several pulsed current charging strategies and their effect
on battery lifetime. As shown in Figure 1, an up to 80% lifetime extension can be achieved
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SOH estimates, the established model is updated by transfer learning to track the long-term
degradation behavior of batteries under varied working conditions.
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Figure 1. Lifetime extension using pulsed current charging compared with constant current [1].

The structure of the paper includes the hardware architecture and realization of the
bypass device and cell controller with wireless communication, State of Temperature
(SOT), SOH estimation and prediction, and Digital Twin as tools to improve safety and
performance followed by a conceptual approach of the complex performance optimization
problem definition. In the end, applications of the Smart Battery are identified.

2. The Hardware Architecture

The Smart Battery system aims to develop an integrated battery solution with increased
safety, fault-tolerant operation, improved lifetime, and software reconfiguration for second
life applications. The high-level architecture of a Smart Battery system is shown in Figure 2
and consists of a cell connected to a half-bridge circuit, which is controlled by a digital
controller termed a slave CPU. The cell is connected to the battery string via the output ports
of the half-bridge, as shown in Figure 2. The switching state of the half-bridge determines
if the cell is inserted into the string or bypassed. Figure 3a,b show the state of the output
terminals of the half-bridge when the cell is inserted or bypassed, respectively. By turning
on the top device the cell will be inserted, and by turning on the bottom device, the cell
will be bypassed. Note that the two devices are switched in complimentary PWM and can
be switched at any frequency and duty ratio to realize pulsed charging or discharging of
the cell. The slave controller provides the switching commands to the half-bridge, and
monitors the cell voltage, current, and temperature using the appropriate sensors. Using
the measurements, the slave estimates the state of charge (SOC) and communicates the
measurements to the master controller shown in Figure 2. Note that the master controller
(shown as master CPU/GPU in Figure 2) uses Al-based algorithms to estimate the state
of health (SOH) and remaining useful life (RUL) for the cells and communicates the same
information to respective cells. The master controller performs the functions of SOC and
SOH balancing and lifetime control. The balancing process is done by bypassing one cell at
a time and thus not affecting the load current. In contrast to other active balancing methods,
this balancing method does not use bidirectional DC-DC converters. It has better efficiency
due to the absence of additional inductors/capacitors used in active balancing methods.
The proposed bypass device only needs to order the cells according to their SOC and SOH
states and then decides which cell should be bypassed. The method for balancing control is
simple and effective. This provides a fault-tolerant operation mode, which can improve the
safety and reliability at the system level.
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Figure 2. High-level architecture showing Smart Battery with slave controllers and a master controller.
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Figure 3. The operation mode of the switching device: (a) inserted; (b) bypassed.

2.1. Smart Battery Cell—Hardware Implementation Approach

Individual cells are integrated with a half-bridge circuit to provide the bypass capabil-

ity as described above. The overall control electronics consist of the following subgroups:

1.

MOSEFETs: Low on-resistance MOSFETs are used in the half-bridge across the cell.
It is important to have low-on resistance to limit the power loss in the MOSFETs,
which acts as an undesirable load on the batteries. Note that MOSFETs with sub-
milliohm on-resistances (74 ,,) are available and they introduce negligible losses.
It is also possible to parallel additional MOSFETs to reduce the resistance further
and to provide redundancy for improving the reliability. Table 1 shows some of the
commercially available MOSFETs with sub-milliohm 7 ,,, and conduction loss at 50 A.
It would be good to use automotive-certified MOSFETs (e.g., AUIRF8739L2TR [2]
in Table 1) such as electric vehicles (EVs) is one of the major applications for the
Smart Battery.

Sensors: To monitor the cell voltage, current, and temperature, appropriate sensors
are used. Additional electronic circuits are essential to interface the sensors with the
slave controller. The sensors can be interfaced with the analog-to-digital converter
(ADC) channels of the controller or to the appropriate digital communication channels
depending on the output format.

Voltage regulators: Switching voltage regulators are necessary to convert the battery
voltage to the required regulated DC voltage to supply the control electronics and
to the gate drivers of the half-bridge circuit. Note that linear regulators cannot
be used because typically they can only step down the cell voltage and they have
poor efficiency.

Gate driver: A smart gate driver is necessary to implement the insert/bypass func-
tionality of the Smart Battery. This gate driver receives the commands from the slave
controller, which in turn obtains the commands from the master controller wirelessly.
The gate driver will also prevent any shoot through of the DC voltage, hence avoiding
any short circuit.
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5. Slave controller: The slave controller performs the computation of SOC, provides
commands to the gate driver, implements protection algorithms, and communicates
with the master wirelessly. For wireless communication, protocols such as wifi, Blue-
tooth Low Energy (BLE), and Zigbee are possible. The range required for the wireless
communication for the Smart Battery is in the order of a few meters considering the
application area of electric vehicles, wherein the Smart Battery will be tightly packed
and the master controller will be at close proximity within the vehicle. Considering
these points, BLE communication can be one of the options. However, since the Smart
Battery architecture for EV involves a large number of slaves (>100), custom wireless
protocols such as IEEE TSCH may be a good compromise between performance and
power consumption. Texas Instruments offers a number of wireless controllers suitable
for BMS applications. One popular series is the Simplelink controller CC26 x 2 [3,4].

Table 1. Commercially available MOSFETs with very low on-resistance for minimizing the power
loss in a Smart Battery.

MOSFET Rys,0n (mQ) Rated Current (A) Power Loss at 50 A (W)
IPTO04NO3L 0.4 300 1
ISTO0O6NO4NM6 0.6 475 1.5
IRL40SC209 0.8 478 2
AUIRF8739L2TR 0.35 545 0.875

2.2. Layout Design for Low Electromagnetic Interference (EMI)

Figure 4 shows the detailed components of the single cell in the Smart Battery archi-
tecture and its hardware components described above. The electronic circuits in Figure 4
contain EMI sources as well as sensitive electronics whose performance may be impacted
by the EMI. For example, the switching regulators to supply regulated voltage produce
both conducted and radiated noise. As these converters are switched at a high frequency
in the order of a few MHz, the radiated noise may interfere with the BLE communication.
Thus, it is important to protect the communication and the sensing circuits from the noise
generated by the switching regulators. Note that the switching by the MOSFETs of the
half-bridge may not result in any appreciable EMI because these MOSFETs are switched at
a very low frequency in the order of a few hertz or less. As a result, this switching does not
radiate any significant energy at the BLE frequencies of interest and can be ignored as the
source of conducted or radiated EML
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Figure 4. Hardware components in a Smart Battery cell.

In order to minimize the impact of EMI and ensure high fidelity communication,
a multi-layer routing is followed for the printed circuit board (PCB) to provide good
ground planes and to minimize the loop areas that can cause unwanted radiation [5]. The
components of the switching regulators are physically placed in a predefined area and they
are covered by an EMI shield. This ensures that the BLE communication is not impacted by
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the radiations from the switching regulators. A green border shown around the DC-DC
converter in Figure 4 illustrates the EMI shield across it. As the Smart Battery cells are in
close physical proximity in applications such as EV battery packs, a proper layout design
prevents noise from one PCB from impacting the communication with the neighboring
PCBs and with the master controller.

2.3. Hardware Challenges and Design for High Current

For cells with high Ah capacity such as 50 Ah or more, the design of the slave board is
to be done to minimize the losses and impact of parasitics such as stray inductances. The
current in such cells can be hundreds of amperes for any operation beyond 2C. Thus, the
hardware design needs to provide a low resistance path for the current and low conduction
loss in the MOSFETs. A conceptual diagram illustrating the slave board design for a
prismatic cell is shown in Figure 5. A combination of copper bus bars and copper in-lays
is used, as shown in Figure 5 (shown in orange) to provide a low resistance path for the
high current. The half-bridge is shown with two MOSFETs, Q1 and Q2. Note that a parallel
combination of multiple MOSFETs may be necessary to minimize the losses. The bus bar
design should also ensure that parasitic inductances are very low as they can cause large
voltage spikes on the MOSFETs during insert/bypass operations.
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Figure 5. Smart Battery hardware design concept for high Ah prismatic cells.

3. SOT Estimation

Li-ion batteries, due to their high energy/power density, long cycle life, and high
efficiency, have been widely used in electric vehicles, portable electronics, and smart
grid systems. However, thermal-related technological bottlenecks, including thermal
runaway [6], extreme fast charging (XFC) [7,8], reduced performance in cold climates [9,10],
and accelerated aging at high temperatures [11,12], still hinder the large-scale application of
Li-ion batteries. Such bottlenecks stem from the complex effect of temperature on the safety,
performance, and lifespan of Li-ion batteries. For instance, when battery temperature
exceeds the threshold under extreme situations, thermal runaway might be triggered
and accompanied by safety problems such as smoke, fire, and explosion [6]. In cold
climates, the performance of Li-ion batteries is severely reduced due to slow electrochemical
reactions inside the cell [10,13], and thus the available energy and power of Li-ion batteries
decline dramatically [9,10]. Additionally, XFC at relatively lower temperatures is likely to
trigger lithium plating, which leads to accelerated battery degradation [11,12]. At elevated
temperatures, side reactions such as the growth of a solid electrolyte interface become
significant, giving rise to the consumption of cyclable lithium and accelerated battery
capacity fade [8,12].

Battery management systems (BMS) are indispensable for managing the charging/
discharging patterns and regulating battery temperature in a smart way, where temperature
monitoring serves as the basis of the BMS. Typically, battery temperature can be monitored
by temperature sensors placed on the battery surface. However, in real-life battery packs,



Batteries 2022, 8, 169

6 of 18

it is impractical to place temperature sensors on the surface of each battery cell due to
cost and complexity considerations. Furthermore, the surface-mounted sensors cannot
track the rapid variation of internal temperatures because of heat transfer delay from
the battery core to the surface caused by the thermal mass of the battery, especially at
high charging /discharging rates. Hence, it is of great significance to estimate the battery
temperature in a battery pack, and accurate SOT estimation benefits battery management
in several ways.

From the perspective of battery safety, accurate monitoring of internal temperature
helps keep the battery within the safety threshold and gives an early warning of potential
hazards that could trigger thermal runaway. In particular, nowadays, Li-ion batteries are
designed to have large capacities and high power/energy densities, which could inevitably
enhance the risk of thermal hazards. From the perspective of fast charging, SOT estimation
helps regulate battery temperature actively to a charging favorable temperature range so
that XFC can be achieved and the lifetime of the battery can also be extended [14]. From
the perspective of battery health management, knowing battery SOT makes it possible to
develop a temperature-independent SOH estimation by decoupling the temperature effect
during the extraction of health indicators, which gives rise to a more accurate and robust
SOH estimation. This will further allow for accurate lifetime prediction and improvement
of the operation of the Smart Battery. All of these features of the Smart Battery enabled by
accurate SOT estimation are illustrated in Figure 6.
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Figure 6. Smart Battery functionalities enabled by SOT estimation.

Existing methods for SOT estimation can be classified into three categories: impedance-
based estimation, thermal model-based estimation, and data-driven estimation. Impedance-
based estimation exploits the relationship between battery temperature and impedance
parameters such as phase, real part, and imaginary part, to estimate SOT according to
the measured impedance [15]. By modeling the heat generation and heat transfer models
inside the cell, thermal model-based methods realize the internal temperature estimation
based on battery current, voltage, and possibly a surface-mounted sensor [16]. Data-driven
approaches ignore the thermal dynamics of the cell and explore the data patterns of battery
temperature evolution to realize highly accurate estimation [17]. However, these three
methods have limitations. Impedance-based estimation can only provide information about
the average temperature of the cell but neglect the temperature distribution inside the cell.
Therefore, the maximum internal temperature is likely to be underestimated, especially
for large-format cells with high energy/power density or cells operating at high rates
(e.g., XFC). As for thermal model-based estimation, it is a great challenge to balance the
model complexity and accuracy. In addition, parameterization is sometimes complex due
to many required model parameters. For data-driven approaches, obtaining a considerable
training dataset is sometimes technically challenging and unattainable. For instance, the
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temperature value at random points inside the cell cannot be measured. Generalization is
another problem for many data-driven approaches since the training dataset cannot cover
all of the operation scenarios.

To address the challenges existing SOT estimation methods face, there is a growing
trend to combine model-based approaches with data-driven methods to realize accurate
and robust estimation [18,19]. There are many ways to combine physics-based models
and machine learning models, as discussed in [20]. A competitive candidate, which will
be used in the framework of the Smart Battery, is the physics-informed neural network
(PINN). PINN can rapidly solve the underlying nonlinear heat transfer partial differential
equation (PDE) with small amounts of data and provide insights into battery internal
temperature distribution. Typically, the temperature data used for neural network training
is limited to the surface temperature and possibly the core temperature measured through
sensor intrusion [21,22], making it difficult for conventional neural networks to estimate
the temperature distribution between the core and the surface. PINN can overcome the
limitations traditional neural networks face and mimic the data patterns governed by the
heat transfer PDE so that the temperature distribution inside the cell can be estimated.
The framework of a PINN for estimating the battery temperature distribution is shown in
Figure 7, where a cylindrical cell is used as an example. When collecting the training data,
the current, voltage, surface, and core temperature can be measured (by inserting a sensor
into the battery core). The measured data are treated as training data for the deep neural
network, and the loss is calculated based on the predicted temperature and the measured
temperature. Additionally, the temperature at the core, the surface, and any point inside
the domain should follow the heat transfer PDE and its initial and boundary conditions.
The differentials of temperature with respect to time and location can be calculated through
automatic differentiation so that the physics loss can be obtained accordingly based on heat
transfer PDE. In PINN, the loss function consists of the loss of training data and the loss of
physics. By minimizing the total loss, the weights and biases of the neural networks can be
adjusted, and the unknown coefficient in the PDE can be identified. For a trained PINN,
the predictions can have high accuracy while also following the heat transfer law so that it
can be used to estimate internal temperature distribution under other operating conditions.
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Figure 7. Framework of temperature distribution estimation using PINN: Measured temperature
data at the battery surface and core are used for training the data-driven model (e.g., based on deep
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neural networks); then a physics part is added as a regularization term to further train the deep neural
network so that the estimated temperature not only follows the patterns of data in the training set but
also obeys the spatiotemporal physical law in the physics part. The network is trained by minimizing
both the loss of the measured data and the loss of the physics part after 10,000 epochs or more, where
an appropriate A should be selected to adjust the relative importance between data loss and physics
loss. The training process can adjust the weights and bias in neural networks, as well as identify
unknown parameters in PDE simultaneously (where T represents the temperature, t represents
the time, I represents the current, V represents the voltage, r represents the space distribution, Q
represents the heat generation, ¢, represents the specific heat capacity, V}, represents the volume of
the battery, MSE represents the mean squared error, MSE4,;, represents the mean squared error of
the temperature estimation based on the measured data, MSE},yics represents the mean squared
error of the temperature estimation in physics part, k; represents the thermal conductivity of the cell,
and A represents coefficient between data loss and physics loss).

Accurate SOT estimation using PINN represents the first step toward the goal of
realizing long-term (e.g., 10 min ahead) temperature prediction, which will lead to optimal
operation and reduce safety concerns of the Smart Battery.

4. SOH Estimation and Lifetime Prediction

The degradation of the battery is unavoidable, and it is caused by complex aging
mechanisms that are happening in parallel inside the battery. At the macroscopic scale,
the degradation of the battery is manifested as capacity fade and power fade [23] that
are therefore often used as indicators of a battery’s SOH. Using these two measures of
degradation, a battery is considered at the end-of-life (EOL) when its capacity reaches
70-80% of the initial capacity. Given an EOL criterion, the RUL of the battery can be defined
as the time (or the number of cycles) until the battery reaches its EOL [24]. It follows that to
lower the cost of Li-ion batteries, both environmentally and economically, it is imperative
to control their RUL [25]. Accurately predicting the RUL of the battery will also help
reduce the cost through predictive maintenance, reduce the risk of failure guaranteeing
safer operation, and improve the reliability of the system [25]. However, the degradation
of batteries begins the moment they exit the production line, resulting in reduced lifetime.
Additionally, Li-ion batteries undergo a wide range of aging conditions during real-world
operations, from calendar aging (idling) to cycling aging (charging or discharging), which
is non-deterministic and difficult to predict. These uncertainties create a bottleneck in the
large-scale acceptance and deployment of Li-ion batteries in critical applications, such as
transportation.

4.1. SOH Estimation

After a decade of research on battery SOH estimation, SOH estimation methods
are slowly becoming mature [26-28]. SOH estimation methods typically fall into one of
three categories: (1) Empirical methods, (2) physics-based models, and (3) Al data-driven
methods. While empirical methods such as directly measuring the charge throughput
or indirectly analyzing the incremental capacity have been used to quantify the SOH
mechanisms, their stability severely limits their use in real-life applications. The physics-
based models are designed to estimate the SOH through state-space models typically built
using electrochemical models, or equivalent electrical circuit models [29]. The physics-
based models use filters to effectively update the dynamic characteristics of the system,
but are entirely dependent on the accuracy of the underlying physics-based model, which
introduces an unavoidable and cumbersome parameter identification process requiring
extensive laboratory testing. Lastly, recent years have seen the rise of more data-driven
methods through statistics, machine learning, and artificial intelligence methods. These
methods have the ability to effectively learn any non-linear regression problem, given
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enough of the right data. Among the most popular are methods such as support vector
machine, artificial neural network, deep learning (DL), and random forest [30].

The battery degradation process is accompanied by a series of side reactions involving
various parts of the battery, such as the anode, cathode, electrolyte, and electrode—electrolyte
interface. As a result, the battery will exhibit different aging behaviors as the operating
conditions change. This leads to the biggest challenge of data-driven methods for SOH
estimation: features extracted under laboratory conditions might be invalid in real-life
applications. There are three ways to account for this discrepancy: (1) To define and extract
robust features, (2) to adapt models from the laboratory to the field by transfer learning,
and (3) to use automatic feature extraction through DL. A viable method for creating and
extracting robust features is the fuzzy entropy method as proposed in [31]. It has been
shown that fuzzy entropy-based features are effective in both SOH estimation and SOH
prediction. Additionally, it has been proven to have strong robustness against parameter
selection, data size, working conditions, and noise [31]. Moreover, noise suppression
methods were used to pre-process the SOH data, improving not just the accuracy but also
the speed of the fuzzy entropy-based feature extraction [32,33]. An alternative to creating
robust features is to account for the change in domain by transferring the model [34]. There
are two approaches to adapting models from one domain to another—during the training
of the model the discrepancy between the features in the two domains is accounted for,
or the model is trained in the original domain and then re-trained in the new domain.
The second approach will give better results but requires knowledge of the SOH in both
domains unlike the first approach [35]. Lastly, the feature failure problem may be almost
entirely avoided using DL. Deep neural networks have the ability to extract global features
from raw multi-dimensional data. However, due to the latent nature of SOH, obtaining the
amount of SOH information required to train such a neural network is usually impossible
in real-life applications. In order to improve the estimation accuracy on small data sizes,
a bagging-based ensemble method was proposed in [36]. Bagging creates augmented
samples by resampling from the original dataset, and a series of ELMs are trained based
on these samples. The bagging ELM method has many of the upsides of DL, such as
the automatic feature extraction, while requiring much less data to train and perform
well when estimating SOH. In addition to using fuzzy entropy-based features and the
ensemble ELM method, the Smart Battery framework aims to increase the amount of useful
information extracted from a single partial charge of the battery by data augmentation. The
augmentation will allow for the extraction of not only the charging voltage, but also every
partial charging voltage sequence found within any charge (no matter how large). The
general framework for data cleaning, augmentation of partial charges, feature extraction,
and SOH estimation is outlined in the top panel of Figure 8.
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Figure 8. A flowchart of the Smart Battery SOH and RUL prediction framework. In order to stabilize
the predictions of the SOH, the time dependence of the system is moved from the SOH to the features.
To predict the SOH, the features are predicted forward in time, and a SOH estimation model is then
used to predict the SOH.

4.2. SOH and Lifetime Prediction

The aim of any RUL algorithm is to predict the time to EOL of a battery. However,
before the EOL can be predicted, it is necessary to predict the SOH; given a mission profile
and a short-term SOH prediction method, the long-term behavior of the SOH can be
predicted to the EOL. SOH and RUL prediction methods are usually divided into physics-
based and data-driven Al-based methods. In the physics-based lifetime models, while the
non-linear and time-varying characteristics of the electrochemical system can be explained,
the parameters of these models are very difficult to identify since they rely on destructive
testing methodologies. Consequently, the development of physics-based models is time
and resource-demanding, and thus not necessarily a viable option for use in real-time
prediction. These methods are more suitable to study the aging mechanisms of the battery,
provide a theoretical basis for data-driven methods, and make suggestions on battery
design [36]. The data-driven Al-based methods used for lifetime modeling and prediction
are unlike SOH estimation, and are usually more probabilistic in nature. Among the most
common methods are Gaussian process regression and dynamic Bayesian networks. Their
main advantage is that they do not need access to the mechanical and electrochemical
behavior of the battery [37]. The disadvantage is the need to specify the structure of the
probabilistic structure of these models. Therefore, recent years have seen an increase in the
use of DL methods. A DL lifetime model can be established based on the collected data and
continually updated using gradient optimization [38]. That is, the relationship between
the features (i.e., the health indicators such as voltage, current, and temperature) and the
cycle and calendar life of the battery cell can be established. The main disadvantages of DL
methods are their computational cost, and that they are not probabilistic by nature, making
RUL uncertainty prediction difficult.

However, as cloud computation becomes cheaper and more readily available, many
DNN algorithms have shown promise, such as deep neural networks [39], convolutional
neural networks [40], and recurrent neural networks (RNNSs) [41]. RNN will be a suitable
algorithm for RUL prediction because of its intrinsic modeling of time-dependent parame-
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ters. Furthermore, to accommodate the need for probabilistic predictions, the Smart Battery
framework will attempt to combine approximate Bayesian methods, such as approximate
Bayesian computation [42,43], Bayesian synthetic likelihood [44], or variational inference
with RNNs.

The biggest challenge with the SOH and RUL prediction methods mentioned above is
that they need SOH measurements to function. However, in real-life applications, obtaining
SOH measurements means stopping the operation of the battery and running an entire
cycle, i.e., fully charge and discharge the battery. Furthermore, for these prediction methods
to be effective, this needs to be performed on a regular schedule, and as often as possible.
As this is not a possibility in most applications, the predictions created in most applications
would be extremely unreliable (i.e., the uncertainty intervals of their predictions would
be large). Therefore, in the Smart Battery framework, the SOH and RUL prediction will
not operate directly on the SOH, but can instead operate on the SOH estimation model,
which can provide an estimate of the SOH for every partial charge of the battery. Given the
estimated SOH, a post-processing may need to be applied to remove effects of dependencies
such as temperature and C-rate (if this effect cannot be removed through the construction
of invariant features). The use of the estimated SOH when predicting future SOH should
stabilize the uncertainty predictions of SOH and RUL Furthermore, as new measurements
of SOH are made, the differences between the predicted and measured SOH will be used
to update the SOH estimation model, ultimately leading to better SOH prediction. The
general framework of post-processing as well as SOH and RUL prediction can be seen in
the bottom panel of Figure 8.

The methodology described above is both a data- and computationally-intensive
process, which would be very difficult to implement for most battery architectures. How-
ever, as outlined in Section 2, the Smart Battery technology will have the ability to collect
raw signals of current, voltage, and temperature directly. Furthermore, the computa-
tional cost of the Smart Battery SOH prediction methodology will be offset through local
cloud computation.

5. Digital Twin

Digital twins are virtual models of physical objects that reflect them accurately and
can be used to verify if a planned operational change will produce the desired effect. The
concept was first used in the 1960s by NASA, which used an analog twin of the Apollo
spacecraft to test in almost real-time certain changes or reactions to certain faults in a
realistic environment before testing it for real with human safety at stake. The technology
eventually went digital and became very popular in manufacturing, where a virtual product
can be designed and presented to customers virtually, for example in the construction,
mobility, and even wind turbine industries.

5.1. Digital Twin as an Optimization Tool in Smart Battery

In the case of a Smart Battery concept, the Battery Digital Twin (BDT) is defined as an
online digital platform based on an Al core (GPU/TPU) capable of replicating the sensed
signals (voltage, state of temperature) of a real cell in all possible operating conditions in
terms of loading (current), ambient temperature, and aging. A full cell aging model (CAM)
is developed using a sparse laboratory testing dataset (full charging/discharging curves at
relevant temperature) that is further expanded by using Al techniques of domain adaptation
(part of transfer learning) to cover the whole working/aging domain, as depicted in
Figure 9.
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Figure 9. Concept of CAM BDT.

The CAM BDT is first developed in Python and then implemented in an Al-core
platform (Google Coral Edge), and then it can be used as a development tool for the Smart
Battery for:

1.  Providing a training dataset for SOH estimation/prediction;
2. Validation of battery performance optimization (BPO);
3.  Predictive maintenance.

Training of SOH estimation/prediction using Al using CAM BDT is shown in Figure 10.
The CAM BDT can not only synthetically generate a full aging data set, but as also runs in
a virtual space in which time can be accelerated, and thus the required lab testing time for
the conventional approach can be reduced by several orders of magnitude.
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Figure 10. Training of SOH estimation using CAM BDT. SOH* represents the reference value.

5.2. Validation of Battery Performance Optimization

The Smart Battery allows performance optimization due to the unique feature of cell-
level load management enabled by the bypass device. The action of bypassing a cell in the
pack during charging or discharging mode can improve balancing in SOC, SOH, and SOT
and maximize the SOH, both actions leading to lifetime maximization. As the processes are
very complex, Al techniques are used for both training and operational optimization. The
BDT is used to validate the performance optimization in an HIL environment including a
battery cell simulator (BCS), as illustrated in Figure 11.
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Figure 11. SOH maximization as an example of BPO using BDT. SOHpax represents the maximum
value of the optimization objective SOH, and V" is the voltage reference.

5.3. Predictive Diagnostic

The BDT is implemented online in each cell processor as shown in Figure 12. The idea
is that the BDT is fed with the real current measurement and temperature estimation, and
calculates the output voltage, which is compared with the real voltage measurement. Any
large deviation will be interpreted as a potential condition for failure and will be processed
accordingly. With this approach, dangerous events such as thermal runaway events can
be avoided.
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Battery
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Figure 12. BDT used in predictive diagnostics.

6. Performance Optimization of the Smart Battery

The electrochemical performance of a battery is defined in terms of three parameters,
namely the battery capacity, which measures the total charge stored in a battery, the open
circuit voltage or the maximum terminal voltage with no current flow, and the internal
resistance, which represents the degree to which the component materials impede the flow
of ions during battery operation [45]. Battery performance degrades as the battery ages
due to repetitive cycling of lithium ions, which leads to degradation modes such as loss of
lithium ions and loss of lithium inventory to set in. This battery aging phenomenon leads to
increased internal resistance along with capacity and power fade during a battery’s lifetime.
To optimize this threefold battery performance, it is crucial to understand the degradation
phenomenon and correlate it with measurable battery states. Based on the pre-trained
Al-based battery aging models as discussed in previous sections, from measured data,
namely terminal current, voltage, and surface temperature, the battery internal states can
be evaluated, namely SOH, SOP, SOE, and SOT.

Using these states of the battery, which we define as health indicators, a numerical
optimization can be developed that considers operational and power constraints of the
battery with the potential to maximize SOH for example. Here, we use reward-based
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learning to adaptively learn from the battery environment or the balance of the system
such as the EV power train and desired user performance to ensure the states of the battery
are maximized. It must be noted that since the discharging profile is not in our control,
we focus on the charging profile and use the bypass action of Smart Battery slave boards
to charge or bypass a battery cell at any given point in time. A complete representation
of the aforementioned methodology of battery performance optimization is presented
in Figure 13. The goal of this complete optimization as shown in Figure 11 is to extend
the lifetime of the batteries, keep the operational cost minimal and maximize the system
reliability by embedding fault diagnosis within the system architecture.

Battery Lifetime Optimization

Algorithm Overview

Reward-based Learning
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O ﬂ Dg D
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Smart batteries incorporate power electronics and Al to control charging of batteries for optimised lifetime using RL.
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Figure 13. A flowchart of the BPO framework, showing the use of reward-based learning for
optimizing the charging profile of Li-ion batteries by using measured V, I, and T. The brain of the
system is physics-informed and maps degradation modesto quantifiable health indicators to achieve
an extended lifetime of batteries along with added features of fault diagnosis and cost minimization.
A user interface makes the entire approach more pragmatic for an EV scenario with varying load
profiles and desired performance as per the user’s needs and constraints.

A more detailed overview of how this battery performance optimization works is
shown below with a simplified flow diagram in Figure 14, wherein the performance
optimization, preventive diagnostics, and BDT containing the CAM act together in the local
cloud to achieve the user-desired and constrained available performance metric, which



Batteries 2022, 8, 169

150f18

ia

@ Enviroment

is an output of the optimization algorithm. The comparison of these two parameters
determines whether the bypass switches should connect or disconnect a battery cell while
charging. This is in line with the previously discussed results of pulse charging leading to
an extended lifetime of the battery, and bypass switches make it possible.
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Figure 14. A detailed overview of the Smart Battery system with various attributes including
optimization of SOX (SOP, SOE, SOT, and SOH). Based on whether the performance is optimized
or not, the bypass switches act to activate or provide rest to a cell. The cell aging model is built on
Al trained neural network blocks that fully emulate a real battery aging mechanism for given user
load profiles and desired performance with a given aging condition of the battery as the initial state
of operation.

7. Applications of the Smart Battery

A natural question that arises regards the contribution of Smart Batteries to the field of
power and energy systems, which spans many directions as shown in Figure 15. Starting
from energy storage in power grids to maximum power point tracking in solar photo-
voltaics, the Smart Battery widely covers the generation, transmission, and distribution
sectors of electrical energy. Vehicle-to-grid is an upcoming industry and is anticipated to be
limited by battery cycling and aging constraints, but with the Smart Battery, this can be
effectively overcome. With green transition as the target of many developing and devel-
oped nations, transportation electrification for rail, road, and airways is being investigated.
This requires electric vehicles to have reliable, high-performing, and long-lasting batteries,
requirements that are the core fundamentals on which the Smart Battery is designed. One
major challenge in the EV industry is the rising fast charging industry, which is known
to degrade batteries and accelerate their aging. With lifetime extension as a key objective
in battery performance optimization, this challenge can be positively overcome using the
Smart Battery. We also argue that with Smart Battery technologies, Li-ion batteries can be
easily reconfigured for residential energy storage due to lower power and capacity fade in
Smart Batteries. Overall, the Smart Battery technology can revolutionize the green energy
transition by making disruptive ideas such as ultra-fast charging, second lifetime, and V2G
a reality.
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Figure 15. The performance-optimized Smart Batteries find applications in energy storage for modern
power grids and green microgrids. They can also be readily applied in maximum power point
tracking in photovoltaic applications by acting as a controlled voltage source. With the fast-growing
EV industry, the role of a high-performing Smart Battery is inevitable for fast charging and lifetime
extension, which is also applicable to the electric aircraft industry. The second lifetime of batteries is
the sustainable way of reusing EV batteries in residential energy storage with reduced capacity fade
using the Smart Battery system.
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