What Differentiates Dielectric Oxides and Solid Electrolytes on the Pathway toward More Efficient Energy Storage?
Abstract
:1. Introduction
2. Materials
2.1. Oxides
2.2. Solid Electrolytes
2.3. Cells
3. Methods
3.1. Cell Preparation
3.2. Scanning Kelvin Probe (SKP)
3.3. Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV)
3.4. Ab Initio Simulations
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewis, N.S.; Nocera, D.G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, Y.; Wu, Y.; Yang, G.; Mazzarella, L.; Procel-Moya, P.; Tamboli, A.C.; Weber, K.; Boccard, M.; Isabella, O.; et al. High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications. Mater. Sci. Eng. R Rep. 2020, 142, 100579. [Google Scholar] [CrossRef]
- Eshetu, G.G.; Zhang, H.; Judez, X.; Adenusi, H.; Armand, M.; Passerini, S.; Figgemeier, E. Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nat. Commun. 2021, 12, 5459. [Google Scholar] [CrossRef]
- Saini, P.; Gidwani, L. An investigation for battery energy storage system installation with renewable energy resources in distribution system by considering residential, commercial and industrial load models. J. Energy Storage 2022, 45, 103493. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Wen, J.; Yu, Y.; Chen, C. A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. Mater. Express 2012, 2, 197–212. [Google Scholar] [CrossRef]
- Lee, S.; Manthiram, A. Can Cobalt Be Eliminated from Lithium-Ion Batteries? ACS Energy Lett. 2022, 7, 3058–3063. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653–666. [Google Scholar] [CrossRef]
- Hoffmann, M.; Salahuddin, S. Ferroelectric gate oxides for negative capacitance transistors. MRS Bull. 2021, 46, 930–937. [Google Scholar] [CrossRef]
- Balandin, A.A.; Kargar, F.; Salguero, T.T.; Lake, R.K. One-dimensional van der Waals quantum materials. Mater. Today 2022, 55, 74–91. [Google Scholar] [CrossRef]
- Sekine, A.; Nomura, K. Axion electrodynamics in topological materials. J. Appl. Phys. 2021, 129, 141101. [Google Scholar] [CrossRef]
- Smirnova, D.; Leykam, D.; Chong, Y.; Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 2020, 7, 021306. [Google Scholar] [CrossRef]
- Guo, Y.; Qu, X.; Hu, Z.; Zhu, J.; Niu, W.; Liu, X. Highly elastic and mechanically robust polymer electrolytes with high ionic conductivity and adhesiveness for high-performance lithium metal batteries. J. Mater. Chem. A 2021, 9, 13597–13607. [Google Scholar] [CrossRef]
- Kurzina, E.A.; Stenina, I.A.; Dalvi, A.; Yaroslavtsev, A.B. Synthesis and Ionic Conductivity of Lithium Titanium Phosphate-Based Solid Electrolytes. Inorg. Mater. 2021, 57, 1035–1042. [Google Scholar] [CrossRef]
- Gupta, M.K.; Mittal, R.; Kumar, S.; Singh, B.; Jalarvo, N.H.; Delaire, O.; Shukla, R.; Achary, S.N.; Kolesnikov, A.I.; Tyagi, A.K.; et al. Stoichiometric tuning of lattice flexibility and Na diffusion in NaAlSiO4: Quasielastic neutron scattering experiment andab initiomolecular dynamics simulations. J. Mater. Chem. A 2021, 9, 16129–16136. [Google Scholar] [CrossRef]
- Braga, M.H.; Oliveira, J.E.; Kai, T.; Murchison, A.J.; Bard, A.J.; Goodenough, J.B. Extraordinary Dielectric Properties at Heterojunctions of Amorphous Ferroelectrics. J. Am. Chem. Soc. 2018, 140, 17968–17976. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Bahadur, A.; Saeed, A.; Zhou, K.; Shoaib, M.; Waqas, M. Electrochemical performance of 2D polyaniline anchored CuS/Graphene nano-active composite as anode material for lithium-ion battery. J. Colloid Interface Sci. 2017, 502, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, A.; Iqbal, S.; Shoaib, M.; Saeed, A. Electrochemical study of specially designed graphene-Fe3O4-polyaniline nanocomposite as a high-performance anode for lithium-ion battery. Dalt. Trans. 2018, 47, 15031–15037. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Zhang, X.; Li, Y.; Chen, X.; Xu, X.; Zhao, X.; Song, A. Thermally Evaporated SiO Serving as Gate Dielectric in Graphene Field-Effect Transistors. IEEE Trans. Electron Devices 2017, 64, 1846–1850. [Google Scholar] [CrossRef] [Green Version]
- Posadas, A.; Walker, F.J.; Ahn, C.H.; Goodrich, T.L.; Cai, Z.; Ziemer, K.S. Epitaxial MgO as an alternative gate dielectric for SiC transistor applications. Appl. Phys. Lett. 2008, 92, 233511. [Google Scholar] [CrossRef]
- Smith, J.G.; Naruse, J.; Hiramatsu, H.; Siegel, D.J. Intrinsic Conductivity in Magnesium–Oxygen Battery Discharge Products: MgO and MgO2. Chem. Mater. 2017, 29, 3152–3163. [Google Scholar] [CrossRef] [Green Version]
- Lorger, S.; Usiskin, R.; Maier, J. Transport and Charge Carrier Chemistry in Lithium Oxide. J. Electrochem. Soc. 2019, 166, A2215. [Google Scholar] [CrossRef]
- Tiliakos, A.; Iordache, M.; Marinoiu, A. Ionic Conductivity and Dielectric Relaxation of NASICON Superionic Conductors at the Near-Cryogenic Regime. Appl. Sci. 2021, 11, 8432. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, G.; Wang, S.; Liu, D.; Mei, Z.; An, Q.; Jiang, J.; Guo, H. Enhanced ionic conductivity of a Na3Zr2Si2PO12 solid electrolyte with Na2SiO3 obtained by liquid phase sintering for solid-state Na+ batteries. Nanoscale 2022, 14, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Campanella, D.; Belanger, D.; Paolella, A. Beyond garnets, phosphates and phosphosulfides solid electrolytes: New ceramic perspectives for all solid lithium metal batteries. J. Power Sources 2021, 482, 228949. [Google Scholar] [CrossRef]
- Braga, M.H.; Oliveira, J.E.; Murchison, A.J.; Goodenough, J.B. Performance of a ferroelectric glass electrolyte in a self-charging electrochemical cell with negative capacitance and resistance. Appl. Phys. Rev. 2020, 7, 011406. [Google Scholar] [CrossRef]
- Braga, M.H.; Ferreira, J.A.; Murchison, A.J.; Goodenough, J.B. Electric Dipoles and Ionic Conductivity in a Na+ Glass Electrolyte. J. Electrochem. Soc. 2017, 164, A207. [Google Scholar] [CrossRef]
- Braga, M.H.; Ferreira, J.A.; Stockhausen, V.; Oliveira, J.E.; El-Azab, A. Novel Li3ClO based glasses with superionic properties for lithium batteries. J. Mater. Chem. A 2014, 2, 5470–5480. [Google Scholar] [CrossRef] [Green Version]
- Zisman, W.A. A new method of measuring contact potential differences in metals. Rev. Sci. Instrum. 1932, 3, 367–370. [Google Scholar] [CrossRef]
- Reiss, H. The Fermi level and the redox potential. J. Phys. Chem. 1985, 89, 3783–3791. [Google Scholar] [CrossRef]
- Guerreiro, A.N.; Baptista, M.; Maia, B.; Braga, M.H. Interfacial chemistry with ZnO: In operando work functions in hetero cells. ACS Appl. Energy Mater. 2022, 5, 9811–9822. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; He, M.; Yang, M.; Han, Q.; Wang, F.; Zhong, F.; Xu, M.; Li, Q.; Zhu, H.; Shan, C.; et al. Light-modulated vertical heterojunction phototransistors with distinct logical photocurrents. Light Sci. Appl. 2020, 9, 167. [Google Scholar] [CrossRef]
- Maier, S.A. Electromagnetics of Metals; Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2007. [Google Scholar]
- Zhang, H.Q.; Chen, F. Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background. Chaos An Interdiscip. J. Nonlinear Sci. 2021, 31, 023129. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Bu, L.; Wang, W.; Chen, S.; Baronio, F.; Mihalache, D. Peregrine Solitons on a Periodic Background in the Vector Cubic-Quintic Nonlinear Schrödinger Equation. Front. Phys. 2020, 8, 510. [Google Scholar] [CrossRef]
- Shnir, Y.M. Chains of Interacting Solitons. Symmetry 2021, 13, 284. [Google Scholar] [CrossRef]
- Trasa’tti, S. The absolute electrode potential: An explanatory note (Recommendations 1986). Pure Appl. Chem. 1986, 58, 955–966. [Google Scholar] [CrossRef]
- Vergniory, M.G.; Wieder, B.J.; Elcoro, L.; Parkin, S.S.P.; Felser, C.; Bernevig, B.A.; Regnault, N. All topological bands of all nonmagnetic stoichiometric materials. Science 2022, 376, eabg9094. [Google Scholar] [CrossRef]
- An, J.; Oh, S.; He, L.; Plewa, A.; Morita, M.; Zhao, Y.; Sakamoto, T.; Song, X.; Zhai, W.; Zeng, K.; et al. Composite NASICON (Na3Zr2Si2PO12) Solid-State Electrolyte with Enhanced Na + Ionic Conductivity: Effect of Liquid Phase Sintering. ACS Appl. Mater. Interfaces 2019, 11, 40125–40133. [Google Scholar] [CrossRef]
- Lalère, F.; Leriche, J.B.; Courty, M.; Boulineau, S.; Viallet, V.; Masquelier, C.; Seznec, V. An all-solid state NASICON sodium battery operating at 200 °C. J. Power Sources 2014, 247, 975–980. [Google Scholar] [CrossRef]
- Thokchom, J.S.; Kumar, B. Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic. J. Power Sources 2008, 185, 480–485. [Google Scholar] [CrossRef]
- Thokchom, J.S.; Gupta, N.; Kumar, B. Superionic Conductivity in a Lithium Aluminum Germanium Phosphate Glass–Ceramic. J. Electrochem. Soc. 2008, 155, A915. [Google Scholar] [CrossRef]
- Leo, C.J.; Chowdari, B.V.R.; Rao, G.V.S.; Souquet, J.L. Lithium conducting glass ceramic with Nasicon structure. Mater. Res. Bull. 2002, 37, 1419–1430. [Google Scholar] [CrossRef]
- Feng, J.K.; Yan, B.G.; Liu, J.C.; Lai, M.O.; Li, L. All solid state lithium ion rechargeable batteries using NASICON structured electrolyte. Mater. Technol. 2013, 8, 276–279. [Google Scholar] [CrossRef]
- Meesala, Y.; Chen, C.Y.; Jena, A.; Liao, Y.K.; Hu, S.F.; Chang, H.; Liu, R.S. All-Solid-State Li-Ion Battery Using Li1.5Al0.5Ge1.5(PO4)3 As Electrolyte Without Polymer Interfacial Adhesion. J. Phys. Chem. C 2018, 122, 14383–14389. [Google Scholar] [CrossRef]
- Xu, X.; Wen, Z.; Wu, X.; Yang, X.; Gu, Z. Lithium Ion-Conducting Glass–Ceramics of Li1.5Al0.5Ge1.5(PO4)3–xLi2O (x = 0.0–0.20) with Good Electrical and Electrochemical Properties. J. Am. Ceram. Soc. 2007, 90, 2802–2806. [Google Scholar] [CrossRef]
- Braga, M.H. Coherence in the Ferroelectric A3ClO (A = Li, Na) Family of Electrolytes. Materials 2021, 14, 2398. [Google Scholar] [CrossRef]
- Danzi, F.; Valente, M.; Terlicka, S.; Braga, M.H. Sodium and potassium ion rich ferroelectric solid electrolytes for traditional and electrode-less structural batteries. APL Mater. 2022, 10, 031111. [Google Scholar] [CrossRef]
- Danzi, F.; Camanho, P.P.; Braga, M.H. An All-Solid-State Coaxial Structural Battery Using Sodium-Based Electrolyte. Molecules 2021, 26, 5226. [Google Scholar] [CrossRef]
- Eränen, S.; Törmä, P.; Gonzalez, P.; Rottenberg, X.; Puurunen, R.L.; Putkonen, M.; Vogl, A.; Tyholdt, F.; Tofteberg, H.; Muralt, P.; et al. Thin Films on Silicon. In Handbook of Silicon Based MEMS Materials and Technologies, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 124–205. [Google Scholar] [CrossRef]
- Dionisio, K.L.; Phillips, K.; Price, P.S.; Grulke, C.M.; Williams, A.; Biryol, D.; Hong, T.; Isaacs, K.K. The Chemical and Products Database, a resource for exposure-relevant data on chemicals in consumer products. Sci. Data 2018, 5, 180125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munteanu, D.; Autran, J. Modeling of energy bands in ultra-thin layer quantum nanostructures for solar cell applications. J. Non-Cryst. Solids 2011, 357, 1884–1887. [Google Scholar] [CrossRef]
- Güler, E.; Uğur, G.; Uğur, Ş.; Güler, M. A theoretical study for the band gap energies of the most common silica polymorphs. Chin. J. Phys. 2020, 65, 472–480. [Google Scholar] [CrossRef]
- Tea, E.; Huang, J.; Hin, C. First principles study of band line up at defective metal-oxide interface: Oxygen point defects at Al/SiO2interface. J. Phys. D Appl. Phys. 2016, 49, 095304. [Google Scholar] [CrossRef] [Green Version]
- Uzum, A.; Kanmaz, I. Passivation properties of HfO2-SiO2 mixed metal oxide thin films with low reflectivity on silicon substrates for semiconductor devices. Thin Solid Films 2021, 738, 138965. [Google Scholar] [CrossRef]
- Okoshi, M.; Iyono, M.; Inoue, N.; Yamashita, T. Photochemical welding of silica microspheres to silicone rubber by ArF excimer laser. Appl. Surf. Sci. 2009, 255, 9796–9799. [Google Scholar] [CrossRef]
- Jaehnike, F.; Pham, D.V.; Anselmann, R.; Bock, C.; Kunze, U. High-Quality Solution-Processed Silicon Oxide Gate Dielectric Applied on Indium Oxide Based Thin-Film Transistors. ACS Appl. Mater. Interfaces 2015, 7, 14011–14017. [Google Scholar] [CrossRef]
- Bhatt, V.; Chandra, S. Silicon dioxide films by RF sputtering for microelectronic and MEMS applications. J. Micromechanics Microengineering 2007, 17, 1066–1077. [Google Scholar] [CrossRef]
- Cross, R.B.M.; De Souza, M.M.; Deane, S.C.; Young, N.D. A Comparison of the Performance and Stability of ZnO-TFTs With Silicon Dioxide and Nitride as Gate Insulators. IEEE Trans. Electron Devices 2008, 55, 1109–1115. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.-J.; Lin, J.-C.; Liu, J.-J.; Bai, W.-B.; Shiao, H.-P. Electrical and Optical Characterization of Sputtered Silicon Dioxide, Indium Tin Oxide, and Silicon Dioxide/Indium Tin Oxide Antireflection Coating on Single-Junction GaAs Solar Cells. Materials 2017, 10, 700. [Google Scholar] [CrossRef]
- Ashok, A.; Pal, P. Investigation of anodic silicon dioxide thin films for microelectromechanical systems applications. Micro Nano Lett. 2014, 9, 830–834. [Google Scholar] [CrossRef]
- Ihlemann, J. Laser Based Rapid Fabrication of SiO2-phase Masks for Efficient UV-laser Micromachining. J. Laser Micro/Nanoengineering 2009, 4, 100–103. [Google Scholar] [CrossRef]
- Bailey, R.A.; Nevin, J.H. Thin-Film Multilayer Capacitors Using Pyrolytically Deposited Silicon Dioxide. IEEE Trans. Parts Hybrids Packag. 1976, 12, 361–364. [Google Scholar] [CrossRef]
- Salawu, S.; Obalalu, A.; Fatunmbi, E.; Oderinu, R. Thermal Prandtl-Eyring hybridized MoS2-SiO2/C3H8O2 and SiO2-C3H8O2 nanofluids for effective solar energy absorber and entropy optimization: A solar water pump implementation. J. Mol. Liq. 2022, 361, 119608. [Google Scholar] [CrossRef]
- Talib, S.; Azmi, W.; Zakaria, I.; Mohamed, W.; Mamat, A.; Ismail, H.; Daud, W. Thermophysical Properties of Silicon Dioxide (SiO2) in Ethylene Glycol/Water Mixture for Proton Exchange Membrane Fuel Cell Cooling Application. Energy Procedia 2015, 79, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhang, J.; Xue, L.; Huang, T.; Yu, A. Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries. J. Power Sources 2011, 196, 10240–10243. [Google Scholar] [CrossRef]
- Dong, X.; Zheng, X.; Deng, Y.; Wang, L.; Hong, H.; Ju, Z. SiO2/N-doped graphene aerogel composite anode for lithium-ion batteries. J. Mater. Sci. 2020, 55, 13023–13035. [Google Scholar] [CrossRef]
- Zhang, M.; Li, L.; Jian, X.; Zhang, S.; Shang, Y.; Xu, T.; Dai, S.; Xu, J.; Kong, D.; Wang, Y.; et al. Free-standing and flexible CNT/(Fe@Si@SiO2) composite anodes with kernel-pulp-skin nanostructure for high-performance lithium-ion batteries. J. Alloys Compd. 2021, 878, 160396. [Google Scholar] [CrossRef]
- Si, L.; Yan, K.; Li, C.; Huang, Y.; Pang, X.; Yang, X.; Sui, D.; Zhang, Y.; Wang, J.; Xu, C.C. Binder-free SiO2 nanotubes/carbon nanofibers mat as superior anode for lithium-ion batteries. Electrochimica Acta 2022, 404, 139747. [Google Scholar] [CrossRef]
- Afanas’Ev, V.V.; Stesmans, A.; Cherkaoui, K.; Hurley, P.K. Electron energy band alignment at the (100)Si/MgO interface. Appl. Phys. Lett. 2010, 96, 052103. [Google Scholar] [CrossRef]
- Selvi, K.T.; Mangai, K.A.; Priya, M.; Sagadevan, S. Investigation of the dielectric and impedance properties of ZnO/MgO nanocomposite. Phys. B Condens. Matter 2020, 594, 412355. [Google Scholar] [CrossRef]
- Huang, S.; Kang, B.; Duan, L.; Zhang, D. Highly efficient inverted polymer solar cells by using solution processed MgO/ZnO composite interfacial layers. J. Colloid Interface Sci. 2020, 583, 178–187. [Google Scholar] [CrossRef]
- Farag, A.; Ashery, A.; Salem, M. Electrical, dielectric characterizations and optoelectronic applications of epitaxially grown Co/n-CuO/p-Si heterojunctions. Superlattices Microstruct. 2019, 135, 106277. [Google Scholar] [CrossRef]
- Jiang, G.; Liu, A.; Liu, G.; Zhu, C.; Meng, Y.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F. Solution-processed high-k magnesium oxide dielectrics for low-voltage oxide thin-film transistors. Appl. Phys. Lett. 2016, 109, 183508. [Google Scholar] [CrossRef]
- Hornak, J.; Trnka, P.; Kadlec, P.; Michal, O.; Mentlík, V.; Šutta, P.; Csányi, G.M.; Tamus, Z. Magnesium Oxide Nanoparticles: Dielectric Properties, Surface Functionalization and Improvement of Epoxy-Based Composites Insulating Properties. Nanomaterials 2018, 8, 381. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, M.A.; Shannon, R.D.; Chai, B.H.T.; Abraham, M.M.; Wintersgill, M.C. Dielectric constants of BeO, MgO, and CaO using the two-terminal method. Phys. Chem. Miner. 1989, 16, 741–746. [Google Scholar] [CrossRef]
- Lim, J.Y.; Oh, J.S.; Ko, B.; Cho, J.W.; Kang, S.O.; Cho, G.; Uhm, H.S.; Choi, E.H. Work function of MgO single crystals from ion-induced secondary electron emission coefficient. J. Appl. Phys. 2003, 94, 764–769. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, H.S.; Kim, S.H.; Jang, N.W.; Yun, Y. Characterization of magnesium oxide gate insulators grown using RF sputtering for ZnO thin-film transistors. Curr. Appl. Phys. 2014, 14, 794–797. [Google Scholar] [CrossRef]
- Arora, S. ZnO/MgO/ITO structured thin film transistor for ultraviolet photo detector application. Mater. Today Proc. 2020, 30, 150–152. [Google Scholar] [CrossRef]
- Massarotti, D.; Bauch, T.; Lombardi, F.; Tafuri, F. Josephson and charging effect in mesoscopic superconducting devices. In Superconductors at the Nanoscale; De Gruyter: Berlin, Germany, 2017; pp. 309–338. [Google Scholar] [CrossRef]
- Yeung, G.; Reich, C.; Onno, A.; Bothwell, A.; Danielson, A.; Holman, Z.; Sampath, W.S.; Wolden, C.A. Robust passivation of CdSeTe based solar cells using reactively sputtered magnesium zinc oxide. Sol. Energy Mater. Sol. Cells 2021, 233, 111388. [Google Scholar] [CrossRef]
- Merachtsaki, D.; Tsardaka, E.-C.; Anastasiou, E.; Zouboulis, A. Anti-corrosion properties of magnesium oxide/magnesium hydroxide coatings for application on concrete surfaces (sewerage network pipes). Constr. Build. Mater. 2021, 312, 125441. [Google Scholar] [CrossRef]
- Xu, K.; Lin, F.; Dou, X.; Zheng, M.; Tan, W.; Wang, C. Recovery of ammonium and phosphate from urine as value-added fertilizer using wood waste biochar loaded with magnesium oxides. J. Clean. Prod. 2018, 187, 205–214. [Google Scholar] [CrossRef]
- Materials Data on Li2O (SG:225) by Materials Project. 2014. Available online: https://materialsproject.org/materials/mp-1960 (accessed on 1 November 2022).
- Ha, Y.; Schulze, M.C.; Frisco, S.; Trask, S.E.; Teeter, G.; Neale, N.R.; Veith, G.M.; Johnson, C.S. Li2O-Based Cathode Additives Enabling Prelithiation of Si Anodes. Appl. Sci. 2021, 11, 12027. [Google Scholar] [CrossRef]
- Dyer, C.; Moseley, P.; Ogumi, Z.; Rand, D.; Scrosati, B. Encyclopedia of Electrochemical Power Sources; Elsevier Science & Technology: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Donato, A. A critical review of Li2O ceramic breeder material properties correlations and data. Fusion Eng. Des. 1998, 38, 369–392. [Google Scholar] [CrossRef]
- Mosqueda, H.A.; Vazquez, C.; Bosch, P.; Pfeiffer, H. Chemical sorption of carbon dioxide (CO2) on lithium oxide (Li2O). Chem. Mater. 2006, 18, 2307–2310. [Google Scholar] [CrossRef]
- Sun, Y.; Lee, H.-W.; Seh, Z.W.; Liu, N.; Sun, J.; Li, Y.; Cui, Y. High-capacity battery cathode prelithiation to offset initial lithium loss. Nat. Energy 2016, 1, 15008. [Google Scholar] [CrossRef]
- Qiao, Y.; Yang, H.; Chang, Z.; Deng, H.; Li, X.; Zhou, H. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 2021, 6, 653–662. [Google Scholar] [CrossRef]
- Guo, R.; Gallant, B.M. Li2O Solid Electrolyte Interphase: Probing Transport Properties at the Chemical Potential of Lithium. Chem. Mater. 2020, 32, 5525–5533. [Google Scholar] [CrossRef]
- Lowe, J.S.; Siegel, D.J. Modeling the Interface between Lithium Metal and Its Native Oxide. ACS Appl. Mater. Interfaces 2020, 12, 46015–46026. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, Y.; Mao, S.X.; Wang, J.; Huang, J. Beam-assisted large elongation of in situ formed Li2O nanowires. Sci. Rep. 2012, 2, 542. [Google Scholar] [CrossRef]
- Attaa, T.S.; Abd, A.N.; Zoory, M.J. Fabrication of Al/Li2O/PSi/ Si/Al heterojunction for photodetector and solar cell applications. Mater. Today Proc. 2021, 49, 3607–3614. [Google Scholar] [CrossRef]
- Vijayalakshmi, L.; Kumar, K.N.; Kumar, G.B.; Hwang, P. Structural, dielectric and photoluminescence properties of Nd3+ doped Li2O-LiF-B2O3-ZnO multifunctional optical glasses for solid state laser applications. J. Non-Crystalline Solids 2017, 475, 28–37. [Google Scholar] [CrossRef]
- Al Hussan, S.M.A.; Bakr, N.A.; Abd, A.N. Improve the Performance of Porous Silicon for solar application by the embedding of Lithium Oxide nanoparticle. IOP Conf. Ser. Mater. Sci. Eng. 2020, 928. [Google Scholar] [CrossRef]
- Yang, W.; Kim, D.Y.; Yang, L.; Li, N.; Tang, L.; Amine, K.; Mao, H. Oxygen-Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium–Air Battery Electrode. Adv. Sci. 2017, 4, 1600453. [Google Scholar] [CrossRef] [Green Version]
- Al-Ubaidi, M.R.; Anno, J.N. The Production of Lithium Oxide Microspheres from the Disintegration of a Liquid Jet. Fusion Technol. 1989, 16, 464–468. [Google Scholar] [CrossRef]
- Abo-Mosallam, H.; Ibrahim, S.; Mahdy, E.A. New high nickel-containing glass-ceramics based on Li2O–CaO–SiO2 eutectic (954 °C) system for magnetic applications. J. Non-Crystalline Solids 2022, 580, 121385. [Google Scholar] [CrossRef]
- Jamil, S.M.; Othman, M.H.D.; Rahman, M.A.; Jaafar, J.; Ismail, A.F.; Mohamed, M.A. Role of lithium oxide as a sintering aid for a CGO electrolyte fabricated via a phase inversion technique. RSC Adv. 2015, 5, 58154–58162. [Google Scholar] [CrossRef]
- Edström, K.; Herstedt, M.; Abraham, D.P. A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. J. Power Sources 2006, 153, 380–384. [Google Scholar] [CrossRef]
- Aurbach, D.; Dekker, M. Nonaqueous Electrochemistry; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Peled, E.; Menkin, S. Review—SEI: Past, Present and Future. J. Electrochem. Soc. 2017, 164, A1703–A1719. [Google Scholar] [CrossRef]
- Peled, E.; Golodnitsky, D.; Penciner, J. The Anode/Electrolyte Interface. In Handbook of Battery Materials; Wiley-VCH: Weinheim, Germany, 1998; pp. 419–456. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Hong, H.Y.-P.; Kafalas, J.A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 1976, 11, 203–220. [Google Scholar] [CrossRef]
- Roy, S.; Kumar, P.P. Influence of Cationic ordering on ion transport in NASICONs: Molecular dynamics study. Solid State Ionics 2013, 253, 217–222. [Google Scholar] [CrossRef]
- Guin, M.; Tietz, F. Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries. J. Power Sources 2015, 273, 1056–1064. [Google Scholar] [CrossRef]
- Susman, S.; Delbecq, C.; Brun, T.; Prince, E. Fast ion transport in the NASICON analog Na3Sc2(PO4)3: Structure and conductivity. Solid State Ionics 1983, 9–10, 839–844. [Google Scholar] [CrossRef]
- Hong, H.Y.-P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater. Res. Bull. 1976, 11, 173–182. [Google Scholar] [CrossRef]
- Jiang, T.; Wei, Y.; Pan, W.; Li, Z.; Ming, X.; Chen, G.; Wang, C. Preparation and electrochemical studies of Li3V2(PO4)3/Cu composite cathode material for lithium ion batteries. J. Alloys Compd. 2009, 488, L26–L29. [Google Scholar] [CrossRef]
- Feng, J.; Lu, L.; Lai, M. Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3. J. Alloys Compd. 2010, 501, 255–258. [Google Scholar] [CrossRef]
- Yang, K.-Y.; Wang, J.-W.; Fung, K.-Z. Roles of lithium ions and La/Li-site vacancies in sinterability and total ionic conduction properties of polycrystalline Li3xLa2/3−xTiO3 solid electrolytes (0.21 ≤ 3x ≤ 0.50). J. Alloys Compd. 2008, 458, 415–424. [Google Scholar] [CrossRef]
- Feng, J.; Xia, H.; Lai, M.O.; Lu, L. NASICON-structured LiGe2(PO4)3 with improved cyclability for high-performance lithium batteries. J. Phys. Chem. C 2009, 113, 20514–22052. [Google Scholar] [CrossRef]
- Govindaraj, G. Synthesis, characterization and ion dynamic studies of NASICON type glasses. Solid State Ionics 2002, 147, 49–59. [Google Scholar] [CrossRef]
- Zhang, Q.; Wen, Z.; Liu, Y.; Song, S.; Wu, X. Na+ ion conductors of glass–ceramics in the system Na1+xAlxGe2−xP3O12(0.3 ≤ x ≤ 1.0). J. Alloys Compd. 2009, 479, 494–499. [Google Scholar] [CrossRef]
- Anantharamulu, N.; Rao, K.K.; Vithal, M.; Prasad, G. Preparation, characterization, impedance and thermal expansion studies of Mn0.5MSb(PO4)3 (M = Al, Fe and Cr). J. Alloys Compd. 2009, 479, 684–691. [Google Scholar] [CrossRef]
- Fu, J. Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5. Solid State Ionics 1997, 96, 195–200. [Google Scholar] [CrossRef]
- Li, X.; Qu, M.; Yu, Z. Structural and electrochemical performances of Li4Ti5−xZrxO12 as anode material for lithium-ion batteries. J. Alloys Compd. 2009, 487, L12–L17. [Google Scholar] [CrossRef]
- Liu, S.-Q.; Li, S.-C.; Huang, K.-L.; Gong, B.-L.; Zhang, G. Kinetic study on Li2.8(V0.9Ge0.1)2(PO4)3 by EIS measurement. J. Alloys Compd. 2008, 450, 499–504. [Google Scholar] [CrossRef]
- Yao, X.; Xie, S.; Nian, H.; Chen, C. Spinel Li4Ti5O12 as a reversible anode material down to 0 V. J. Alloys Compd. 2008, 465, 375–379. [Google Scholar] [CrossRef]
- Zhang, C.; Tu, J.; Huang, X.; Yuan, Y.; Wang, S.; Mao, F. Preparation and electrochemical performances of nanoscale FeSn2 as anode material for lithium ion batteries. J. Alloys Compd. 2008, 457, 81–85. [Google Scholar] [CrossRef]
- Arbi, K.; Rojo, J.M.; Sanz, J. Lithium mobility in titanium based Nasicon Li1+xTi2−xAlx(PO4)3 and LiTi2−x Zrx(PO4)3 materials followed by NMR and impedance spectroscopy. J. Eur. Ceram. Soc. 2007, 27, 4215–4218. [Google Scholar] [CrossRef]
- Peña, J.S.; Sandu, I.; Joubert, O.; Pascual, F.S.; Areán, C.O.; Brousse, T. Electrochemical reaction between lithium and β-quartz GeO2. Electrochem. Solid-State Lett. 2004, 7, A278. [Google Scholar] [CrossRef]
- Lee, H.; Kim, M.G.; Choi, C.H.; Sun, Y.K.; Yoon, C.S.; Cho, J. Surface-stabilized amorphous germanium nanoparticles for lithium-storage material. J. Phys. Chem. B 2005, 109, 20719–20723. [Google Scholar] [CrossRef]
- DeWees, R.; Wang, H. Synthesis and Properties of NaSICON-type LATP and LAGP Solid Electrolytes. ChemSusChem 2019, 12, 3713–3725. [Google Scholar] [CrossRef]
- Kazakevičius, E.; Šalkus, T.; Dindune, A.; Kanepe, Z.; Ronis, J.; Kežionis, A.; Kazlauskienė, V.; Miškinis, J.; Selskienė, A.; Selskis, A. La-doped LiTi2(PO4)3 ceramics. Solid State Ionics 2008, 179, 51–56. [Google Scholar] [CrossRef]
- Rohde, M.; Cui, Y.; Ziebert, C.; Seifert, H.J. Thermophysical Properties of Lithium Aluminum Germanium Phosphate with Different Compositions. Int. J. Thermophys. 2020, 41, 31. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, M.; Glatthaar, S.; Binder, J.R. Influence of spray granulation on the properties of wet chemically synthesized Li1.3Ti1.7Al0.3(PO4)3 (LATP) powders. Solid State Ionics 2011, 201, 49–53. [Google Scholar] [CrossRef]
- Fergus, J.W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 2010, 195, 4554–4569. [Google Scholar] [CrossRef]
- Francisco, B.E.; Stoldt, C.R.; M’Peko, J.-C. Lithium-Ion Trapping from Local Structural Distortions in Sodium Super Ionic Conductor (NASICON) Electrolytes. Chem. Mater. 2014, 26, 4741–4749. [Google Scholar] [CrossRef]
- Cretin, M.; Fabry, P. Comparative study of lithium ion conductors in the system Li1+xAlxA2−xIV (PO4)3 with AIV = Ti or Ge and 0 ≤ x ≤ 0·7 for use as Li+ sensitive membranes. J. Eur. Ceram. Soc. 1999, 19, 2931–2940. [Google Scholar] [CrossRef]
- Dumon, A.; Huang, M.; Shen, Y.; Nan, C.W. High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet. Solid State Ionics 2013, 243, 36–41. [Google Scholar] [CrossRef]
- He, K.; Zu, C.; Wang, Y.; Han, B.; Yin, X.; Zhao, H.; Liu, Y.; Chen, J. Stability of lithium ion conductor NASICON structure glass ceramic in acid and alkaline aqueous solution. Solid State Ionics 2013, 254, 78–81. [Google Scholar] [CrossRef]
- Chowdari, B. XPS and ionic conductivity studies on Li2O–Al2O3–(TiO2 or GeO2)–P2O5 glass–ceramics. Solid State Ionics 2000, 136–137, 1067–1075. [Google Scholar] [CrossRef]
- Aboulaich, A.; Bouchet, R.; Delaizir, G.; Seznec, V.; Tortet, L.; Morcrette, M.; Rozier, P.; Tarascon, J.-M.; Viallet, V.; Dollé, M. A New Approach to Develop Safe All-Inorganic Monolithic Li-Ion Batteries. Adv. Energy Mater. 2011, 1, 179–183. [Google Scholar] [CrossRef]
- Arbi, K.; Bucheli, W.; Jiménez, R.; Sanz, J. High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5). J. Eur. Ceram. Soc. 2015, 35, 1477–1484. [Google Scholar] [CrossRef]
- Shi, J.; Xia, Y.; Han, S.; Fang, L.; Pan, M.; Xu, X.; Liu, Z. Lithium ion conductive Li1.5Al0.5Ge1.5(PO4)3 based inorganic–organic composite separator with enhanced thermal stability and excellent electrochemical performances in 5 V lithium ion batteries. J. Power Sources 2015, 273, 389–395. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Li, B.; Song, H.; Cheng, Z.; Chen, M.; He, P.; Zhou, H. Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries. Adv. Energy Mater. 2018, 8, 1702374. [Google Scholar] [CrossRef]
- Vernoux, P.; Gaillard, F.; Lopez, C.; Siebert, E. Coupling catalysis to electrochemistry: A solution to selective reduction of nitrogen oxides in lean-burn engine exhausts? J. Catal. 2003, 217, 203–208. [Google Scholar] [CrossRef]
- Roy, R.; Vance, E.; Alamo, J. [NZP], a new radiophase for ceramic nuclear waste forms. Mater. Res. Bull. 1982, 17, 585–589. [Google Scholar] [CrossRef]
- Nakayama, S.; Itoh, K. Immobilization Technique of Cesium to HZr2(PO4)3Using an Autoclave. J. Nucl. Sci. Technol. 2003, 40, 631–633. [Google Scholar] [CrossRef]
- Scheetz, B.; Agrawal, D.; Breval, E.; Roy, R. Sodium zirconium phosphate (NZP) as a host structure for nuclear waste immobilization: A review. Waste Manag. 1994, 14, 489–505. [Google Scholar] [CrossRef]
- Li, B.; Qing, Z.; Li, Y.; Li, H.; Zhang, S. Effect of CaO content on structure and properties of low temperature co-fired glass–ceramic in the Li2O–Al2O3–SiO2 system. J. Mater. Sci. Mater. Electron. 2016, 27, 2455–2459. [Google Scholar] [CrossRef]
- Li, B.; Duan, D.; Long, Q. Effects of TiO2 on microstructures and properties of Li2O–Al2O3–SiO2 glass–ceramics for LTCC substrates. J. Mater. Sci. Mater. Electron. 2016, 27, 7240–7245. [Google Scholar] [CrossRef]
- Soares, V.O.; Peitl, O.; Zanotto, E.D. New Sintered Li2 O-Al2 O3 -SiO2 Ultra-Low Expansion Glass-Ceramic. J. Am. Ceram. Soc. 2013, 96, 1143–1149. [Google Scholar] [CrossRef]
- Chen, M.; He, F.; Shi, J.; Xie, J.; Yang, H.; Wan, P. Low Li2O content study in Li2O-Al2O3-SiO2 glass-ceramics. J. Eur. Ceram. Soc. 2019, 39, 4988–4995. [Google Scholar] [CrossRef]
- Braga, M.H.; Grundish, N.S.; Murchison, A.J.; Goodenough, J.B. Alternative strategy for a safe rechargeable battery. Energy Environ. Sci. 2016, 10, 331–336. [Google Scholar] [CrossRef]
- Danzi, F.; Salgado, R.; Oliveira, J.; Arteiro, A.; Camanho, P.; Braga, M. Structural Batteries: A Review. Molecules 2021, 26, 2203. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Zhao, Y.; Zhao, F.; Adair, K.; Zhao, R.; Li, S.; Zou, R.; Zhao, Y.; Sun, X. Antiperovskite Electrolytes for Solid-State Batteries. Chem. Rev. 2022, 122, 3763–3819. [Google Scholar] [CrossRef] [PubMed]
Material | Type | Dielectric Constant at RT and 0.1 Hz (εr) | Ionic Conductivity at RT (S·cm−1) | Refs. |
---|---|---|---|---|
SiO2 | Dielectric | 3.9 | - | [19] |
MgO | Dielectric | 10 | 10−36 | [20,21] |
Li2O | Dielectric | 8–11 | 10−12 | [22] |
Na3Zr2Si2PO12 (NASICON) | Solid Electrolyte | 103–104 | 10−4 | [23,24] |
Li1.5Al0.5Ge1.5(PO4)3 (LAGP) | Solid Electrolyte | - | 10–4–10–3 | [25] |
Li2.99Ba0.005ClO (Li+ glass) | Ferroelectric Solid-electrolyte | 107–109 | 10−2 | [26,27] |
Cell Insulator: d = 5.5 mm S = 22 × 4.7 mm2 | Circuit Open OCV or close with an external resistance R | Heterojunction equilibrium and correspondent surface chemical potential (it may include parts of the electrode away from the surface that equalize as well) | Heterojunctions surface chemical potential difference (V) | Maximum surface potential difference for the electrodes at the interface with the insulator (V) | - Bulk potential difference for the cell - Temperature - Dew point, DP |
Dielectric: SiO2 [ΔVSiO2(Cu) − ΔVSiO2(Al) = 0.60-(0.77) = 0.17 V Figure 3a; ΔVSiO2(Al) − ΔVSiO2(Cu) = 0.44–0.59 = −0.15 V] Figure 3b | |||||
Calculated surface chemical potential (ab initio), µ = +0.99 V, SHE; experimental: µ = +0.73 V, SHE | |||||
Cu/SiO2/Al | OCV | Cu1…Cu2/SiO2 0.22 V | 0.36 | 0.65 | -- |
Al/SiO2/Cu | OCV | Al1…Al2/SiO2 −0.15 V | 0.36 | 0.73 | -- |
Al/SiO2/Cu | OCV | SiO2/Cu1…Cu2 0.21 V | |||
Cu/SiO2/Al | OCV | Cu1…Cu2/SiO2 0.44 V | 0.53 | 0.59 | Vi: 12 mV Vf: 13 mV 38 °C DP: <10 °C |
Cu/SiO2/Al | OCV | Cu…SiO2/Al 0.09 V | |||
Zn/SiO2/Cu | OCV | Zn/SiO2…Cu1…Cu2 −0.059 V | 0.33 | 0.30 | -- |
Zn/SiO2/Cu | OCV | SiO2/Cu 0.29 V | |||
Dielectric: MgO [ΔVMgO(Al) − ΔVMgO(Cu) = −1.56-(−1.03) = −0.53 V; ΔVMgO(Cu) − ΔVMgO(Al) = −0.27-(−0.61) = 0.34 V] Figure 4d | |||||
Calculated surface chemical potential (ab initio), µ = −1.18 V, SHE; experimental: µ = −1.12 V, SHE | |||||
Cu/MgO/Al | OCV | Cu1…Cu2/MgO…Al 0.60 V | 0.43 | 0.50 | Vi: 9.5 mV 25 °C Vf: 15 mV 36 °C DP: <10 °C |
Cu/MgO/Al | OCV | MgO/Al1…Al2 0.17 V | |||
Al/MgO/Cu | OCV | Al1…Al2/MgO −1.24 V | 0.43 | 0.92 | |
Al/MgO/Cu | OCV | Al1…MgO/Cu −0.81 V | |||
Cu/MgO/Al | OCV | Cu1…Cu2/MgO…Al 0.01 V | 0.36 | 0.46 | |
Cu/MgO/Al | OCV | MgO/Al −0.35 V | |||
Dielectric: Li2O [ΔVLi2O(Cu) − ΔVLi2O(Al) ≈ 0 V] Figure 5b,d | |||||
Calculated surface chemical potential (ab initio), µ = +0.058 V, SHE; experimental: µ = +0.074 V, SHE | |||||
Cu/Li2O/Al | OCV | Cu/Li2O… 0.13 V | 0.26 | 0.37 | Vi: 11 mV Vf: 10 mV 25 °C DP: <10 °C |
Cu/Li2O/Al | OCV | Li2O/Al1…Al2 −0.13 V | |||
Al/Li2O/Cu | OCV | Al1…Al2/Li2O −0.36 V | 0.23 | 0.42 | -- |
Al/Li2O/Cu | OCV | Li2O/Cu −0.13 V | |||
Cu/Li2O/Al | OCV | Cu1…Cu2/Li2O 0.12 V | 0.14 | 0.38 | -- |
Cu/Li2O/Al | OCV | Li2O/Al1…Al2 −0.023 V | |||
Solid electrolyte: Na3Zr2Si2PO12–NASICON [band bending as an n-type semiconductor, OCV] Figure 6a,b; solid electrolyte: [band bending as p-type semiconductor, R = 980 Ω] Figure 6c,d | |||||
Calculated surface chemical potential (ab initio), µ = −0.67 V (001) and −0.37 V (010), SHE; experimental: µ = +0.26 V, SHE | |||||
Cu/NASICON/Al | OCV | Cu1…Cu2/NASICON/Al 0.21 V | ~0 | 0.64 | Vi: 34 mV Vf: 10 mV 34 °C DP: <10 °C |
Cu/NASICON/Al | 980 Ω | Cu1…Cu2/NASICON/Al 0.004 V | ~0 | 0.58 | Vi: 29 mV Vf: 30 mV 36 °C DP: <10 °C |
Solid electrolyte: Li1.5Al0.5Ge1.5(PO4)3–LAGP [band bending as a p-type semiconductor, OCV and R = 980 Ω] Figure 7 | |||||
Calculated surface chemical potential (ab initio), µ = +0.81 V, SHE; experimental: µ = +0.52 V, SHE | |||||
Cu/LAGP/Al | OCV | Cu1…Cu2/LAGP/Al 0.25 V | ~0 | 0.67 | Vi: 13.47 mV 25 °C Vf: 92.03 mV 35 °C DP: <10 °C |
Cu/LAGP/Al | 980 Ω | Cu1…Cu2/LAGP/Al 0.23 V | ~0 | 0.67 | Vi: 92.73 mV Vf: 0.100 V 36 °C DP: <10 °C |
Solid electrolyte and ferroelectric: Li2.99Ba0.005ClO–Li+ glass, Figure 8 (insulator thickness 5.5 mm) | |||||
Calculated surface chemical potential (ab initio), µ = +0.25 V, SHE; experimental: µ = +0.23 V, SHE | |||||
Cu/Li+glass/Al | OCV | Cu1…Cu2/Li+glass1…2 0.21 V | +0.25 | +0.29 | Vi = 1.14 V Vf = 0.89 V 36 °C DP: <10 °C |
Cu/Li+glass/Al | OCV | Li+glass/Al1…Al2 −0.04 V | |||
Cu/Li+glass/Al | OCV | Cu1…Cu2/Li+glass1…2 0.25 V | +0.13 | +0.087 | Vi = 0.89 V Vf = 0.93 V 36 °C DP: <10 °C |
Cu/Li+glass/Al | OCV | Li+glass/Al1…Al2 0.12 V | |||
Al/Li+glass/Cu | 980 Ω | Al/Li+glass/Cu1…Cu2 0.25 V | −0.15 | −0.68 | Vi = 0.91 V Vf = 0.94 V 36 °C DP: <10 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerreiro, A.N.; Maia, B.A.; Khalifa, H.; Baptista, M.C.; Braga, M.H. What Differentiates Dielectric Oxides and Solid Electrolytes on the Pathway toward More Efficient Energy Storage? Batteries 2022, 8, 232. https://doi.org/10.3390/batteries8110232
Guerreiro AN, Maia BA, Khalifa H, Baptista MC, Braga MH. What Differentiates Dielectric Oxides and Solid Electrolytes on the Pathway toward More Efficient Energy Storage? Batteries. 2022; 8(11):232. https://doi.org/10.3390/batteries8110232
Chicago/Turabian StyleGuerreiro, Antonio Nuno, Beatriz Arouca Maia, Hesham Khalifa, Manuela Carvalho Baptista, and Maria Helena Braga. 2022. "What Differentiates Dielectric Oxides and Solid Electrolytes on the Pathway toward More Efficient Energy Storage?" Batteries 8, no. 11: 232. https://doi.org/10.3390/batteries8110232
APA StyleGuerreiro, A. N., Maia, B. A., Khalifa, H., Baptista, M. C., & Braga, M. H. (2022). What Differentiates Dielectric Oxides and Solid Electrolytes on the Pathway toward More Efficient Energy Storage? Batteries, 8(11), 232. https://doi.org/10.3390/batteries8110232