Revealing Lithiation Kinetics and Battery Degradation Pathway in LiMn2O4-Based Commercial Cathodes via Electrochemical Strain Microscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Correlative ESM and Confocal Raman Microscopy (CRM) Measurements
References
- Ohzuku, T. Electrochemistry of manganese dioxide in lithium nonaqueous cell. J. Electrochem. Soc. 1990, 137, 769–775. [Google Scholar] [CrossRef]
- Julien, C.; Mauger, A.; Vijh, A.; Zaghib, K. Lithium Batteries; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zhan, C.; Wu, T.; Lu, J.; Amine, K. Dissolution, migration, and deposition of transition metal ions in Li-Ion batteries exemplified by Mn-based cathodes—A critical review. Energy Environ. Sci. 2018, 11, 243–257. [Google Scholar] [CrossRef]
- Luo, F.; Wei, C.; Zhang, C.; Gao, H.; Niu, J.; Ma, W.; Peng, Z.; Bai, Y.; Zhang, Z. Operando X-ray diffraction analysis of the degradation mechanisms of a spinel LiMn2O4 cathode in different voltage windows. J. Energy Chem. 2020, 44, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Bi, Z.; Shang, Y.; Chen, K.; Liang, Y.; Li, X.; Shang, G. Bimodal AFM-Based nanocharacterization of cycling-induced topographic and mechanical evolutions of LiMn2O4 cathode films. Langmuir 2021, 37, 6406–6413. [Google Scholar] [CrossRef] [PubMed]
- Erichsen, T.; Pfeiffer, B.; Roddatis, V.; Volkert, C.A. Tracking the diffusion-controlled lithiation reaction of LiMn2O4 by in situ TEM. ACS Appl. Energy Mater. 2020, 3, 5405–5414. [Google Scholar] [CrossRef]
- Wohlfahrt-Mehrens, M.; Vogler, C.; Garche, J. Aging mechanisms of lithium cathode materials. J. Power Sources 2004, 127, 58–64. [Google Scholar] [CrossRef]
- Hausbrand, R.; Cherkashinin, G.; Ehrenberg, H.; Gröting, M.; Albe, K.; Hess, C.; Jaegermann, W. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches. Mater Sci. Eng. B 2015, 192, 3–25. [Google Scholar] [CrossRef]
- Gummow, R.J.; de Kock, A.; Thackeray, M.M. Improved capacity retention in rechargeable 4 V lithium/lithium-manganese Oxide (Spinel) Cells. Solid State Ion. 1994, 69, 59–67. [Google Scholar] [CrossRef]
- Xia, Y.; Zhou, Y.; Yoshio, M. Capacity fading on cycling of 4 V Li/LiMn2O4 cells. J. Electrochem. Soc. 1997, 144, 2593–2600. [Google Scholar] [CrossRef]
- Tang, D.; Sun, Y.; Yang, Z.; Ben, L.; Gu, L.; Huang, X. Surface structure evolution of LiMn2O4 cathode material upon charge/discharge. Chem. Mater. 2014, 26, 3535–3543. [Google Scholar] [CrossRef]
- Slautin, B.; Alikin, D.; Rosato, D.; Pelegov, D.; Shur, V.; Kholkin, A. Local study of lithiation and degradation paths in LiMn2O4 battery cathodes: Confocal Raman microscopy approach. Batteries 2018, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.H.; Shin, Y.J.; Oh, S.M. Dissolution of spinel oxides and capacity losses in 4 V Li / LixMn2O4 cells. J. Electrochem. Soc. 1996, 143, 2204–2211. [Google Scholar] [CrossRef] [Green Version]
- Julien, C.M.; Massot, M. Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel. Mater Sci. Eng. B 2003, 97, 217–230. [Google Scholar] [CrossRef]
- Ramana, C.V.; Massot, M.; Julien, C.M. XPS and Raman spectroscopic characterization of LiMn2O4 spinels. Surf. Interface Anal. 2005, 37, 412–416. [Google Scholar] [CrossRef]
- Greeley, J.; Warburton, R.E.; Castro, F.C.; Deshpande, S.; Madsen, K.E.; Bassett, K.L.; dos Reis, R.; Gewirth, A.A.; Dravid, V.P. Oriented LiMn2O4 particle fracture from delithiation-driven surface stress. ACS Appl. Mater. Interfaces 2020, 12, 49182–49191. [Google Scholar]
- Thackeray, M.M.; Johnson, P.J.; de Picciotto, L.A.; Bruce, P.G.; Goodenough, J.B. Electrochemical extraction of lithium from LiMn2O4. Mater. Res. Bull. 1984, 19, 179–187. [Google Scholar] [CrossRef]
- Thackeray, M.M.; Shao-Horn, Y.; Kahaian, A.J.; Kepler, K.D.; Skinner, E.; Vaughey, J.T.; Hackney, S.A. Structural fatigue in spinel electrodes in high voltage (4 V) Li/LixMn2O4 cells. Electrochem. Solid State Lett. 1998, 1, 7–9. [Google Scholar] [CrossRef]
- Liu, Z.; Han, K.; Chen-Wiegart, Y.K.; Wang, J.; Kung, H.H.; Wang, J.; Barnett, S.A.; Faber, K.T. X-Ray nanotomography analysis of the microstructural evolution of LiMn2O4 electrodes. J. Power Sources 2017, 360, 460–469. [Google Scholar] [CrossRef]
- Chen, G.; Song, X.; Richardson, T.J. Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid State Lett. 2006, 9, A295–A298. [Google Scholar] [CrossRef]
- Lee, S.; Oshima, Y.; Hosono, E.; Zhou, H.; Kim, K.; Chang, H.M.; Kanno, R.; Takayanagi, K. In situ TEM observation of local phase transformation in a rechargeable LiMn2O4 nanowire battery. J. Phys. Chem. C 2013, 117, 24236–24241. [Google Scholar] [CrossRef]
- Okubo, M.; Mizuno, Y.; Yamada, H.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Fast Li-ion insertion into nanosized LiMn2O4 without domain boundaries. ACS Nano 2010, 4, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Wolfman, M.; Khawaja, S.; Cabana, J. Mapping and metastability of heterogeneity in LiMn2O4 battery electrodes with high energy density. J. Electrochem. Soc. 2020, 167, 020526. [Google Scholar] [CrossRef]
- Wang, F.; Yang, K.; Ge, M.; Wang, J.; Wang, J.; Xiao, X.; Lee, W.-K.; Li, L.; Tang, M. Reaction heterogeneity in LiFePO4 agglomerates and the role of intercalation-induced stress. ACS Energy Lett. 2022, 7, 1648–1656. [Google Scholar] [CrossRef]
- Welland, M.J.; Karpeyev, D.; O’Connor, D.T.; Heinonen, O. Miscibility gap closure, interface morphology, and phase microstructure of 3D LixFePO4 nanoparticles from surface wetting and coherency strain. ACS Nano 2015, 9, 9757–9771. [Google Scholar] [CrossRef]
- Lou, S.; Liu, Q.; Zhang, F.; Liu, Q.; Yu, Z.; Mu, T.; Zhao, Y.; Borovilas, J.; Chen, Y.; Ge, M.; et al. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. Nat. Commun. 2020, 11, 5700. [Google Scholar] [CrossRef]
- Yu, Y.S.; Kim, C.; Shapiro, D.A.; Farmand, M.; Qian, D.; Tyliszczak, T.; Kilcoyne, A.L.D.; Celestre, R.; Marchesini, S.; Joseph, J.; et al. Dependence on crystal size of the nanoscale chemical phase distribution and fracture in LixFePO4. Nano Lett. 2015, 15, 4282–4288. [Google Scholar] [CrossRef] [Green Version]
- Schön, N.; Schierholz, R.; Jesse, S.; Yu, S.; Eichel, R.A.; Balke, N.; Hausen, F. Signal origin of electrochemical strain microscopy and link to local chemical distribution in solid state electrolytes. Small Methods 2021, 5, 2001279. [Google Scholar] [CrossRef]
- Li, Y.; Weker, J.N.; Gent, W.E.; Mueller, D.N.; Lim, J.; Cogswell, D.A.; Tyliszczak, T.; Chueh, W.C. Dichotomy in the lithiation pathway of ellipsoidal and platelet LiFePO4 particles revealed through nanoscale operando state-of-charge imaging. Adv. Funct. Mater. 2015, 25, 3677–3687. [Google Scholar] [CrossRef]
- Yu, Y.S.; Farmand, M.; Kim, C.; Liu, Y.; Grey, C.P.; Strobridge, F.C.; Tyliszczak, T.; Celestre, R.; Denes, P.; Joseph, J.; et al. Three-dimensional localization of nanoscale battery reactions using soft X-Ray tomography. Nat. Commun. 2018, 9, 921. [Google Scholar] [CrossRef] [Green Version]
- Balke, N.; Jesse, S.; Kim, Y.; Adamczyk, L.; Ivanov, I.N.; Dudney, N.J.; Kalinin, S.V. Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale. ACS Nano 2010, 4, 7349–7357. [Google Scholar] [CrossRef]
- Alikin, D.O.; Romanyuk, K.N.; Slautin, B.N.; Rosato, D.; Shur, V.Y.; Kholkin, A.L. Quantitative characterization of the ionic mobility and concentration in li-battery cathodes via low frequency electrochemical strain microscopy. Nanoscale 2018, 10, 2503–2511. [Google Scholar] [CrossRef] [PubMed]
- Alikin, D.O.; Ievlev, A.V.; Luchkin, S.Y.; Turygin, A.P.; Shur, V.Y.; Kalinin, S.V.; Kholkin, A.L. Characterization of LiMn2O4 cathodes by electrochemical strain microscopy. Appl. Phys. Lett. 2016, 108, 113106. [Google Scholar] [CrossRef]
- Romanyuk, K.N.; Alikin, D.O.; Slautin, B.N.; Tselev, A.; Shur, V.Y.; Kholkin, A.L. Local electronic transport across probe/ionic conductor interface in Scanning Probe Microscopy. Ultramicroscopy 2021, 220, 113147. [Google Scholar] [CrossRef] [PubMed]
- Alikin, D.; Slautin, B.; Abramov, A.; Rosato, D.; Shur, V.; Tselev, A.; Kholkin, A. correlative confocal raman and scanning probe microscopy in the ionically active particles of LiMn2O4 cathodes. Materials 2019, 12, 1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luchkin, S.Y.; Amanieu, H.Y.; Rosato, D.; Kholkin, A.L. Li distribution in graphite anodes: A Kelvin Probe Force Microscopy approach. J. Power Sources 2014, 268, 887–894. [Google Scholar] [CrossRef]
- Kuriyama, K.; Onoue, A.; Yuasa, Y.; Kushida, K. Atomic force microscopy study of surface morphology change in spinel LiMn2O4: Possibility of direct observation of Jahn-Teller instability. Surf. Sci. 2007, 601, 2256–2259. [Google Scholar] [CrossRef]
- Arruda, T.M.; Kumar, A.; Kalinin, S.V.; Jesse, S. The partially reversible formation of Li-metal particles on a solid li electrolyte: Applications toward nanobatteries. Nanotechnology 2012, 23, 325402. [Google Scholar] [CrossRef]
- Balke, N.; Jesse, S.; Yu, P.; Carmichael, B.; Kalinin, S.V.; Tselev, A. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy. Nanotechnology 2016, 27, 425707. [Google Scholar] [CrossRef]
- McGrogan, F.P.; Raja, S.N.; Chiang, Y.-M.; van Vliet, K.J. Electrochemomechanical fatigue: Decoupling mechanisms of fracture-induced performance degradation in LixMn2O4. J. Electrochem. Soc. 2018, 165, A2458–A2466. [Google Scholar] [CrossRef] [Green Version]
- Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194. [Google Scholar] [CrossRef]
- Yamamura, S.; Koshika, H.; Nishizawa, M.; Matsue, T.; Uchida, I. In situ conductivity measurements of LiMn2O4 thin films during lithium insertion/extraction by using interdigitated microarray electrodes. J. Solid State Electrochem. 1998, 2, 211–215. [Google Scholar] [CrossRef]
- Luchkin, S.Y.; Kirsanova, M.A.; Aksyonov, D.A.; Lipovskikh, S.A.; Nikitina, V.A.; Abakumov, A.M.; Stevenson, K.J. Cycling-driven electrochemical activation of Li-rich NMC positive electrodes for li-ion batteries. ACS Appl. Energy Mater. 2022, 5, 7758–7769. [Google Scholar] [CrossRef]
- Andersson, A.S.; Thomas, J.O. The source of first-cycle capacity loss in LiFePO4. J. Power Sources 2001, 97, 498–502. [Google Scholar] [CrossRef]
- Zimmerman, W.B.; Homsy, G.M. Nonlinear viscous fingering in miscible displacement with anisotropic dispersion. Phys. Fluids 1991, 3, 1859–1872. [Google Scholar] [CrossRef]
- Love, C.T.; Baturina, O.A.; Swider-Lyons, K.E. Observation of lithium dendrites at ambient temperature and below. ECS Electrochem. Lett. 2015, 4, A24–A27. [Google Scholar] [CrossRef]
- Allix, M.; Cormier, L. Crystallization and glass-ceramics. In Book Springer Handbook of Glass, 1st ed.; Musgraves, J.D., Hu, J., Calvez, L., Eds.; Springer: Cham, Switzerland, 2019; pp. 113–167. [Google Scholar]
- Sato, H.; Enobio, E.C.I.; Yamanouchi, M.; Ikeda, S.; Fukami, S.; Kanai, S.; Matsukura, F.; Ohno, H. Properties of magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure down to junction diameter of 11 nm. Appl. Phys. Lett. 2014, 105, 062403. [Google Scholar] [CrossRef]
- Grassi, M.P.; Kolton, A.B.; Jeudy, V.; Mougin, A.; Bustingorry, S.; Curiale, J. Intermittent collective dynamics of domain walls in the creep regime. Phys. Rev. B 2018, 98, 224201. [Google Scholar] [CrossRef] [Green Version]
- Diáz Pardo, R.; Moisan, N.; Albornoz, L.J.; Lemaître, A.; Curiale, J.; Jeudy, V. Common universal behavior of magnetic domain walls driven by spin-polarized electrical current and magnetic field. Phys. Rev. B 2019, 100, 184420. [Google Scholar] [CrossRef] [Green Version]
- Turygin, A.P.; Alikin, D.O.; Kosobokov, M.S.; Ievlev, A.V.; Shur, V.Y. Self-organized formation of quasi-regular ferroelectric nanodomain structure on the nonpolar cuts by grounded SPM tip. ACS Appl. Mater. Interfaces 2018, 10, 36211–36217. [Google Scholar] [CrossRef]
- Tikhonov, Y.; Maguire, J.R.; McCluskey, C.J.; McConville, J.P.V.; Kumar, A.; Lu, H.; Meier, D.; Razumnaya, A.; Gregg, J.M.; Gruverman, A.; et al. Polarization topology at the nominally charged domain walls in uniaxial ferroelectrics. Adv. Mater. 2022, 2203028. Available online: https://onlinelibrary.wiley.com/doi/10.1002/adma.202203028 (accessed on 1 November 2022). [CrossRef]
- Amann, C.P.; Siebenbürger, M.; Krüger, M.; Weysser, F.; Ballauff, M.; Fuchs, M. Overshoots in stress-strain curves: Colloid experiments and schematic mode coupling theory. J. Rheol. 2013, 57, 149–175. [Google Scholar] [CrossRef]
- Scott, J.F.; Kumar, A. Faceting oscillations in nano-ferroelectrics. Appl. Phys. Lett. 2014, 105, 052902. [Google Scholar] [CrossRef] [Green Version]
- Radzi, Z.I.; Arifin, K.H.; Kufian, M.Z.; Balakrishnan, V.; Raihan, S.R.S.; Rahim, N.A.; Subramaniam, R. Review of spinel LiMn2O4 cathode materials under high cut-off voltage in lithium-ion batteries: Challenges and strategies. J. Electroanal. Chem. 2020, 920, 116623. [Google Scholar] [CrossRef]
Sample | SOC, % | SOH, % | Lattice Parameter, Å | Li-ion Concentration, m−3 |
---|---|---|---|---|
Li0.94Mn2O4 | 0 | 100 | 8.18 | 21.4 × 1025 |
Li0.61Mn2O4 | 100 | 100 | 8.09 | 14.4 × 1025 |
Li0.89Mn2O4 | 0 | 80 | 8.18 | 20.3 × 1025 |
Li0.65Mn2O4 | 100 | 80 | 8.11 | 15.2 × 1025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alikin, D.; Slautin, B.; Kholkin, A. Revealing Lithiation Kinetics and Battery Degradation Pathway in LiMn2O4-Based Commercial Cathodes via Electrochemical Strain Microscopy. Batteries 2022, 8, 220. https://doi.org/10.3390/batteries8110220
Alikin D, Slautin B, Kholkin A. Revealing Lithiation Kinetics and Battery Degradation Pathway in LiMn2O4-Based Commercial Cathodes via Electrochemical Strain Microscopy. Batteries. 2022; 8(11):220. https://doi.org/10.3390/batteries8110220
Chicago/Turabian StyleAlikin, Denis, Boris Slautin, and Andrei Kholkin. 2022. "Revealing Lithiation Kinetics and Battery Degradation Pathway in LiMn2O4-Based Commercial Cathodes via Electrochemical Strain Microscopy" Batteries 8, no. 11: 220. https://doi.org/10.3390/batteries8110220
APA StyleAlikin, D., Slautin, B., & Kholkin, A. (2022). Revealing Lithiation Kinetics and Battery Degradation Pathway in LiMn2O4-Based Commercial Cathodes via Electrochemical Strain Microscopy. Batteries, 8(11), 220. https://doi.org/10.3390/batteries8110220