Galvanic Replacement Preparation of Spindle-Structured Sb@C@NC as Anode for Superior Lithium-Ion Storage
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, B.; Deng, Z.; Xia, Y.; Hu, J.; Li, H.; Wu, H.; Zhang, Q.; Zhang, Y.; Liu, H.; Dou, S. Realizing Reversible Conversion-Alloying of Sb(V) in Polyantimonic Acid for Fast and Durable Lithium- and Potassium-Ion Storage. Adv. Energy Mater. 2019, 10, 1903119. [Google Scholar] [CrossRef]
- Ge, M.; Cao, C.; Biesold, G.M.; Sewell, C.D.; Hao, S.M.; Huang, J.; Zhang, W.; Lai, Y.; Lin, Z. Recent Advances in Silicon-Based Electrodes: From Fundamental Research toward Practical Applications. Adv. Mater. 2021, 33, e2004577. [Google Scholar] [CrossRef]
- Li, P.; Yu, L.; Ji, S.; Xu, X.; Liu, Z.; Liu, J.; Liu, J. Facile Synthesis of Three-Dimensional Porous Interconnected Carbon Matrix Embedded with Sb Nanoparticles as Superior Anode for Na-ion Batteries. Chem. Eng. J. 2019, 374, 502–510. [Google Scholar] [CrossRef]
- Yousaf, M.; Wang, Y.; Chen, Y.; Wang, Z.; Firdous, A.; Ali, Z.; Mahmood, N.; Zou, R.; Guo, S.; Han, R.P.S. A 3D Trilayered CNT/MoSe2/C Heterostructure with an Expanded MoSe2 Interlayer Spacing for an Efficient Sodium Storage. Adv. Energy Mater. 2019, 9, 1900567. [Google Scholar] [CrossRef]
- Yin, H.; Li, Q.; Cao, M.; Zhang, W.; Zhao, H.; Li, C.; Huo, K.; Zhu, M. Nanosized-bismuth-embedded 1D Carbon Nanofibers as High-performance Anodes for Lithium-ion and Sodium-ion Batteries. Nano Res. 2017, 10, 2156–2167. [Google Scholar] [CrossRef]
- Wang, N.; Bai, Z.; Qian, Y.; Yang, J. Double-Walled Sb@TiO2-x Nanotubes as a Superior High-Rate and Ultralong-Lifespan Anode Material for Na-Ion and Li-Ion Batteries. Adv. Mater. 2016, 28, 4126–4133. [Google Scholar] [CrossRef]
- Sultana, I.; Rahman, M.M.; Chen, Y.; Glushenkov, A.M. Potassium-Ion Battery Anode Materials Operating through the Alloying-Dealloying Reaction Mechanism. Adv. Funct. Mater. 2018, 28, 1703857. [Google Scholar] [CrossRef]
- Nitta, N.; Yushin, G. High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles. Part. Part. Syst. Charact. 2014, 31, 317–336. [Google Scholar] [CrossRef]
- Liu, S.; Feng, J.; Bian, X.; Liu, J.; Xu, H. The Morphology-controlled Synthesis of a Nanoporous-antimony Anode for High-performance Sodium-ion Batteries. Energy Environ. Sci. 2016, 9, 1229–1236. [Google Scholar] [CrossRef]
- Liu, J.; Yu, L.; Wu, C.; Wen, Y.; Yin, K.; Chiang, F.-K.; Hu, R.; Liu, J.; Sun, L.; Gu, L.; et al. New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk-Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries. Nano Lett. 2017, 17, 2034–2042. [Google Scholar] [CrossRef]
- Liang, L.; Xu, Y.; Wang, C.; Wen, L.; Fang, Y.; Mi, Y.; Zhou, M.; Zhao, H.; Lei, Y. Large-scale Highly Ordered Sb Nanorod Array Anodes with High Capacity and Rate Capability for Sodium-ion Batteries. Energy Environ. Sci. 2015, 8, 2954–2962. [Google Scholar] [CrossRef]
- Lao, M.; Zhang, Y.; Luo, W.; Yan, Q.; Sun, W.; Dou, S.X. Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries. Adv. Mater. 2017, 29, 1700622. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Kraychyk, K.; Walter, M.; Kovalenko, M.V. Monodisperse Antimony Nanocrystals for High-Rate Li-ion and Na-ion Battery Anodes: Nano versus Bulk. Nano Lett. 2014, 14, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Darwiche, A.; Marino, C.; Sougrati, M.T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811. [Google Scholar] [CrossRef]
- He, M.; Walter, M.; Kravchyk, K.V.; Erni, R.; Widmer, R.; Kovalenko, M.V. Monodisperse SnSb Nanocrystals for Li-ion and Na-ion Battery Anodes: Synergy and Dissonance Between Sn and Sb. Nanoscale 2015, 7, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, Z.; Wang, J.; Gu, L.; Maier, J.; Yu, Y. Three-dimensionally Interconnected Nickel-antimony Intermetallic Hollow Nanospheres as Anode Material for High-rate Sodium-ion Batteries. Nano Energy 2015, 16, 389–398. [Google Scholar] [CrossRef]
- Li, J.; Pu, J.; Liu, Z.; Wang, J.; Wu, W.; Zhang, H.; Ma, H. Porous-Nickel-Scaffolded Tin-Antimony Anodes with Enhanced Electrochemical Properties for Li/Na-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 25250–25256. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Zhang, N.; Li, F.; Cheng, F.; Chen, J. High Anode Performance of in Situ Formed Cu2Sb Nanoparticles Integrated on Cu Foil via Replacement Reaction for Sodium-Ion Batteries. ACS Energy Lett. 2017, 2, 256–262. [Google Scholar] [CrossRef]
- Wang, N.; Bai, Z.; Qian, Y.; Yang, J. One-Dimensional Yolk-Shell Sb@Ti-O-P Nanostructures as a High-Capacity and High-Rate Anode Material for Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 447–454. [Google Scholar] [CrossRef]
- Xie, H.; Kalisvaart, W.P.; Olsen, B.C.; Luber, E.J.; Mitlin, D.; Buriak, J.M. Sn-Bi-Sb Alloys as Anode Materials for Sodium Ion Batteries. J. Mater. Chem. A 2017, 5, 9661–9670. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, L.; Fu, J.; Yun, J.; Kim, K.H. Hierarchical Tiny-Sb Encapsulated in MOFs Derived-carbon and TiO2 Hollow Nanotubes for Enhanced Li/Na-Ion Half-and Full-cell batteries. Chem. Eng. J. 2021, 417, 129106. [Google Scholar] [CrossRef]
- Ding, Y.-L.; Wu, C.; Kopold, P.; van Aken, P.A.; Maier, J.; Yu, Y. Graphene-Protected 3D Sb-based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage. Small 2015, 11, 6026–6035. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Lu, H.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. Electrochemical Properties and Morphological Evolution of Pitaya-like Sb@C Microspheres as High-performance Anode for Sodium Ion Batteries. J. Mater. Chem. A 2015, 3, 5708–5713. [Google Scholar] [CrossRef]
- Qiu, S.; Wu, X.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. Antimony Nanocrystals Encapsulated in Carbon Microspheres Synthesized by a Facile Self-Catalyzing Solvothermal Method for High-Performance Sodium-Ion Battery Anodes. ACS Appl. Mater. Interfaces 2016, 8, 1337–1343. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, J.; Gan, L.; Zhang, Q.; Zheng, Z.; Li, H.; Zhai, T. Scalable Production of Self-supported WS2/CNFs by Electrospinning as the Anode for High-performance Lithium-ion Batteries. Sci. Bull. 2016, 61, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Hou, H.; Zhang, C.; Ge, P.; Huang, Z.; Jing, M.; Qiu, X.; Ji, X. Antimony Anchored with Nitrogen-Doping Porous Carbon as a High-Performance Anode Material for Na-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 26118–26125. [Google Scholar] [CrossRef]
- Xu, X.; Dou, Z.; Gu, E.; Si, L.; Zhou, X.; Bao, J. Uniformly-distributed Sb Nanoparticles in Ionic Liquid-derived Nitrogen-enriched Carbon for Highly Reversible Sodium Storage. J. Mater. Chem. A 2017, 5, 13411–13420. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, J.; Zhang, G.; Guo, C.; Li, M.; Zhu, Y.; Qian, Y. Sb Nanoparticles Uniformly Dispersed in 1-D N-doped Porous Carbon as Anodes for Li-ion and Na-ion Batteries. J. Mater. Chem. A 2017, 5, 12144–12148. [Google Scholar] [CrossRef]
- Xuan-Manh, P.; Duc Tung, N.; Le, H.T.T.; Didwal, P.N.; Verma, R.; Min, C.-W.; Park, C.-N.; Park, C.-J. A Self-encapsulated Porous Sb-C Nanocomposite Anode with Excellent Na-ion Storage Performance. Nanoscale 2018, 10, 19399–19408. [Google Scholar]
- Yuan, Y.; Jan, S.; Wang, Z.; Jin, X. A Simple Synthesis of Nanoporous Sb/C with High Sb Content and Dispersity as an Advanced Anode for Sodium Ion Batteries. J. Mater. Chem. A 2018, 6, 5555–5559. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Z.; Ji, S.; Wang, Z.; Ni, Z.; Lv, Y.; Liu, J.; Liu, J. Rational Synthesis of Ternary FeS@TiO2@C Nanotubes as Anode for Superior Na-ion Batteries. Chem. Eng. J. 2019, 359, 765–774. [Google Scholar] [CrossRef]
- Jung, H.-G.; Myung, S.-T.; Yoon, C.S.; Son, S.-B.; Oh, K.H.; Amine, K.; Scrosati, B.; Sun, Y.-K. Microscale Spherical Carbon-coated Li4Ti5O12 as Ultra High Power Anode Material for Lithium Batteries. Energy Environ. Sci. 2011, 4, 1345–1351. [Google Scholar] [CrossRef]
- Guo, W.; Xue, X.; Wang, S.; Lin, C.; Wang, Z.L. An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 Nanotube Arrays. Nano Lett. 2012, 12, 2520–2523. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.-Y.; Myung, S.-T.; Lee, J.-H.; Abouimrane, A.; Belharouak, I.; Sun, Y.-K. Ultrafast Sodium Storage in Anatase TiO2 Nanoparticles Embedded on Carbon Nanotubes. Nano Energy 2015, 16, 218–226. [Google Scholar] [CrossRef]
- Bai, Y.; Dou, Y.B.; Xie, L.H.; Rutledge, W.; Li, J.R.; Zhou, H.C. Zr-based Metal-Organic Frameworks: Design, Synthesis, Structure, and Applications. Chem. Soc. Rev. 2016, 45, 2327–2367. [Google Scholar] [CrossRef]
- Li, H.; Su, Y.; Sun, W.W.; Wang, Y. Carbon Nanotubes Rooted in Porous Ternary Metal Sulfide@N/S-Doped Carbon Dodecahedron: Bimetal-Organic-Frameworks Derivation and Electrochemical Application for High-Capacity and Long-Life Lithium-Ion Batteries. Adv. Funct. Mater. 2016, 26, 8345–8353. [Google Scholar] [CrossRef]
- Xia, B.Y.; Yan, Y.; Li, N.; Wu, H.B.; Lou, X.W.; Wang, X. A Metal-Organic Framework-Derived Bifunctional Oxygen Electrocatalyst. Nat. Energy 2016, 1, 15006. [Google Scholar] [CrossRef]
- Zhu, H.; Jia, Z.; Chen, Y.; Weadock, N.; Wan, J.; Vaaland, O.; Han, X.; Li, T.; Hu, L. Tin Anode for Sodium-ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir. Nano Lett. 2013, 13, 3093–3100. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yu, X.-Y.; Lou, X.W.; Paik, U. Sb@C Coaxial Nanotubes as a Superior Long-life and High-rate Anode for Sodium Ion Batteries. Energy Environ. Sci. 2016, 9, 2314–2318. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Liu, J.; Ouyang, L.; Hu, R.; Wang, H.; Yang, L.; Zhu, M. A General Metal-Organic Framework (MOF)-Derived Selenidation Strategy for In Situ Carbon-Encapsulated Metal Selenides as High-Rate Anodes for Na-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1707573. [Google Scholar] [CrossRef]
- Zhang, K.; Park, M.; Zhou, L.; Lee, G.H.; Shin, J.; Hu, Z.; Chou, S.L.; Chen, J.; Kang, Y.M. Cobalt-Doped FeS2 Nanospheres with Complete Solid Solubility as a High-Performance Anode Material for Sodium-Ion Batteries. Angew. Chem. Int. Ed. Engl. 2016, 55, 12822–128266. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhang, J.; Cui, J.; Zhu, Y.; Liang, J.; Wang, L.; Qian, Y. Electrochemical Performance of Rod-like Sb–C Composite as Anodes for Li-ion and Na-ion Batteries. J. Mater. Chem. A 2015, 3, 3276–3280. [Google Scholar] [CrossRef]
- Liu, X.; Tian, Y.; Cao, X.; Li, X.; Le, Z.; Zhang, D.; Li, X.; Nie, P.; Li, H. Aerosol-Assisted Synthesis of Spherical Sb/C Composites as Advanced Anodes for Lithium Ion and Sodium Ion Batteries. ACS Appl. Energy Mater. 2018, 1, 6381–6387. [Google Scholar] [CrossRef]
- Wu, Y.; Pan, Q.; Zheng, F.; Ou, X.; Yang, C.; Xiong, X.; Liu, M.; Hu, D.; Huang, C. Sb@C/Expanded Graphite as High-performance Anode Material for Lithium Ion Batteries. J. Alloys Compd. 2018, 744, 481–486. [Google Scholar] [CrossRef]
- Tian, J.; Yang, H.; Fu, C.; Sun, M.; Wang, L.; Liu, T. In-situ Synthesis of Microspherical Sb@C Composite Anode with High Tap Density for Lithium/Sodium-ion Batteries. Compos. Commun. 2020, 17, 177–181. [Google Scholar] [CrossRef]
- Ahuja, V.; Senthilkumar, B.; Senguttuvan, P. Ultra-stable Sb/hard Carbon Composite Anodes with Synergistic Alkali-ion Storage Performances. Mater. Res. Bull. 2021, 144, 111491. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, X.; Li, X.; Li, Y.; Zhang, W.Q.; Sheng, Y.L. Temperature-Dependent Nanopolyhedron Carbon-Decorated Sb for High-Performance Lithium-Ion Batteries. ChemElectroChem 2021, 8, 1486–1492. [Google Scholar] [CrossRef]
- Pan, Q.C.; Wu, Y.A.; Zhong, W.T.; Zheng, F.H.; Li, Y.P.; Liu, Y.Z.; Hu, J.H.; Yang, C.H. Carbon Nanosheets Encapsulated NiSb Nanoparticles as Advanced Anode Materials for Lithium-Ion Batteries. Energy Environ. Mater. 2020, 3, 186–191. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Li, P.; Li, F.; Liu, Z.; Xu, X.; Liu, J. Galvanic Replacement Preparation of Spindle-Structured Sb@C@NC as Anode for Superior Lithium-Ion Storage. Batteries 2022, 8, 245. https://doi.org/10.3390/batteries8110245
Liu J, Li P, Li F, Liu Z, Xu X, Liu J. Galvanic Replacement Preparation of Spindle-Structured Sb@C@NC as Anode for Superior Lithium-Ion Storage. Batteries. 2022; 8(11):245. https://doi.org/10.3390/batteries8110245
Chicago/Turabian StyleLiu, Junhao, Peihang Li, Fangkun Li, Zhengbo Liu, Xijun Xu, and Jun Liu. 2022. "Galvanic Replacement Preparation of Spindle-Structured Sb@C@NC as Anode for Superior Lithium-Ion Storage" Batteries 8, no. 11: 245. https://doi.org/10.3390/batteries8110245
APA StyleLiu, J., Li, P., Li, F., Liu, Z., Xu, X., & Liu, J. (2022). Galvanic Replacement Preparation of Spindle-Structured Sb@C@NC as Anode for Superior Lithium-Ion Storage. Batteries, 8(11), 245. https://doi.org/10.3390/batteries8110245