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Abstract: Parameter identification with the pseudo-two-dimensional (p2D) model has been an
important research topic in battery engineering because some of the physicochemical parameters
used in the model can be measured, while some can only be estimated or calculated based on the
measurement data. Various methods, either in the time domain or frequency domain, have been
proposed to identify the parameters of the p2D model. While the methods in each domain bring their
advantages and disadvantages, a comprehensive comparison regarding parameter identifiability
and accuracy is still missing. In this present work, some selected physicochemical parameters of
the p2D model are identified in four different cases and with different methods, either only in the
time domain or with a combined model. Which parameters are identified in the frequency domain is
decided by a comprehensive analysis of the analytical expression for the DRT spectrum. Finally, the
parameter identifiability results are analyzed and the validation results with two highly dynamic
load profiles are shown and compared. The results indicate that the model with ohmic resistance and
the combined method achieves the best performance and the average voltage error is at the level of
12 mV.

Keywords: electrochemical impedance spectroscopy; physics-based model; distribution of relaxation
times; Markov chain Monte Carlo algorithm

1. Introduction

To build a more robust power grid with growing renewable energy sources and to
enable an electrified transportation system, lithium-ion batteries (LIBs) are being increas-
ingly deployed in various sectors, such as stationary energy storage systems and electrical
vehicles. While the demand for LIBs is increasing, a longer lifespan and safer operation
should still be guaranteed. To realize a better design of BMS and ensure a safer operation,
an accurate identification of the cell parameters is imperative [1]. In most cases, to estimate
the cell parameters, a proper objective function will be chosen and an optimization problem
will be established to identify the parameters of interest [2]. Generally, according to the in-
put data for the optimization problem, the identification methods can be roughly classified
into two groups: time domain and frequency domain methods [3]. Time domain methods
use the measurement data gathered in the time domain, such as charging/discharging
curves or pulse test data; frequency domain methods usually refer to electrochemical
impedance spectroscopy (EIS), where the cell impedance is measured as a function of the
frequency of the excitation signal. Due to the different measurement principles, parameters
are identified with different identifiabilities and accuracies [3,4].

1.1. Parameter Identification in Time Domain

For the time domain methods, first, a preselected model is built to model the internal
physicochemical processes of the LIBs. Depending on the desired model complexity and
comprehensiveness, the equivalent circuit model (ECM), reduced-order model (ROM)
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based on the physicochemical model, and full-order physicochemical model (PCM) are
available as potential candidates. The ECM is able to model certain physicochemical
processes using specific circuit elements such as resistance, capacitance, and inductance.
On the one hand, the ECM models the LIBs only in a simplified way, many complicated
electrochemical processes are modeled with a lumped circuit element or even simply ne-
glected; therefore, some physicochemical parameters are not given in the ECM. On the other
hand, due to its easy implementation and fast computational speed, the ECM is favored in
real-time or on-board applications [5–7]. The PCM describes the physicochemical processes
with the first principle equations and the model output (voltage, current, temperature,
etc.) is directly related to the fundamental physicochemical parameters [8–13]. The PCM
usually consists of a group of coupled partial differential equations (PDEs) and the required
computational effort is much higher than that of the ECM. Normally, the PCM must be
solved using numerical methods such as the finite-element-method, which prevents it from
real-time applications and large-scale simulation studies. To resolve the computational bur-
den issue and meanwhile keep the accuracy loss on an acceptable level, the ROM has been
developed by neglecting the less important processes or conducting mathematical simplifi-
cation [14–22]. Compared to the full-order PCM, the computational demand of the ROM
can be largely reduced and the accuracy loss can be generally kept to an acceptable level.

As the next step for parameter identification, an objective function must be selected and
an optimization program with an appropriate algorithm is established to solve the parameter
identification program. Due to the strongly nonlinear nature of the LIB models, the resulting
optimization problem is strongly nonlinear as well and a carefully chosen algorithm must be
applied to solve the problem. Various nonlinear optimization algorithms have been applied
to the parameter identification problem of LIBs, including gradient-based or Hessian-based
methods [6,15,16], heuristic methods [5,9,12,17], and statistical methods [10,13]. ECM-based
parameter identification has a low demand for computational capacity, while a direct connection
with the fundamental physicochemical parameters is usually unclear or even missing, which is
a considerable drawback for the identification of physicochemical parameters and cell design.
The PCM is the most comprehensive model, and relates the physicochemical and geometric
parameters directly to the model output.

While most parameter identification studies focus on model development and opti-
mization algorithms, only a small part of the works considers the parameter identifiability
and sensitivity issues. Forman et al. conducted a parameter identification test and identifia-
bility analysis using the Fisher information [12], where the local parameter identifiability
and variance were determined. Berliner et al. applied the Markov chain Monte Carlo
(MCMC) method to explore the parameter space and identified the quantitative nonlinear
correlation among three parameters [13]. The characterization of the quantitative corre-
lation (especially nonlinear) among multiple (more than two) parameters is an essential
step, because the emphasis has been mostly laid on the analysis of parameter sensitivity
and correlation between only two parameters and an important fact has been neglected: a
coordinated change of multiple parameters (more than two) may lead to the same model
output and a unique global optimum may not exist. As a result, the parameter identi-
fiability analysis suggests that simply minimizing the objective function and analyzing
the local parameter sensitivity cannot guarantee a reliable and physically meaningful
identification result.

1.2. Parameter Identification in Frequency Domain

Parameter identification in the frequency domain is conducted in a similar manner,
where the desired impedance model is selected and an optimization program is established
to estimate the model parameters. Various models have been used to identify the cell
parameters, including the ECM [23–28], ROM [29–31], and PCM [32–35]. The identification
methods used in the aforementioned literature are all based on nonlinear optimization
methods and naturally are faced with the same issues as in the time domain method.
For example, the same impedance data can be fitted using different equivalent circuits with
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different structures and numbers of circuit elements [36], thus the results could be quite
confusing. Moreover, many local optima may exist and it needs more effort to find the global
optimum. Recently, many researchers proposed to use the method distribution of relaxation
times (DRT) to evaluate the impedance data, which is based on linear optimization and
the identifiability issue is no more considerable [37–42]. However, an appropriate model is
still necessary for the interpretation of the DRT results. Until now, most models that have
been used to interpret the DRT results are based on the ECM and a direct relation to the
physicochemical parameters is still missing [42–47].

1.3. Comparison and Unification of Time Domain and Frequency Domain Parameter
Identification Methods

Both time domain methods and frequency domain methods characterize the cell pa-
rameters using a selected model. Due to the different properties of both methods, different
parameters may be estimated with different identifiabilities. Laue et al. [4] investigated the
sensitivity of the p2D model by considering the data both in the time domain and frequency
domain. However, no universal analysis was made regarding the identifiability of the
parameters with impedance data and the results were not validated. Wimarshana et al. [3]
investigated the parameter sensitivity by considering the measurement data in both the
time and frequency domains. Again the parameters were not identified and the results
were not validated and compared, which means that the effectiveness of the combined
procedures is still unknown. After the parameters have been identified, the estimation
results are usually simply validated by inserting the estimated parameters back into the
model and the model will be simulated in a few limited application scenarios, mostly only
with constant charging/discharging current. In most cases, the parametrized model gives
a moderate to low error. As a result, three important questions are raised regarding the
issues mentioned above: (1) How reliable are the parameters identified using the time
domain fitting? (2) If a combined method with both time and frequency domain data is
applied, which parameters will be better identified with impedance data and why? (3) Does
a combined identification method with both the time domain and frequency domain data
optimize the parameter identifiability and lead to better accuracy for the validation? In the
present work, we will focus on the three questions raised above and try to find the answers.

The rest of the work is organized as follows: in Section 2, the used models and
parameter identification procedures will be introduced; in Section 3, lab experiments are
conducted to identify the model parameters and investigate the identifiability with each
method; in Section 4, the results will be discussed; Section 5 concludes the work.

2. Theory and Model Development

In this section, the theoretical fundamentals, procedures, and algorithms used for
different parameter identification methods will be introduced. Then the methodology for
the parameter identifiability and correlation analysis will be explained.

2.1. Parameter Identification in the Time Domain

Since being proposed by Doyle and Newman [48–50], the p2D model has been widely
applied to the design, simulation, and parameter identification of LIBs. The p2D model
describes the internal physicochemical processes using a group of coupled PDEs, thus
requiring a high computation capability. Therefore, a direct application of the p2D model
to parameter identification is rather time-consuming and inefficient because the model
must be iteratively computed a large number of times depending on the parameter iden-
tifiability and convergence rate. As an alternative, the reduced-order model (ROM) has
been proposed by researchers to improve the computation speed, while the accuracy loss
is nearly negligible when the model order is properly chosen. In one of our previous
works, a ROM using the Chebyshev orthogonal collocation method has been developed
and validated [20]. According to the conducted simulation experiment, it is found that the
model with an (8, 5, 7) collocation point configuration in the anode, separator, and cathode,
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respectively, can well approximate the relevant transport processes and the computation
demand is much lower with a degree of freedom (DOF) of ca. 160. The simulation time of
one charging/discharging process tCH/DCH with Matlab/Simulink is about 0.2 s, the model
setting is summarized in Table 1.

Table 1. Summary of the model setting for ROM used for parameter identification test.

Model Type Polynomial Type (nn, ns, np) DOF tCH/DCH

ROM with p2D Chebyshev (8, 5, 7) ca. 160 0.2 s

To assess the quality of the parameter estimation results, various methods have been
proposed to quantify the identifiability of the estimated parameters. Commonly used meth-
ods include the once-at-a-time (OAT) method [3,51], Fisher information matrix (FIM) [12]
and Sobol’ indices [4,52]. In this present work, we choose to use Bayesian statistics com-
bined with the MCMC sampling algorithm for the parameter estimation and identifiability
characterization. The reasons for using the Bayesian MCMC method are as follows: (1) It
quantifies the global identifiability of the parameters because the parameter values are
randomly sampled in the whole defined parameter space. If the sample size is big enough,
an empirical distribution close to the real posterior distribution can be obtained. (2) The
posterior distribution of the parameters is able to characterize the unidentifiability when it
arises either from non-sensitivity or parameter correlation, in both cases, a posterior distri-
bution with a wide credible interval can be observed. (3) The credible interval and thus
the identifiability of parameters can easily be visualized and computed with the resulting
parameter distribution.

In practical applications, the measurement data is generally exposed to a normally
distributed noise with a zero mean:

Vm = V̂m + εe (1)

where Vm is the measured cell voltage, V̂m is the cell voltage without noise, εe is the
measurement noise, and the following distribution is assumed:

εe ∼ N (0, σ2
e ) (2)

where σe is the standard deviation of the noise and is set to 10 mV in this work. As usually
there is no information about the variance of the voltage noise, other proper values can
be used as well and the results should not vary because this is equivalent to adding a
constant to the logarithmic object function values. By using Bayes’ theorem, the conditional
probability of the model parameter θ, given the measurement data, is defined as:

P(θ|Vm) =
P(Vm|θ)P(θ)

P(Vm)
(3)

where P(θ) is the prior distribution for the parameters, which is based on the prior knowl-
edge of the parameter. In certain situations, enough information can be collected to define
an informative prior distribution for the parameter, for example the beta distribution.
In this present work, the prior distribution P(θ) is assumed to be uniformly distributed
between its upper and lower bound because there is no information available to define an
informative prior distribution. In our application, the measurement data Vm are given with
a certain constant distribution, thus P(Vm) can be assumed to be a constant. As a result,
the conditional probability can be reformulated as:

P(θ|Vm) ∝ P(Vm|θ) (4)

The probability of observing the measurement data Vm is equivalent to that of observing
the measurement noise εe given the model parameter θ and can be defined as follows:
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P(Vm|θ) =
Nm

∏
i=1

1
σe
√

2π
exp

−1
2

(
Vm,i − V̂m,i(θ)

σe

)2
 (5)

where i represents the index of the measurement data points and Nm is the total number of
the measured voltage data points. To sample the parameter space, the adaptive Metropolis–
Hastings MCMC algorithm is used to generate the parameter samples [53], the sample size
for each test is set to 50,000 and the desired acceptance rate is set to 0.23 [54].

While the OAT metrics only characterize the sensitivity and possible correlation of a
parameter at a specific location, the Bayesian MCMC sampling results can well characterize
both properties globally. Therefore, to quantify the general identifiability of a parameter,
the following sensitivity index (SI) S is defined:

S =
θmax − θmin

L (6)

where θmax and θmin are the upper and lower bound of the parameter, respectively, and
L is the width of the 95% credible interval (CI) of the parameter. Unlike the equal-tailed-
interval (ETI), in this work the CI of each parameter is calculated using the highest-density-
probability (HDP) concept, where the interval with the highest probability density is
chosen to calculate the CI, as some parameters, such as the diffusion coefficients, can
range for multiple orders of magnitude, the logarithmic scale is used to calculate the SI.
A high sensitivity index implies that the parameter is confined in a small credible interval
compared to the bounds and thus can be reliably estimated, whereas a low SI indicates that
the parameter is practically unidentifiable.

2.2. Parameter Identification in Frequency Domain

According to our previous works on the interpretation of a DRT spectrum using a
physics-based impedance model, the diffusion coefficient in the solid and liquid phases
and the interface parameters such as the kinetic reaction rate constant and the film resis-
tance can be directly determined, if the related geometric parameters are known. For the
Bruggeman coefficients and the conductivities in the solid and liquid phases, the corre-
sponding contribution only appears in the ohmic resistance of the cell and possibly also in
the high-frequency dispersion part of the impedance/DRT. The Bruggeman coefficients also
contribute to the effective transportation in the liquid phase. However, the bulk value of the
liquid diffusivity is usually unknown, thus it is still impossible to estimate the Bruggeman
coefficients using the liquid phase diffusion. Considering that the dispersion of the DRT
spectra in the high-frequency area is usually blurred by contributions of other processes
in practical applications and it is impossible to separate the impedance contribution from
the anode, separator, and cathode, the conductivity in the solid/liquid phase and the
Bruggeman coefficient can be considered as unidentifiable with the DRT method.

Rabissi et al. [55] investigated the sensitivity and identifiability of the physicochemical
parameters with a physicochemical impedance model. However, no general conclusions
have been made with the impedance model regarding the parameter identifiability. To have
a quantitative conclusion on the identifiability, a numerical analysis is still necessary. Based
on the analysis made in our previous works, where the analytical expressions for the DRT
have been derived and interpreted, a universal conclusion can be made regarding the
identifiability of the physicochemical parameters used in the p2D model. Due to the fact
that the DRT spectrum (τ domain) is actually equivalent to the raw impedance data ( f
domain), the conclusions made with the DRT spectrum are also valid for the impedance.
In the DRT spectrum, a process is characterized mainly by two key features: (1) the time
constant of the peak (or the dominant peak) representing the process; (2) the area under the
peak (or the dominant peak) which represents the polarization resistance of the process.
As a result, a parameter is identifiable only when the following conditions are fulfilled:
(1) the time constant of the process related to the parameter cannot be fully coinciding
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with that of another peak at all SOCs; (2) the magnitude of the peak must be clearly visible
and evaluable (at least significantly higher than noise). If any of the two aforementioned
conditions is not fulfilled, the parameter will be unidentifiable, two examples where
condition 1 or 2 are not fulfilled are shown in Figure 1. It is worth mentioning that here
we assume that with each peak/process we aim to identify only one parameter, otherwise
the analytical expression of the DRT spectrum must be analyzed to assess if the multiple
parameters can be identified uniquely at the same time.

Figure 1. The two scenarios where the corresponding processes/parameters are unidentifiable with
(a) overlapping peaks and (b) one peak of a negligible polarization resistance.

In summary, according to the analytical expressions of the DRT spectrum using a physico-
chemical impedance model, a clear deterministic conclusion can be made on the identifiability
of the kinetic and transport parameters. In ideal case that each process has a considerable
polarization resistance and is not fully overlapping with any other process, the identifiability
of the kinetic and transport parameters of interest are summarized in Table 2.

Table 2. Summary of parameter identifiability in the frequency domain.

Parameter Symbol Identifiability Remark

Reaction rate constant k identifiable EIS at multiple SOCs may be necessary
SEI film resistance Rf identifiable -
Solid diffusivity Ds identifiable particle geometric information needed

Liquid diffusivity Dl identifiable usually only an average diffusivity can be estimated due to overlapping
peaks of each electrode layer

Bruggeman coefficient α unidentifiable -
Solid phase conductivity σ unidentifiable may be identifiable in extreme case
Liquid phase conductivity κ unidentifiable may be identifiable in extreme case

2.3. Parameter Correlation Analysis

The reason for the structural non-identifiability is that the effect of the change of one pa-
rameter can be compensated by a coordinated change of some other parameters, thus leading
to the same model output [56]. In such a situation, no unique global optimal solution exists.
If the fitted model has a simple algebraic structure, the parameter correlation can be easily
identified by directly inspecting the structure of the equations. However, the physicochemical
model for a LIB consists of a few PDEs and has a complicated mathematical structure, thus
making it impossible to directly identify the parameter correlation. To the author’s best
knowledge, the parameter correlation analysis found in the literature has only been conducted
on every two parameters, namely pairwise; moreover, the correlation analysis has merely
been conducted by simply plotting the parameter values against each other and no theoretical
model has been used or proposed. In this work, we try to identify the possible quantitative
correlation among multiple parameters based on a theoretical model.

The essence of fitting a battery model to the measured voltage curve lies in the calculation
of the overpotential under the given parameter set and input load profile, because the OCV-
SOC relation can be relatively accurately measured using half cells and regarded as time-
invariant within the measurement period and does not depend on the fitting parameters.
Because the p2D model has no closed-form analytical solutions, we try to approximate
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the cell overpotential using the concept of impedance and seek the possible correlation
relationship among the parameters. According to the origin, the total cell overpotential can be
divided into the liquid phase diffusion overpotential, the solid phase diffusion overpotential,
the conduction overpotential in the liquid and solid phases, and the overpotential caused
by the interfacial processes. Accordingly, we use the diffusional resistance, charge transfer
resistance, and ohmic resistance to analyze the possible correlation:

ηcell = ηl,diff + ηs,diff + ηs,R + ηl,R + ηct + ηf (7)

where the subscripts l and s represent the processes related to the liquid and solid phases,
respectively; diff, ct, R, and f represent the processes related to the diffusion, charge transfer,
ohmic conduction, and film, respectively. Each component can be further separated into
the contributions from the anode, separator, and cathode, if the corresponding components
exist. The corresponding diffusion and activation impedance components are defined
as [57,58]:

ηl,diff =
RT(1− t+)le
2F2cl,0Dl,eff

∝
1

Dl,eff
(8)

ηs,diff =

(
−∂U

∂cs

)
Rp

FDs
∝

1
Ds

(9)

ηct =
RT

Fk(cs,max − cs)0.5c0.5
s c0.5

l,0
∝

1
k

(10)

ηf ∝ Rf (11)

For the overpotential caused by the conduction process in the solid and liquid phases, we
choose to model the corresponding components according to the definition of Nyman et al. [59]
with the single particle assumption. As a result, the following definitions can be obtained:

ηs,R =
le

ε1+α
s σs

∝
1

ε1+α
s σs

(12)

ηl,R =
le

ε1+α
l κl

∝
1

ε1+α
l κl

(13)

where le is the thickness of the electrode or separator. We can easily see that all the overpo-
tential components (left side of Equations (8)–(13)) have the unit of Ωm2 and qualitatively
reflect the impact of the parameters on the cell overpotential. The total cell overpotential
is inversely correlated with the diffusivity, reaction rate constant, and conductivity and
is proportional to the film resistivity. Intuitively, this is also easy to comprehend, since a
higher kinetic or transport parameter will lead to a faster material transport and thus lower
overpotential. Consequently, a possible linear correlation is sought among the following
parameters (combinations) of each electrode:

θcorr =

 1
Dl,n,eff

,
1

Dl,sep,eff
,

1
Dl,p,eff

,
1

Ds,n
,

1
Dl,p

,
1

ε1+αn
s,n σs,n

,
1

ε1+αn
l,n κn

,
1

ε1+αn
l,n κn

,
1

ε
1+αp
l,p κp

,
1

ε
1+αp
s,p σs,p

,
1
kn

,
1
kp

, Rf

 (14)

To eliminate the possible influence of the parameter magnitude, each parameter
(combination) sample vector is normalized by dividing it by the mean value of each sample
vector, and the normalized vector is defined as θ

i
corr. To determine the correlation among

the terms defined above, a linear optimization problem is defined. The linear correlation
coefficients are determined by solving the following linear least square problem:
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ρ(θ
i
corr) = argmin


∥∥∥∥∥ Nθ

∑
j=1,j 6=i

ai
jθ

j
corr + βi − θ

i
corr

∥∥∥∥∥
2

 (15)

where ρ represents the coefficient vector corresponding to each tested component sample
vector and Nθ is the total number of the tested components. To assess the fitting quality and
further investigate if a correlation exists, the parameter samples are again reconstructed
using the solved correlation coefficients:

θ
∗
corr =

Nθ

∑
j=1,j 6=i

ai
jθ

j
corr + βi (16)

where θ
∗
corr is the reconstructed parameter sample vector. To visualize the fitting quality

and the possible correlation, the original parameter samples are plotted against the recon-
structed parameter samples θ

∗
corr using the calculated coefficients in Equation (15). If a

correlation is existent, then the data points (θcorr, θ
∗
corr) should lie close to the straight line

θ
∗
corr = θcorr. If the reconstructed data points deviate far from the straight line θ

∗
corr = θcorr,

then the tested component is not correlated with other components regarding the defined
parameter combination. It is worth mentioning here that even if no correlation can be
characterized using the defined relationship, the possibility that the tested component is
correlated with other parameters still cannot be excluded, because they may be correlated
by another unknown relationship. This phenomenon may especially appear in practical
applications because the used model generally cannot describe the real physicochemical
processes in an absolutely precise manner.

2.4. Influence of the External Ohmic Resistance on the Parameter Estimation

In practical applications, besides the conduction process described by the p2D model,
additional ohmic resistance may arise from the cell contact and current collector. While the
p2D model does not take the external ohmic resistance of various origins, such as current
collector and cell contact resistance, into consideration, it may have a considerable impact
on the parameter estimation. When the external ohmic resistance is not considered in the
model, then the ohmic resistance of the cell arises only from the conduction process in
the solid and liquid phases inside the battery cell. However, when the external ohmic
resistance is practically existent but not considered by the model, it can be suspected that
the conductivity and Bruggeman coefficients will almost certainly be underestimated and
overestimated, respectively, because the additional ohmic resistance must be compen-
sated. Reimers et al. investigated the current distribution inside the current collector (CC)
and proposed a model to account for the CC ohmic resistance for different tab arrange-
ments [60]. Generally, the ohmic resistance of an 18,650 round cell measured by impedance
spectroscopy ranges from a few milliohms to a few tens of milliohms. Through a simple
qualitative calculation using the model given by Reimers et al., it can be seen that the CC
ohmic resistance is generally non-negligible compared to the total ohmic resistance of a
cylindrical cell. In this work, the impact of the external ohmic resistance on the parameter
identifiability will be investigated.

2.5. Influence of Parameter Identification Procedure on the Identifiability

While parameter estimation using only time domain or frequency domain methods
can be frequently found in the literature, a comprehensive investigation and comparison
of parameter identification using both time domain and frequency domain methods can
seldomly be found. It has been widely acknowledged that the EIS can provide reliable
parameter estimation results, especially for highly dynamic processes [36]. As a result,
an important research question naturally arises: would a combined method using both
time domain and frequency domain methods significantly optimize the identifiability
and reduce the parameter uncertainty? In the present work, we will try to compare the
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parameter estimation with only the time domain method and with the method combining
the measurement data in both the time and frequency domains. For the time domain
method, all parameters are estimated by fitting the p2D model. According to the conclusions
made in Section 2.2 on the identifiability of the kinetic and transport parameters in the
frequency domain, for the combined method, the selected kinetic parameters including the
kinetic reaction rate constant, solid diffusivity, film resistance, and their SOC dependence
are identified by the DRT method and the parameter values are taken from our previous
work [61,62]. Then these parameters are directly substituted into the model as known
parameters, other parameters are still estimated by fitting the p2D model, which results
in a reduced number of fitted parameters. In this work, we refer to the former model as
the full model and the latter as the combined model. In this work, we will not choose to
identify the liquid phase diffusivity in the frequency domain due to the following reasons:
(1) for fresh cells, the electrolyte degradation and thus the liquid diffusion overpotential
can basically be neglected; (2) it is impossible to identify the bulk liquid diffusivity and the
Bruggeman coefficients separately, as mentioned in Section 2.2.

Altogether, four cases for parameter identification will be investigated in this present
work to characterize the impact of the external ohmic resistance and parameter character-
ization procedures on parameter identifiability and accuracy. The estimated parameters
and corresponding models are summarized in Table 3, a summary of all estimated and
substituted parameters can be found in Table 4.

Table 3. Summary of the investigated model cases and fitted parameters.

Case Circuit Model Fitted Parameters Substituted Parameters

1 1–12 -

2 1–12 -

3 6–12 13–17

4 6–12 13–17

Table 4. Summary of all estimated and substituted parameters in the time and frequency domains.

Number Parameter Scale Bound Reference

Fitted Parameters with p2D Model

1 Bruggeman coefficient αn, (-) linear [0.5, 3.82] [63,64]
2 Bruggeman coefficient αs, (-) linear [0.5, 2.87] [63–65]
3 Bruggeman coefficient αp, (-) linear [0.5, 3.14] [63,64,66,67]
4 Anode solid diffusivity Ds,n,lumped, (m2s−1) log [−15, −12] [63,64]
5 Cathode solid diffusivity Ds,p,lumped, (m2s−1) log [−15, −12] [63,64,66,67]
6 Liquid bulk diffusivity Dl,0, (m2s−1) log [−11, −8.15] [68–71]
7 Liquid bulk conductivity κ0, (Sm−1) log [−0.82, 0.42] [68,70–72]
8 Anode bulk solid phase conductivity σn, (Sm−1) log [0, 2] [63]
9 Cathode bulk solid phase conductivity σp, (Sm−1) log [−3.1, −0.47] [63,67]

10 Anode film resistance R f ,lumped, (Ωm2) log [−5, −1] assumed
11 Anodic reaction rate constant kn, (ms−1) log [−12, −9] [63]
12 Cathodic reaction rate constant kp, (ms−1) log [−12, −9] [63]

Paremeters Determined in Frequency Domain

13 Anode solid diffusivity Ds,n(SOC), (m2s−1) [62]
14 Cathode solid diffusivity Ds,p(SOC), (m2s−1) [62]
15 Film resistivity R f (SOC) (Ωm2) [61]
16 Anodic reaction rate constant kn, (ms−1) [61]
17 Cathodic reaction rate constant kp, (ms−1) [61]
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3. Experiment

The commercial cell used in this work is a 3.35 Ah NMC811/SiC LIB (INR18650-MJ1,
LG Chem, Seoul, Kroea), which has been investigated in our previous works as well. For
parameter estimation in the time domain using the p2D model, the cell was first fully
charged to 100% SOC using a CCCV charging protocol and then relaxed for about 6 h. Then
the cell was discharged using a 1 C current rate until the lower voltage limit was reached.
The test temperature is 25 ◦C. The 1 C discharging data was then used for the parameter
estimation with the Bayesian statistics and MCMC sampling. The MJ1 cell has a single
tab design [63] and the ohmic resistance caused by the ohmic conduction in the current
collector can be calculated as follows [60]:

RCC =
1
3

LCC

(
ρa

Wata
+

ρc

Wctc

)
≈ 11 mΩ (17)

where ρa and ρc are resistivities of the anode and cathode CC, respectively, LCC is the length
of the current collector, Wa and Wc are the widths of the anode and cathode CC, ta and
tc are the thicknesses of the anode and cathode CC. Another origin of ohmic resistance
is the contact resistance between the current collector and the active material, which has
been characterized to be about 1 mΩ in our previous work [61]. The ohmic resistance for
the measurement cable and clamp is assumed to be 1 mΩ. As a result, the total external
ohmic resistance used for the parameter estimation study is 13 mΩ. For each case of
parameter identification, 50,000 samples were collected by the MCMC sampling algorithm,
and the target acceptance rate is set to be 0.23 [54]. For the evaluation of the results, only
the samples after the burn-in period will be used for the data evaluation. The lower and
upper bounds for the parameter estimation are set by referring to the literature and are
summarized in Table 4. Because some parameters can range for several orders of magnitude,
the logarithmic scale is used for the representation and identifiability calculation of the
parameters. To ensure completeness and avoid possible errors caused by the limited
number of references, some values have been adapted moderately.

After the parameter estimation has been conducted and the parameters have been
selected for validation, two application scenarios each with a time period of three hours are
used to validate the parameter estimation results, then the accuracy and effectiveness of the
four investigated cases in each scenario are compared. For each case, the parameter values
used for validation will be selected according to their identifiability and based on a defined
principle, which will be explained in detail later. The load profiles used for the validation
and the distribution of the current rate are shown in Figure 2. All lab experiments were
conducted in a thermal chamber (Vötsch Industrietechnik GmbH) combined with a battery
cycler (CTS, Basytec) under a temperature of 25 ◦C. The overall workflow for the parameter
identification and validation is shown in Figure 3.
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Figure 2. Dynamic load profile used for the validation of parameter estimation. (a) current profile;
(b) distribution of the current rate.
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𝜃

Figure 3. Workflow for the parameter identification and validation conducted in the present work.
The different colors in the simulation results and error analysis sections represent the results of
different test cases.

4. Results and Discussion

In this section, the parameter sampling results will be shown and discussed, then
the estimated parameters will be used to characterize the simulation performance in two
application scenarios with highly dynamic load profiles.

4.1. Parameter Distribution

The parameter sampling results are shown in Figure 4. In the following sections,
the results for each parameter will be discussed.

PD
F

C
D

F

PD
F

C
D

F

PD
F

case 1 case 2 case 3 case 4

C
D

F

Figure 4. Probability distribution of the sampled parameters in the four cases. The probability density
distribution function (PDF) is shown with the histogram and the cumulative distribution function
(CDF) for each PDF is shown with a dashed line using the same color as the PDF.

Bruggeman coefficients. The posterior distributions of the investigated parameters for
the first two cases have a similar form and the parameters have a limited credible interval.
As a result, the Bruggeman coefficients in the first two cases can be regarded as practically
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identifiable. For the third and fourth cases, where the corresponding kinetic and transport
parameters measured in the frequency domain with a SOC dependence are substituted,
the form of the distribution has changed significantly. The Bruggeman coefficients for
the negative electrode and separator show an extended distribution with a much wider
credible interval compared to the first two cases. We can first exclude the possibility that
the change is caused by the external ohmic resistance, as the parameter identifiability in
the first two cases and in the last two cases is similar, respectively. We assume that this
change can be attributed to the substituted transport parameters with SOC dependence,
which has changed the form of the defined parameter space. It can be concluded here that
the substitution of parameters with SOC dependence can have a significant impact on the
parameter identifiability.

Solid phase diffusivity. The solid phase diffusivities are only estimated in the first
two cases and are substituted as known parameters in the third and fourth cases. In both
cases, the PDFs have similar forms. For the negative electrode, the PDFs have a clearly
defined lower bound and are approaching the upper bound of the parameter, which is
consistent with the fact that the diffusion process with a high diffusivity is no longer rate
limiting. Therefore, the solid diffusivity in the anode is assumed to be unidentifiable,
where only the lower bound can be determined. In contrast to the anode diffusivity,
the cathode diffusivity shows a clearly defined peak for the PDF and a narrow credible
interval. Moreover, the diffusivity in the first case is slightly higher than that in the
second case. It is worth noticing that the solid phase diffusivity identified using time
domain fitting has approximately the same order of magnitude as the value identified
in the frequency domain [62], which implies that the diffusivity identified using time
domain fitting may be used as an approximated value when a frequency domain based
identification is not available.

Liquid phase diffusivity. The liquid phase diffusivity in the first two cases shows
a distribution form similar to the solid diffusivity in the anode, where a clearly defined
lower bound can be observed but the distribution approaches the upper bound, which
leads to a non-rate-limiting behavior. In the third and fourth cases, though a peak can
be seen, the credible interval is rather large compared to the parameter bound, thus the
liquid diffusivity is practically unidentifiable in all cases. The unidentifiability is possibly
attributed to the fact that in fresh cells with nondegraded electrolytes, the overpotential
contribution caused by the liquid phase diffusion only amounts to a tiny part of the
overall overpotential.

Liquid phase conductivity. The conductivity in the liquid phase can be well identified
with a narrow credible interval in the first two cases, the identified values are slightly lower
than those identified in the third and fourth cases. In the third and fourth cases, the credible
interval becomes significantly wider and the parameter identifiability is lower than in the
first two cases, this may imply that the liquid phase conduction is no longer a rate-limiting
factor in the model. On the other hand, the distribution form has changed significantly as
well, which can be only explained that the parameter space must have been changed by
the SOC dependence of the substituted parameters. The phenomenon observed above is
consistent with the fact that in fresh cells the liquid phase conduction is generally negligible
and cannot be effectively identified.

Solid phase conductivity. The solid phase conductivity in the negative electrode has
a wide credible interval and is practically unidentifiable in all cases, which is in line with
our expectation that the solid phase conduction process in the anode is usually negligible
due to the high conductivity of graphite [73]. The solid phase conductivity in the cathode
in the first two cases has a wide credible interval and thus is unidentifiable, while in the
third and fourth cases the parameter distribution has a well-defined credible interval and
is thus identifiable. It is again worth noticing that the substitution of the SOC-dependent
parameters in the model can significantly change the form of the posterior distribution
and parameter identifiability irrespective of the external ohmic resistance. The parameter
identified in the third case is lower than that in the fourth case by about an order of
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magnitude, which is very likely caused by the inclusion of the external ohmic resistance
in case 4. The estimated solid phase conductivity in the fourth case is close to the value
measured using other methods [74], thus we tend to believe that the estimated value is
plausible. Another phenomenon worth noticing is that the Bruggeman coefficient of the
cathode in case 3 is lower than that in case 4, but the relation for the solid conductivity is
reversed. Through a simple calculation, it is found that in both cases the effective solid
conductivities in the cathode are nearly the same. By inspecting the equation for the current
distribution in the liquid phase, only the effective solid phase conductivity appears and the
bulk conductivity does not appear anywhere else. Theoretically, the posterior distribution
of the bulk solid conductivity in cathode should give a wide credible interval as in the first
two cases, but according to the results, the parameter turns out to be well identifiable. This
phenomenon can only be ascribed to the SOC dependence of the substituted parameters.
Due to the observed change of the posterior distribution in cases 3 and 4 compared to
that in cases 1 and 2, we can basically draw the conclusion that the combined method can
indeed change the identifiability of some parameters and obtain more reasonable results.

Interfacial parameters. The three interfacial parameters, namely the kinetic reaction
rate constant in both electrodes and the film resistance in the SiC anode, are all unidentifi-
able in all cases. All PDFs show a credible interval almost comparable with the defined
parameter range and a reliable estimation of each parameter is impossible. The results
highlight the importance of choosing suitable characterization methods for different model
parameters. In most cases, only constant charging/discharging data is selected to estab-
lish the identification problem; however, in such cases the current profile generally does
not contain any considerable component with a frequency comparable to the character-
istic frequency of the interfacial processes, which usually ranges from 100 Hz to 1000
Hz [41,61,75].

From the parameter estimation results and discussions made above, the following
conclusions can be made: (1) while the inclusion of the external ohmic resistance may
slightly change the probability distribution of the parameters, it basically does not change
the identifiability of the parameters; (2) the substitution of identified parameters with SOC
dependence may significantly change the posterior distribution of the parameters and
identifiability of the parameters; (3) interfacial parameters may be hard or even impossible
to identify using the time domain fitting method due to the lack of dynamic current
component. The results for the calculated sensitivity indices and credible intervals of the
parameters are summarized in Table 5.

Table 5. Summary of the calculated SI and CI of the parameters

Parameter
Case 1 Case 2 Case 3 Case 4

S CI S CI S CI S CI

αneg 18 [0.50, 0.69] 96 [0.50, 0.53] 5 [0.5, 1.11] 5 [0.50, 1.23]
αsep 5 [2,44, 2.87] 23 [2.77, 2.87] 1 [0.50 2.68] 1 [0.50, 2.71]
αpos 8 [0.72, 1.03] 16 [0.78, 0.94] 4 [0.74, 1.34] 4 [1.15, 1.79]

Ds,neg * 16 [−12.19, −12] 22 [−12.13, −12] - - - -
Ds,pos * 14 [−14.08, −13.87] 25 [−14.24, −14.12] - - - -
Dl,0 * 6 [−8.63 −8.15] 4 [−8.81, −8.15] 3 [−9.36, −8.29] 4 [−8.92, −8.16]
κl,0 * 7 [−0.26, −0.08] 15 [−0.36, −0.28] 3 [0.03, 0.42] 2 [−0.09 0.41]
σneg * 1 [0 1.97] 1 [0.05, 2.00] 1 [0, 1.93] 1 [0, 1.95]
σpos * 1 [−3.07, −0.47] 1 [−3.04, −0.47] 29 [−1.74, −1.65] 9 [−1.06, −0.77]

R f ,neg * 1 [−4.91, −1] 1 [−4.99, −1.14] - - - -
kneg * 1 [−11.97, −9] 1 [−11.94, −9] - - - -
kpos * 1 [−11.97, −9] 1 [−11.91, −9] - - - -

* logarithmic scale; CI = 95% credible interval.
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4.2. Parameter Correlation Analysis

In the last section, the posterior parameter distributions have been characterized,
where some parameters show a wide distribution and prove to be unidentifiable. An-
other important yet unsolved issue is: does any correlation relationship exist among the
unidentifiable parameters? In Section 2.3, the principle for the parameter correlation test
and the parameter combinations used for the test have been introduced. In this section,
the parameter samples will be tested for possible correlation. The results for the sample
evaluation are shown in Figures 5–9. To infer whether one parameter is possibly correlated
with other parameters, the original samples, and the reconstructed sample vectors are
plotted on the same axis. To visualize with which processes the tested process is correlated,
a parameter correlation chart is generated and shown in Figure 10. In the correlation
chart, the number in each column represents the correlation coefficient calculated using
Equation (15). Each group of calculated coefficients is scaled by dividing the coefficients
by the maximum absolute value of the coefficients in this group so that all values will be
transformed into the interval [−1, 1] and are comparable.

The parameter correlations for cases 1 and 2 are shown in Figures 5 and 6. It can
be observed that in both cases the liquid conduction and diffusion in all electrodes and
the solid diffusion in the cathode show an obvious correlation behavior, which indicates
that these processes are correlated with other processes. An unexpected result is that the
solid conduction process in the cathode and the last three kinetic processes seem not to be
correlated with any processes despite that the four parameters corresponding to the four
processes have a wide posterior distribution. The solid conduction in the anode is excluded
from the investigation here due to the fact that the solid conductivity in the graphite anode
is orders of magnitude higher than that in the liquid phase and thus has only negligible
contribution to the model output [73]. Berliner et al. [13] investigated the correlation
relationship for the diffusion coefficients and reaction rate constant using a synthetic
voltage curve and a correlation relationship between 1/kneg and 1/kpos was discovered. We
assume that this correlation may arise from the low current rate used for the experiment.
In such cases, the overpotential is less influenced by the diffusion and the fast kinetic
processes at the particle–electrolyte interface are dominating. Another possible reason for
this unexpected phenomenon is that the correlation relationship in Equation (10) may be
distorted by the time-variant concentration in the solid particles and in the electrolyte. Since
the correlation has been well observed in the work of Berliner et al. [13], we assume that this
could be attributed to the nonuniform liquid phase concentration under 1 C discharging
rate. Furthermore, the clearly defined correlation found in [13] may be attributed to the
synthetic data generated using a well-defined model.

Figure 5. Results of parameter correlation for case 1. It can be observed that all processes except
the conduction in the solid phase, the solid diffusion in the anode, and the interfacial processes are
correlated with each other in different parameter ranges.
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Figure 6. Results of parameter correlation for case 2. Similar to the results of case 1, it can be observed
that all processes except the conduction in the solid phase, the solid diffusion in the anode, and the
interfacial processes are correlated with each other in different parameter ranges.

To find out whether the unidentifiability arises from the non-sensitivity or correlation
relationship of the parameters, the objective function value inside the exponential function
in Equation (5) is plotted for both case 1 and case 2 for each possible parameter combination
(see Figure 7), the results for case 1 are shown in the upper triangular part of the figure
and for case 2 in the lower triangular part. In Figure 7, it can be seen that for case 1 a
clearly defined oval isosurface (marked with a red dashed line) can be seen for some
parameter combinations, where all parameter combinations inside the ellipse have almost
the same objective function value. For the solid conductivity in the cathode, no obvious
correlation pattern can be observed, all data points with similar objective function values
are concentrated in the region close to the lower bound, which coincides with the posterior
distribution. The film resistance is slightly negatively correlated with the anode reaction
rate constant. Similarly, a negative correlation is also seen between the anode and cathode
reaction constant. Moreover, the found correlation relationship exists only in a limited
area of each parameter, for the anode ca. 6× 10−11 ∼ 2× 10−10 ms−1, for the cathode
ca. 3 × 10−11 ∼ 1 × 10−10 ms−1, which corresponds to the peak area in the posterior
distribution for both parameters (see Figure 4). An obvious positive correlation can be
observed between the cathode reaction constant and the film resistance. This may be caused
by the coordinated change of the charge transfer overpotential between the anode and
cathode. The phenomena shown above indicate that the investigations and conclusions
made using synthetic data may not be valid in practical applications, which highlights the
necessity of a comprehensive parameter identifiability analysis in practical applications.
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Figure 7. Two-dimensional plot of the objective function value for case 1 (upper triangular) and case 2
(lower triangular). For case 1, an obvious correlation can be observed between the film resistance
and the anodic reaction rate constant, film resistance and the cathodic reaction rate constant, and
anodic reaction rate constant and cathodic reaction rate constant. For case 2, no correlation pattern
can be seen.

For case 2, it can be seen that no clearly defined isoline or isosurface is existent for
any parameter combination, and all global optimum points are nearly evenly distributed.
This phenomenon may have two origins: (1) the isoline or isosurface lies outside the defined
parameter range and cannot be observed here; (2) these parameters have only negligible
influence on the model output.

For cases 3 and 4, similar behavior can be observed in Figures 8 and 9. For all processes
except for the solid conduction in the anode, a good correlation can be observed. The solid
conduction in the anode is not well correlated with other processes, we assume that
this is attributable to the higher conductivity and negligible overpotential caused by the
graphite anode. According to Figure 10c,d, all processes investigated in the correlation
chart are correlated and a unique optimal parameter combination does not exist. It is worth
mentioning here that although the solid conduction in the cathode shows a correlation
relationship with other processes, the solid conductivity in the cathode has a narrow
credible interval (see Figure 4) and is thus regarded as identifiable.
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Figure 8. Results of parameter correlation for case 3. A correlation relation can be observed for each
process except for the solid conduction in the anode.

Figure 9. Results of parameter correlation for case 4. A correlation relation can be observed for each
process except for the solid conduction in the anode.
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Figure 10. Correlation chart for cases 1–4, where each column in the matrix represents the correlation
coefficients with the tested process.

4.3. Selection of Parameters from Posterior Distributions

In previous sections, a comprehensive identifiability and correlation analysis has been
conducted, the results have been shown and explained in detail. However, the resulting
parameter distributions cannot be used as the input for the p2D model to validate the
results; therefore, a point estimate must be selected from the posterior distributions. For the
experimental validation, generally the expected value of each parameter is chosen and
substituted into the model [10]. Nevertheless, the prerequisite for selecting the expected
value as the point estimate is that either all parameters are not correlated or they are only
simply linearly correlated so that for the expected values the linear correlation relationship
is still valid. For example, if we assume that the parameters θ1 and θ2 are linearly correlated
and the following relation holds:

θ1 = αθ2 + β (18)

where α and β are correlation constants. If the expected value operator is applied to both
sides of Equation (18), the following equation is obtained:

E[θ1] = αE[θ2] + β (19)

which implies that for both θ1 and θ2 the expected value can be selected as the point estimate.
However, if θ1 and θ2 are not linearly but instead nonlinearly correlated, for example:

θ1 =
α

θ2
+ β (20)

and then the expected value operator is again applied to both sides of the equation, the fol-
lowing equation can be obtained:

E[θ1] = αE
[

1
θ2

]
+ β 6= α

1
E[θ2]

+ β (21)
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This equation clearly indicates that if the parameters are not linearly correlated, the ex-
pected values of the parameters will not fulfill the correlation relationship. Simply selecting
the expected value for each correlated parameter may lead to an unexpected error. In this
work, the parameter combination used for the experimental validation will be selected
according to the following principle:

1. For parameters with a small credible interval (irrespective of identifiability), the ex-
pected value is selected.

2. For parameters that are practically unidentifiable and there exists no correlation with
other parameters, the expected value is selected.

3. For parameters that are correlated, the expected value of the parameter with the
highest sensitivity index will be calculated and selected for validation, the values of
other parameters will be determined accordingly so that the correlation among the
chosen parameters is still valid. If multiple parameter combinations are possible, then
the combination closest to the expected values is chosen.

According to the principles explained above, the determined parameter values are
summarized in Table 6.

Table 6. Summary of the parameter values selected for the validation test.

Parameter Scale Case 1 Case 2 Case 3 Case 4

αneg linear 0.554 0.511 0.753 0.870
αsep linear 2.736 2.843 1.256 2.756
αpos linear 0.865 0.863 0.801 1.105

Ds,neg log −12.059 −12.042 - -
Ds,pos log −13.986 −14.188 - -
Dl,0 log −8.323 −8.386 −8.964 −9.092
κl,0 log −0.190 −0.327 0.068 0.064
σneg log 0.531 1.967 0.729 0.793
σpos log −2.447 −1.809 −1.696 −0.920

R f ,neg log −2.533 −3.661 - -
kneg log −10.191 −10.352 - -
kpos log −10.595 −9.118 - -

4.4. Validation with Dynamic Load Profile

The results for the parameter validation with the two application scenarios are shown
in Figure 11. In scenario 1, it can be observed that the full model without external ohmic
resistance achieves the worst simulation performance, where the maximum error reaches
about 400 mV and the root-mean-square error (RMSE) is calculated to be 124.7 mV. The volt-
age window of the investigated cell is between 2.5 V and 4.2 V, if the OCV curve is
approximated with a straight line, then an RMSE of 124.7 mV corresponds to a 7.3% aver-
age SOC error, which is unacceptable for a state estimation application. Although in all
cases the parameters are identified with the same discharging profile and the best objective
function values are almost the same and show no qualitative difference, the most primitive
model, namely where all parameters are fitted at the same time and without considering
the external ohmic resistance, shows an unacceptable error and fails to model the dynamic
operation. The results for the full model with the external ohmic resistance become much
better with an RMSE of 35.8 mV, the error is below 100 mV at most times, but a maximum
error of about 200 mV can still be seen. The combined model without the external ohmic
resistance achieves a qualitative improvement, the RMSE is 17.4 mV and corresponds to a
1% average SOC error, assuming a linear relationship between the cell voltage (2.5∼4.2 V)
and the SOC (0∼100%). The combined model with the external ohmic resistance achieves
the best performance with an RMSE of only 12.6 mV, corresponding to a 0.7% average
SOC error.

The results for scenario 2 are similar to that in scenario 1 and the error in all cases is
slightly lower, again the combined model with external resistance achieves the lowest error,
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thus justifying the application of the combined procedure for parameter identification.
To have an overall comparison of the simulation performance for the four cases, the root-
mean-square error (RMSE) has been calculated and listed in Table 7.
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Figure 11. Validation results for for all cases with (a) the voltage profile in scenario 1, (b) voltage
error in scenario 1, (c) voltage profile in scenario 2, and (d) voltage error in scenario 2.

Table 7. Calculated RMSE values for the validation of each case.

RMSE (mV) Case 1 Case 2 Case 3 Case 4

scenario 1 124.7 35.8 17.4 12.6
scenario 2 117.8 31.7 16.1 11.8

5. Conclusions and Outlooks

In this present work, parameter identifiability with the p2D model in four cases is
investigated and analyzed: models with or without external ohmic resistance, a model
with all chosen parameters fitted, and a model where the kinetic parameters determined
in the frequency domain are substituted (combined model). The results of the parameter
space sampling indicate that the external ohmic resistance has a considerable impact on the
parameter identifiability, especially on the bulk conductivity in the solid and liquid phases,
while the results for the Bruggeman coefficients in each electrode layer only show small
differences. In the first two cases, all interface parameters are practically unidentifiable.
For the third and fourth cases, where the values for the kinetic parameters determined using
the EIS are substituted, the parameter identifiability results have changed. Though the
Bruggeman coefficients still cannot be uniquely identified, the bulk conductivities in the
liquid phase and solid conductivity in the cathode are significantly better compared with
the values determined using different methods from the literature.

The parameter correlation analysis indicates that the ohmic conduction and diffusion
processes in the solid and liquid phases are generally correlated, given the constant dis-
charging profile used for the parameter identifiability analysis. The only parameter that can
be identified while considering the external ohmic resistance and the SOC dependence is



Batteries 2022, 8, 222 21 of 24

the solid conductivity in the cathode. Therefore, it is worth mentioning again that although
the constant charging/discharging voltage profile can be easily fitted using a properly cho-
sen nonlinear optimization algorithm to extract some physicochemical parameter values,
the reliability and uniqueness of the results are usually problematic.

Then the estimated parameters are substituted into the p2D model and validated
with two highly dynamic load profiles and the simulation results are compared with the
experimentally measured voltage response. The results again confirm that the combined
model with the external ohmic resistance performs the best and achieves an RMSE on
the level of 12 mV. To sum up, the combined type model with both the time domain
and frequency domain method clearly outperforms other model types investigated in
this work and achieves the best RMSE even when the model is simulated with a highly
dynamic profile.

Based on the analysis and conclusions made before, we suggest that the kinetic
parameters such as the reaction rate constants and diffusion coefficients should be estimated
using frequency domain methods. A carefully selected dynamic voltage and current profile
should be used for the parameter identification in the time domain if only the time domain
fitting is used for the parameter identification. The dynamic profiles should at least include
the characteristic frequency components of the corresponding processes and parameters.
Furthermore, we assume that with carefully designed current profiles some of the currently
unidentifiable parameters may become identifiable.
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The following abbreviations are used in this manuscript:

LIB lithium-ion battery
EIS electrochemical impedance spectroscopy
MCMC Markov Chain Monte Carlo
p2D pseudo-two dimensional
ECM equivalent circuit model
PCM physicochemical model
ROM reduced-order model
DRT distribution of relaxation times
DOF degree of freedom
OAT once at a time
FIM Fisher information matrix
HDP highest density probability
ETI equal-tailed interval
CI confidence interval
SI sensitivity index
SOC state of charge
OCV open-circuit voltage
CC current collector
PDF probability density function
CDF cumulative density function
RMSE root-mean-square error
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