High-Performance and Low-Cost Membranes Based on Poly(vinylpyrrolidone) and Cardo-Poly(etherketone) Blends for Vanadium Redox Flow Battery Applications
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Fabrication of PVP-PEKC Membranes
2.3. Characterization
2.4. VRFB Test
3. Results and Discussion
3.1. Fabrication of Membranes
3.2. FT-IR
3.3. Water Uptake, Acid Doping Content and Acid Doping Level
3.4. Swelling and Mechanical Properties
3.5. Area Resistance, Vanadium Ion Permeability and Ion Selectivity
3.6. Chemical Stability
3.7. VRFB Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soloveichik, G.L. Flow batteries: Current status and trends. Chem. Rev. 2015, 115, 11533–11558. [Google Scholar] [CrossRef] [PubMed]
- López-Vizcaíno, R.; Mena, E.; Millán, M.; Rodrigo, M.A.; Lobato, J. Performance of a vanadium redox flow battery for the storage of electricity produced in photovoltaic solar panels. Renew. Energy 2017, 114, 1123–1133. [Google Scholar] [CrossRef]
- Minke, C.; Turek, T. Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries-A review. J. Power Sources 2018, 376, 66–81. [Google Scholar] [CrossRef]
- Ye, R.J.; Henkensmeier, D.; Yoon, S.J.; Huang, Z.F.; Kim, D.K.; Chang, Z.J.; Kim, S.; Chen, R.Y. Redox flow batteries for energy storage: A technology review. J. Electrochem. Energy Convers. Storage 2018, 15, 010801. [Google Scholar] [CrossRef]
- Shi, Y.; Eze, C.; Xiong, B.; He, W.; Zhang, H.; Lim, T.; Ukil, A.; Zhao, J. Recent development of membrane for vanadium redox flow battery applications: A review. Appl. Energy 2019, 238, 202–224. [Google Scholar] [CrossRef]
- Zeng, L.; Zhao, T.S.; Wei, L.; Jiang, H.R.; Wu, M.C. Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges. Appl. Energy 2019, 233, 622–643. [Google Scholar] [CrossRef]
- Yuan, X.; Song, C.; Platt, A.; Zhao, N.; Wang, H.; Li, H.; Fatih, K.; Jang, D. A review of all-vanadium redox flow battery durability: Degradation mechanisms and mitigation strategies. Int. J. Energy Res. 2019, 43, 6599–6638. [Google Scholar] [CrossRef]
- Tempelman, C.H.L.; Jacobs, J.F.; Balzer, R.M.; Degirmenci, V. Membranes for all vanadium redox flow batteries. J. Energy Storage 2020, 32, 101754. [Google Scholar] [CrossRef]
- Austing, J.G.; Kirchner, C.N.; Komsiyska, L.; Wittstock, G. Layer-by-layer modification of Nafion membranes for increased life-time and efficiency of vanadium/air redox flow batteries. J. Membr. Sci. 2016, 510, 259–269. [Google Scholar] [CrossRef]
- Jiang, B.; Wu, L.; Yu, L.; Qiu, X.; Xi, J. A comparative study of Nafion series membranes for vanadium redox flow batteries. J. Membr. Sci. 2016, 510, 18–26. [Google Scholar] [CrossRef]
- Ye, J.; Yuan, D.; Ding, M.; Long, Y.; Long, T.; Sun, L.; Jia, C. A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery. J. Power Sources 2021, 482, 229023. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, X.; Hu, J.; Xu, W.; Cao, J.; Zhang, H. Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium. Phys. Chem. Chem. Phys. 2014, 16, 19841–19847. [Google Scholar] [CrossRef]
- Sun, C.; Chen, J.; Zhang, H.; Han, X.; Luo, Q. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery. J. Power Sources 2010, 195, 890–897. [Google Scholar] [CrossRef]
- Shin, D.W.; Guiver, M.D.; Lee, Y.M. Hydrocarbon-based polymer electrolyte membranes: Importance of morphology on ion transport and membrane stability. Chem. Rev. 2017, 117, 4759–4805. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Dong, Q.-F.; Zheng, M.-S.; Tian, Z.-W. The preparation of a novel anion-exchange membrane and its application in all-vanadium redox batteries. J. Membr. Sci. 2012, 421–422, 232–237. [Google Scholar] [CrossRef]
- Chen, D.; Hickner, M.A. V5+ degradation of sulfonated Radel membranes for vanadium redox flow batteries. Phys. Chem. Chem. Phys. 2013, 15, 11299–11305. [Google Scholar] [CrossRef]
- Glipa, X.; Bonnet, B.; Mula, B.; Jones, D.J.; Rozière, J. Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole. J. Mater. Chem. 1999, 9, 3045–3049. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, T.; An, L.; Wei, L.; Zhang, C. The use of polybenzimidazole membranes in vanadium redox flow batteries leading to increased coulombic efficiency and cycling performance. Electrochim. Acta 2015, 153, 492–498. [Google Scholar] [CrossRef]
- Jang, J.K.; Kim, T.H.; Yoon, S.J.; Lee, J.Y.; Lee, J.C.; Hong, Y.T. Highly proton conductive, dense polybenzimidazole membranes with low permeability to vanadium and enhanced H2SO4 absorption capability for use in vanadium redox flow batteries. J. Mater. Chem. A 2016, 4, 14342–14355. [Google Scholar] [CrossRef]
- Jung, M.; Lee, W.; Noh, C.; Konovalova, A.; Yi, G.S.; Kim, S.; Kwon, Y.; Henkensmeier, D. Blending polybenzimidazole with an anion exchange polymer increases the efficiency of vanadium redox flow batteries. J. Membr. Sci. 2019, 580, 110–116. [Google Scholar] [CrossRef]
- Hu, L.; Gao, L.; Zhang, C.K.; Yan, X.M.; Jiang, X.B.; Zheng, W.J.; Ruan, X.H.; Wu, X.M.; Yu, G.H.; He, G.H. “Fishnet-like” ion-selective nanochannels in advanced membranes for flow batteries. J. Mater. Chem. A 2019, 7, 21112–21119. [Google Scholar] [CrossRef]
- Ren, X.R.; Zhao, L.N.; Che, X.F.; Cai, Y.Y.; Li, Y.Q.; Li, H.H.; Chen, H.; He, H.X.; Liu, J.; Yang, J. Quaternary ammonium groups grafted polybenzimidazole membranes for vanadium redox flow battery applications. J. Power Sources 2020, 457, 228037. [Google Scholar] [CrossRef]
- Shi, M.Q.; Dai, Q.; Li, F.; Li, T.Y.; Hou, G.J.; Zhang, H.M.; Li, X.F. Membranes with well-defined selective layer regulated by controlled solvent diffusion for high power density flow battery. Adv. Energy Mater. 2020, 10, 2001382. [Google Scholar] [CrossRef]
- Luo Ta David, O.; Gendel, Y.; Wessling, M. Porous poly(benzimidazole) membrane for all vanadium redox flow battery. J. Power Sources 2016, 312, 45–54. [Google Scholar]
- Li, Q.F.; Jensen, J.O.; Savinell, R.F.; Bjerrum, N.J. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci. 2009, 34, 449–477. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Y.; Xie, Z.C.; Min, X.Q.; Yuan, A.B.; Xu, J.Q. NaCl-templated and polyvinylpyrrolidone-assisted fabrication of a MnO/C-rGO composite as a high-capacity anode material for Li-Ion batteries. Energy Technol. 2020, 8, 1901194. [Google Scholar] [CrossRef]
- Aili, D.; Kraglund, M.R.; Tavacoli, J.; Chatzichristodoulou, C.; Jensen, J.O. Polysulfone-polyvinylpyrrolidone blend membranes as electrolytes in alkaline water electrolysis. J. Membr. Sci. 2020, 598, 117674. [Google Scholar] [CrossRef]
- Contardi, M.; Kossyvaki, D.; Picone, P.; Summa, M.; Guo, X.; Heredia-Guerrero, J.A.; Giacomazza, D.; Carzino, R.; Goldoni, L.; Scoponi, G.; et al. Electrospun polyvinylpyrrolidone(PVP) hydrogels containing hydroxycinnamic acid derivatives as potential wound dressings. Chem. Eng. J. 2021, 409, 128144. [Google Scholar] [CrossRef]
- Del Prado, A.; Civantos, A.; Martinez-Campos, E.; Levkin, P.A.; Reinecke, H.; Gallardo, A.; Elvira, C. Efficient and Low Cytotoxicity Gene Carriers Based on Amine-Functionalized Polyvinylpyrrolidone. Polymers. 2020, 12, 2724. [Google Scholar] [CrossRef]
- Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.; Furst, P.; Gurtler, R.; Gundert-Remy, U.; Husoy, T.; Manco, M.; et al. Re-evaluation of polyvinylpyrrolidone (E 1201) and polyvinylpolypyrrolidone (E 1202) as food additives and extension of use of polyvinylpyrrolidone (E 1201). EFSA J. 2020, 18, 6215. [Google Scholar]
- Bali, M.; Masalci, O. Interactions of cationic surfactants with polyvinylpyrrolidone (PVP): Effects of counter ions and temperature. J. Mol. Liq. 2020, 303, 112576. [Google Scholar] [CrossRef]
- Mao, T.Y.; Lu, G.; Xu, C.Y.; Yu, H.W.; Yu, J.L. Preparation and properties of polyvinylpyrrolidone-cuprous oxide microcapsule antifouling coating. Prog. Org. Coat. 2020, 141, 105317. [Google Scholar] [CrossRef]
- Wu, C.X.; Lu, S.F.; Wang, H.N.; Xu, X.; Peng, S.K.; Tan, Q.L.; Xiang, Y. A novel polysulfone-polyvinylpyrrolidone membrane with superior proton-to-vanadium ion selectivity for vanadium redox flow batteries. J. Mater. Chem. A 2016, 4, 1174–1179. [Google Scholar] [CrossRef]
- Ren, X.R.; Li, H.H.; Liu, K.; Lu, H.Y.; Yang, J.S.; He, R.H. Preparation and investigation of reinforced PVP blend membranes for high temperature polymer electrolyte membranes. Fiber. Polym. 2018, 19, 2449–2457. [Google Scholar] [CrossRef]
- Guo, Z.B.; Xu, X.; Xiang, Y.; Lu, S.F.; Jiang, S.P. New anhydrous proton exchange membranes for high-temperature fuel cells based on PVDF-PVP blended polymers. J. Mater. Chem. A 2015, 3, 148–155. [Google Scholar] [CrossRef]
- Zeng, L.; Zhao, T.S.; Wei, L.; Zeng, Y.K.; Zhang, Z.H. Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries. J. Power Sources 2016, 327, 374–383. [Google Scholar] [CrossRef]
- Li, A.F.; Wang, G.; Wei, X.Y.; Li, F.; Zhang, M.M.; Zhang, J.; Chen, J.W.; Wang, R.L. Highly selective sulfonated poly(ether ether ketone)/ polyvinylpyrrolidone hybrid membranes for vanadium redox flow batteries. J. Mater. Sci. 2020, 55, 16822–16835. [Google Scholar] [CrossRef]
- Chen, F.Y.; Che, X.F.; Ren, X.R.; Zhao, L.N.; Zhang, D.H.; Chen, H.; Liu, J.G.; Yang, J.S. Polybenzimidazole and polyvinylpyrrolidone blend membranes for vanadium flow battery. J. Electrochem. Soc. 2020, 167, 060511. [Google Scholar] [CrossRef]
- Li, W.; Wang, H.N.; Zhang, J.; Xiang, Y.; Lu, S.F. Advancements of polyvinylpyrrolidone-based polymer electrolyte membranes for electrochemical energy conversion and storage devices. ChemSusChem 2022, 15, e202200071. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Liu, Q.L.; Zhu, A.M.; Fang, J.; Zhang, Q.G. Dehydration of acetic acid using sulfonation cardo polyetherketone (SPEK-C) membranes. J. Membr. Sci. 2008, 308, 171–179. [Google Scholar] [CrossRef]
- Liu, R.H.; Che, X.F.; Chen, X.; Li, H.; Dong, J.H.; Hao, Z.; Yang, J.S. Preparation and investigation of 1-(3-aminopropyl)imidazole functionalized polyvinyl chloride/poly (ether ketone cardo) membranes for HT-PEMFCs. Sustain. Energy Fuels 2020, 4, 6066–6074. [Google Scholar] [CrossRef]
- Liu, R.H.; Wang, J.; Che, X.F.; Wang, T.; Aili, D.; Li, Q.F.; Yang, J.S. Facile synthesis and properties of carod poly(ether ketone)s bearing heterocycle groups for high temperature polymer electrolyte membrane fuel cells. J. Membr. Sci. 2021, 636, 119584. [Google Scholar] [CrossRef]
- Wang, T.; Jin, Y.P.; Mu, T.; Wang, T.T.; Yang, J.S. Tröger’s base polymer blended with poly(ether ketone cardo) for high temperature proton exchange membrane fuel cell applications. J. Membr. Sci. 2022, 654, 120539. [Google Scholar] [CrossRef]
- Russell, T.H.; Edwards, B.J.; Khomami, B. Characterization of the Flory-Huggins interaction parameter of polymer thermodynamics. Europhys. Lett. 2014, 108, 66003. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.S.; Li, L.; Hou, M.J.; Xue, J.J.; Liu, Y.Z.; Pan, Z.L.; Song, C.W.; Wang, T.H. Enhanced CO2 permeability of thermal crosslinking membrane via sulfonation/desulfonation of phenolphthalein-based cardo poly(arylene ether ketone). J. Membr. Sci. 2020, 598, 117824. [Google Scholar] [CrossRef]
- Ghimire, P.C.; Bhattarai, A.; Lim, T.M.; Wai, N.; Skyllas-Kazacos, M.; Yan, Q. In-situ tools used in vanadium redox flow battery research-review. Batteries 2021, 7, 53. [Google Scholar] [CrossRef]
- Li, X.B.; Ma, H.W.; Wang, P.; Liu, Z.C.; Peng, J.W.; Hu, W.; Jiang, Z.H.; Liu, B.J.; Guiver, M.D. Highly conductive and mechanically stable imidazole-rich cross-linked networks for high-temperature proton exchange membrane fuel cells. Chem. Mater. 2020, 32, 1182–1191. [Google Scholar] [CrossRef]
- Noh, C.; Jung, M.; Henkensmeier, D.; Nam, S.W.; Kwon, Y.C. Vanadium redox flow batteries using meta-polybenzimidazole-based membranes of different thicknesses. ACS Appl. Mater. Interfaces 2017, 9, 36799–36809. [Google Scholar] [CrossRef]
- Tianjin University. Physical Chemistry; High Education Press: Beijing, China, 2017. [Google Scholar]
- Lou, X.C.; Lu, B.; He, M.R.; Yu, Y.S.; Zhu, X.B.; Peng, F.; Qin, C.P.; Ding, M.; Jia, C.K. Functionalized carbon black modified sulfonated polyether ether ketone membrane for highly stable vanadium redox flow battery. J. Membr. Sci. 2022, 643, 120015. [Google Scholar] [CrossRef]
- Park, D.-J.; Jeon, K.-S.; Ryu, C.-H.; Hwang, G.-J. Performance of the all-vanadium redox flow battery stack. J. Ind. Eng. Chem. 2017, 45, 387–390. [Google Scholar] [CrossRef]
- Ahn, Y.; Kimg, D. Anion exchange membrane prepared from imidazolium grafted poly (arylene ether ketone) with enhanced durability for vanadium redox flow battery. J. Ind. Eng. Chem. 2019, 71, 361–368. [Google Scholar] [CrossRef]
- Chae, I.; Luo, T.; Moon, G.H.; Ogieglo, W.; Kang, Y.S.; Wessling, M. Ultra-High proton/vanadium selectivity for hydrophobic polymer membranes with intrinsic nanopores for redox flow battery. Adv. Energy Mater. 2016, 6, 1600517. [Google Scholar] [CrossRef]
- Jiang, H.R.; Sun, J.; Wei, L.; Wu, M.C.; Shyy, W.; Zhao, T.S. A high power density and long cycle life vanadium redox flow battery. Energy Storage Mater. 2020, 24, 529–540. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Q.; Guan, S.; Weng, Z.; Zhang, E.; Wang, G.; Zhang, Z.; Hu, J.; Zhang, S. High performance membranes based on new 2-adamantane containing poly(aryl ether ketone) for vanadium redox flow battery applications. J. Power Sources 2018, 399, 18–25. [Google Scholar] [CrossRef]
- Jiang, B.; Yu, L.H.; Wu, L.T.; Mu, D.; Liu, L.; Xi, J.Y.; Qiu, X.P. Insights into the impact of the Nafion membrane pretreatment process on vanadium flow battery performance. ACS Appl. Mater. Interfaces 2016, 8, 12228–12238. [Google Scholar] [CrossRef]
- Yu, L.H.; Lin, F.; Xiao, W.D.; Xu, L.; Xi, J.Y. Achieving efficient and inexpensive vanadium flow battery by combining CexZr1−xO2 electrocatalyst and hydrocarbon membrane. Chem. Eng. J. 2019, 356, 622–631. [Google Scholar] [CrossRef]
- Xing, Y.; Geng, K.; Chu, X.M.; Wang, C.Y.; Liu, L.; Li, N.W. Chemically stable anion exchange membranes based on C2-protected imidazolium cations for vanadium flow battery. J. Membr. Sci. 2021, 618, 118696. [Google Scholar] [CrossRef]
- Yuan, Z.Z.; Duan, Y.Q.; Zhang, H.Z.; Li, X.F.; Zhang, H.M.; Vankelecom, I. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries. Energy Environ. Sci. 2016, 9, 441–447. [Google Scholar] [CrossRef]
- Zhang, B.K.; Yang, L.Y.; Li, S.N.; Pan, F. Progress of lithium-ion transport mechanism in solid-state electrolytes. J. Electrochem. 2021, 27, 269–277. [Google Scholar]
- Chen, J.J.; Dong, Q.F. Research progress of key components in lithium-sulfur batteries. J. Electrochem. 2020, 26, 648–662. [Google Scholar]
- Che, X.F.; Zhao, H.; Ren, X.R.; Zhang, D.H.; Wei, H.; Liu, J.G.; Zhang, X.; Yang, J.S. Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery. J. Membr. Sci. 2020, 611, 118359. [Google Scholar] [CrossRef]
- Teng, X.G.; Dai, J.C.; Su, J.; Zhu, Y.M.; Liu, H.P.; Song, Z.J. A high performance polytetrafluoroethene/Nafion composite membrane for vanadium redox flow battery application. J. Power Sources 2013, 240, 131–139. [Google Scholar] [CrossRef]
- Dai, X.J.; Yu, L.H.; Li, Z.H.; Yan, J.; Liu, L.; Xi, J.Y.; Qiu, X.P. Sulfonated Poly(Ether Ether Ketone)/Graphene composite membrane for vanadium redox flow battery. Electrochim. Acta 2014, 132, 200–207. [Google Scholar] [CrossRef]
- Tang, W.Q.; Yang, Y.F.; Liu, X.L.; Dong, J.H.; Li, H.H.; Yang, J.S. Long side-chain quaternary ammonium group functionalized polybenzimidazole based anion exchange membranes and their applications. Electrochim. Acta 2021, 391, 138919. [Google Scholar] [CrossRef]
- Lu, W.J.; Shi, D.Q.; Zhang, H.M.; Li, X.F. Advanced poly(vinyl pyrrolidone) decorated chlorinated polyvinyl chloride membrane with low area resistance for vanadium flow battery. J. Membr. Sci. 2021, 620, 118947. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.M.; Li, X.F.; Zhang, H.Z.; Wei, W.P. Porous poly (ether sulfone) membranes with tunable morphology: Fabrication and their application for vanadium flow battery. J. Power Sources 2013, 233, 202–208. [Google Scholar] [CrossRef]
- Tang, W.Q.; Mu, T.; Che, X.F.; Dong, J.H.; Yang, J.S. Highly selective anion exchange membrane based on quaternized poly(triphenyl piperidine) for the vanadium redox flow battery. ACS Sustain. Chem. Eng. 2021, 9, 14297–14306. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, T.; Leng, S.; Tang, W.; Shi, N.; Wang, G.; Yang, J. High-Performance and Low-Cost Membranes Based on Poly(vinylpyrrolidone) and Cardo-Poly(etherketone) Blends for Vanadium Redox Flow Battery Applications. Batteries 2022, 8, 230. https://doi.org/10.3390/batteries8110230
Mu T, Leng S, Tang W, Shi N, Wang G, Yang J. High-Performance and Low-Cost Membranes Based on Poly(vinylpyrrolidone) and Cardo-Poly(etherketone) Blends for Vanadium Redox Flow Battery Applications. Batteries. 2022; 8(11):230. https://doi.org/10.3390/batteries8110230
Chicago/Turabian StyleMu, Tong, Shifan Leng, Weiqin Tang, Ning Shi, Guorui Wang, and Jingshuai Yang. 2022. "High-Performance and Low-Cost Membranes Based on Poly(vinylpyrrolidone) and Cardo-Poly(etherketone) Blends for Vanadium Redox Flow Battery Applications" Batteries 8, no. 11: 230. https://doi.org/10.3390/batteries8110230
APA StyleMu, T., Leng, S., Tang, W., Shi, N., Wang, G., & Yang, J. (2022). High-Performance and Low-Cost Membranes Based on Poly(vinylpyrrolidone) and Cardo-Poly(etherketone) Blends for Vanadium Redox Flow Battery Applications. Batteries, 8(11), 230. https://doi.org/10.3390/batteries8110230