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Abstract: Antimony (Sb) is regarded to be a potential alloying-type anode for lithium-ion batteries
due to its excellent electrochemical reversibility and high theoretical specific capacity (660 mA h g−1).
However, huge volume expansion accompanying rapid capacity fading seriously hinders its com-
mercial application. Herein, double-carbon-modified spindle-structured Sb@C@NC were constructed
via galvanic replacement using a Fe-based metal-organic framework (MOF) with polydopamine-
coated-derived Fe@C@NC as reactants. Due to the unique double-carbon-encapsulated structure, the
Sb@C@NC anode effectively moderates the volume fluctuation and maintains the integral framework
from collapsing during the annealing and cycling process. As lithium-ion battery (LIB) anodes,
Sb@C@NC attained excellent cycling performance (389 mAh g−1 at 100 mA g−1 after 100 cycles)
and superior rate capability (a reversible capacity of 343 mAh g−1 at 2000 mA g−1). Such an MOF-
based approach provides an adjustable strategy for Sb-based nanomaterial and shield light on the
applications of Sb@C@NC in other fields.

Keywords: spindle-structured Sb@C@NC; galvanic replacement; MOF-derived; anode; lithium-
ion batteries

1. Introduction

Lithium-ion batteries (LIBs) have been widely applied in commercial electronic devices
(smartphones, laptops, etc.) and electric vehicles in recent years owing to their exceptional
energy density and long cycle life [1–3]. However, for the wider application of LIBs, it is
necessary to spare no effort to boost their energy density and improve their cycle life. Graphite,
a widely used anode, because of its low theoretical specific capacity (372 mAh g−1) and inferior
safety problems (0.1 V vs. Li/Li+), has gradually failed to meet the requirements for high-
energy density LIBs. Therefore, researchers have focused on discovering and designing
various anode materials to replace traditional graphite. Antimony (Sb), with a high specific
capacity (660 mAh g−1) and safe intercalation potential (0.8 V vs. Li/Li+), is the most
promising anode for next-generation high-energy LIBs [4–9]. However, current Sb-based
anodes undergo large volume variation (over 150% volume increase via the formation of
Li3Sb) during the charge–discharge process, which inhibits the practical application of Sb
anodes in LIBs. Furthermore, such a huge volume expansion causes the serious cracking of
the active materials and an unstable solid electrolyte interphase (SEI), resulting in a rapid
decrease in specific capacity and a short cycle life [10–14]. Therefore, to inhibit volume
expansion, various researchers focused their attention on designing Sb-based alloys with
Sn, Zn, Bi, Ni, Co, Cu, and other metallic elements [15–21], and combined with conductive
carbon materials [10,22–31]. In detail, the introduction of metallic elements, especially
nonelectroactive elements with relatively high atomic mass, provides a buffer for the
volume variation, but decreases the integral energy density. However, the carbon-coating
layer not only buffers the volume variation of Sb during the charge and discharge process,
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but also provides additional sites for the insertion of lithium ions. At the same time, the
addition of nitrogen-doped carbon (NC) can introduce defects and improve electronic
conductivity [32–34]. Dopamine, a special small organic molecule, can self-polymerize onto
the surface of active materials in a particular solution, forming a uniform polydopamine
(PDA) coating layer, and then pyrolyze to form a uniform N-doped carbon-coated shell.
With the inertness of the original bulk generating poor Li+ diffusion kinetics, designing
nanostructured Sb electrodes is a feasible method to settle these issues. Metal–organic-
framework MOFs are porous materials formed by metal-ion and organic ligands through
self-assembly and coordination bond linkage, which were first defined by Yaghi et al. [35]
in the 1990s, have recently attracted considerable attention. Numerous studies showed
that MOFs can combine metallic elements with a carbon framework, which is an effective
strategy to encapsulate active materials into a conductive network and confine the growth
of active materials. Facile galvanic replacement was also confirmed as an effective strategy
for synthesizing nanomaterials and preventing the growth of active particles [36,37].

Herein, we chose Fe-MOF as the precursor, and coated it with polydopamine anneal-
ing in the Ar atmosphere to attain the nitrogen-doped carbon and MOF-derived carbon-
encapsulated Fe nanocomposite (Fe@C@NC). Double-carbon-modified Sb@C@NC was ob-
tained via a facile galvanic replacement of Fe@C@NC in an SbCl3 solution. Benefiting
from the special double-carbon-modified nanorod design, this Sb@C@NC anode attained
389 mA h g−1 after 100 cycles at 100 mA g−1 and possessed a specific capacity of 343 mA h g−1

at 2000 mA g−1. This strategy broadens the avenue for designing carbon-encapsulated
Sb-based anodes for LIBs.

2. Results and Discussion

Figure 1 shows the detailed construction process of the double-carbon-encapsulated
Sb@C@NC anodes. First, Fe-MOF was prepared via hydrothermal reaction by dissolving an
appropriate proportion of fumaric acid (FA) and Fe(NO3)3 in an N,N-dimethylformamide
(DMF) solution and maintained at 110 ◦C for 1 h. The robust spindle-structured Fe-MOF
precipitates were washed, filtered, and collected. Then, Fe-MOF and dopamine were mixed
and stirred in a weak alkaline water solution for 20 h to obtain Fe-MOF@polydopamine
(Fe-MOF@PDA). After that, Fe-MOF@PDA was treated in 5 vol% H2/Ar mixture gases at
600 ◦C for 2 h to obtain the spindle-structured Fe@C@NC. Lastly, Sb@C@NC anodes were
synthesized via a galvanic replacement process of Fe@C@NC using an excess SbCl3 ethanol
solution at 100 ◦C for 24 h (Fe + Sb3+ → Sb + Fe3+). The synthesized Sb@C@NC completely
inherited the structure of Fe-MOF, and the dopamine coating could also keep the structure
stable and avoid the precipitation of metallic Fe during the pyrolytic process.
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The microstructure of the Fe-MOF, Fe@C, Fe@C@NC, Sb@C, and Sb@C@NC was
characterized with scan electron microscopy (SEM). Figure 2a,b show the SEM images
of Fe-MOF, which displayed robust spindle-structured structures. Figure 2b shows the
high-magnification SEM image of Fe-MOF, which demonstrates that the middle part of
the Fe-MOF was a prism structure, and two terminals were cone-shaped. The SEM results
reveal that the length and width of the Fe-MOF were about 800 and 250 nm, respectively.
Figure S1 (Supplementary Materials) and Figure 2c,d are the SEM results of the Fe@C and
Fe@C@NC, respectively. Figure S1 demonstrates that the Fe@C maintained a nanorod
structure that was similar to the morphology of Fe-MOF. The high-magnification result
(Figure S1b) shows that the surface of the Fe@C nanorods was rough and accompanied
by the aggregation of nanoparticles. Therefore, to inherit the spindle structure of Fe-MOF
well, PDA was in situ polymerized on the surface of Fe-MOF and then pyrolyzed to form a
double-layer coating. Figure 2c,d show the well-preserved Fe@C@NC spindle structure
of Fe-MOF, which was composed of prisms and cones, and the size of Fe@C@NC, which
were well-consistent with the Fe-MOF. The above SEM results reveal that the structure of
Fe-MOF was well-inherited during the pyrolytic procedure by coating with PDA. Figure
S2 (Supplementary Materials), and Figure 2e,f, exhibit the morphology of the Sb@C and
Sb@C@NC after galvanic replacement. The morphology was without obvious change
during the galvanic replacement process. Different from Sb@C, the structure of Sb@C@NC
retained the spindle-structured Fe-MOF, which further reveals that the double-carbon
modification enhanced the integral structure stability well.

Batteries 2022, 8, x FOR PEER REVIEW 4 of 11 
 

 
Figure 2. Low- and high-magnification SEM results of (a,b) Fe-MOF, (c,d) Fe@C@NC, and (e,f) 
Sb@C@NC. 

 
Figure 3. XRD results of (a) Fe@C@NC and (b) Sb@C@NC; (c) TG curves of Sb@C and Sb@C@NC. 
(d) Raman spectrum of Sb@C@NC. 

Figure 2. Low- and high-magnification SEM results of (a,b) Fe-MOF, (c,d) Fe@C@NC, and
(e,f) Sb@C@NC.

Figure 3a shows the X-ray diffraction (XRD) patterns of the double-carbon-modified
Fe@C@NC ;the main diffraction peaks were well-confirmed to the metallic Fe (JCPDS
bo. 65-4899), and the other diffraction peaks were matched with the pure Fe3C (JCPDS
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no. 34-0001). The XRD results reveal that most of the Fe3+ were reduced to elemental Fe,
with a small part forming the carbide Fe3C during the annealing procedure. Figure 3b
exhibits the XRD pattern of the final product, Sb@C@NC, and all the diffraction peaks
were well-confirmed to pure Sb (JCPDS no. 85-1322), which demonstrates that the galvanic
replacement could completely transform Fe into pure Sb. The existence of Fe3C cannot be
observed in Figure 3b. The XRD results of pure Fe3C before and after the reaction in the
SbCl3 solution (Figure S3, Supplementary Materials) show that the Fe3C may not undergo
galvanic replacement with Sb3+, but the weak peak strength indicate that the Fe3C may
have partly been dissolved in the SbCl3 solution. This phenomenon may explain why no
peaks of Fe3C exist in the final Sb@C@NC sample. In order to determine the carbon content
in the Sb@C and Sb@C@NC materials, the samples were measured via thermogravimetric
analysis (TGA). As depicted in Figure 3c, the green and yellow TG curves correspond to
Sb@C@NC and Sb@C, respectively. The TG curves show that the first weight loss from
40 to ~200 ◦C was due to the loss of the moisture or water of crystallization, and the
weight gain corresponded to the oxidation of elemental Sb (the weight gain for complete
oxidation of pure Sb was 16.4%). The second weight loss was attributed to the combustion
of carbon materials to CO2 and was accomplished with the oxidation of elemental Sb to
Sb2O3 [38]. On the basis of the above results, the carbon content in these samples was 20.8
and 35.9 wt. % for Sb@C and Sb@C@NC, respectively. Figure 3d is the result of the Raman
spectrum in which the intrinsic peaks of graphene at about 1335 and 1592 cm−1 can be
clearly observed. The peak of the D band (at 1335 cm−1) was due to the disorder of the
sample or the edges of graphene or disorder samples, while the peak of the G band (at
1592 cm−1) originated from the scattering of sp2 carbon domains [39].
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The microstructure of the robust spindle-structured Sb@C@NC anodes was further
characterized via transmission electron microscopy (TEM). As depicted in Figure 4a,b, the
prepared Sb@C@NC preserved a spindlelike structure with uniform size. In addition, the
existence of porous carbon could be observed at the edge position of the spindle-structured
Sb@C@NC, which originated from the pyrolysis of Fe-MOF and PDA. The high-angle
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annular dark-filed (HAADF) TEM signal (Figure 4c) further certified the Sb@C@NC with a
spindle structure feature that consisted of a porous carbon framework or Sb nanoparticles.
In addition, the energy-dispersive spectrometer (EDS) results of the Sb@C@NC are shown
in Figure 4d–f, which verified the uniform distribution of N, Sb, and C elements with a
spindle structure. Benefiting from the polydopamine (PDA) coating strategy, the carbon
shell was doped with nitrogen. All the results indicate that Sb@C@NC with a spindle
structure was successfully prepared via a metal–organic framework-derived route followed
by PDA coating and galvanic replacement.
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Figure 5a exhibits the cyclic voltammetry (CV) curses of Sb@C@NC anodes at the
scan rate of 0.1 mV s−1 between the potential (V) of 0.01 and 2 V. Except for the initial
discharging process, there was only one sharp oxidation and reduction peak in the rest
of the charge and discharge processes, which indicates that the Sb@C@NC anodes had
a simple insertion/desertion process [1]. A sharp reduction peak at 0.75 V and a broad
reduction peak at 1.53 V appeared during the first discharge. The reduction peak at 1.53 V
was the result of the activation of Sb@C@NC and the formation of a solid electrolyte
interphase (SEI) during the initial lithiation procedure. The lithiation process could be
summarized as the following reaction:

Sb + 3Li+ + 3e− → Li3Sb (1)

In the subsequent charging process, an oxidation peak was shown at 1.11 V that
benefited from the desertion of Li+. The reaction formula is as follows [38,40]:

Li3Sb→ 3Li+ + 3e− + Sb (2)
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During the next four discharging processes, the reduction peak shifted to 0.81 V, while
the reduction peak at 1.53 V disappeared. In addition, during the second lithiation process,
the strength of the reduction peak was significantly larger than that of the subsequent few
cycles because of the considerable carbon content in the Sb@C@NC, resulting in many irre-
versible capacity losses. The discharge–charge profiles were almost overlapped in subsequent
cycles, which reveals that the Sb@C@NC anode had good cycling reversibility for LIBs. The
Sb@C@NC anodes still exhibited a reversible specific capacity of 389 mA h g−1 at 100 cycles,
yielding a Coulombic efficiency of 99%, while Sb@C anodes just showed a reversible specific
capacity of 237 mA h g−1 (Figure S4b, Supplementary Materials). Figure 5b shows the
charge–discharge curves of Sb@C@NC anodes during the activation process at 50 mA g−1.
Moreover, a discharge voltage platform appeared at 0.75 V, which was matched with the
results of the CV test (Figure 5a). During the following four charge–discharge cycles, the
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curves overlapped with each other, indicating good reversibility. Figure 5c,d shows the
rate capability of Sb@C@NC anodes. In Figure 5d, when the current density increased
continuously, the reversible capacity of the materials decreased slowly. Cycling at 50, 100,
200, 500, 1000, and 2000 mA g−1, the Sb@C@NC attained specific capacities of 558, 517,
478, 432, 387, and 339 mAh g−1, respectively. Especially when reduced to 100 mA g−1,
the anodes still had a reversible specific capacity of 451 mA h g−1. By contrast, Sb@C
anodes exhibited 592, 512, 391, 295, 242, and 202 mA h g−1 at 50, 100, 200, 500, 1000, and
2000 mA g−1, respectively (Figure S4b, Supplementary Materials). Figure 5c shows the
discharge–charge curves of the Sb@C@NC anodes at different current densities. The charge–
discharge profiles had similar shapes at different current densities. When increased to
2000 mA g−1, a flat voltage platform could still be observed in the charge–discharge profiles
without significant change. Figure 5e shows that the initial coulombic efficiency (ICE) was
about 45.1%, which was due to the large specific surface area of the Sb@C@NC anodes and
the high carbon content of the material, so there was a large number of irreversible SEI
formations during the first cycle. Meanwhile, from the results of the CV curves (Figure 5a),
the capacity contribution below 0.5 V was mainly from the carbon contribution, while the
capacity above 0.5 V was occupied by the alloying/dealloying of Sb particles. So, we could
divide the capacity into different voltage regions (0.5–3.0 and 0.01–0.5 V), and the results
are summarized in Figure S5 (Supplementary Materials). The specific capacity contribution
fraction of Sb for the Sb@C@NC composites decreased more slowly over the whole cycling,
which proved that double carbon coating could indeed aid in the cycling stability of Sb
particles. Figure 5f shows the cycling performance of the Sb@C@NC anodes at 1 A g−1.
The Sb@C@NC anode showed an initial specific capacity of 342.6 mAh g−1, 204.0 mAh
g−1 after 200 cycles, and still had a reversible specific capacity of 160.0 mAh g−1 after
500 cycles. Moreover, the cycling performance of Sb@C@NC anodes with higher loading
(3.2 mg cm−2) was tested and is exhibited in Figure S6 (Supplementary Materials). This
Sb@C@NC attained a reversible specific capacity of 261.2 mAh g−1 at 1 A g−1. The results
fully reveal that the spindle-structured Sb@C@NC anodes exhibited good cycling stability
for LIBs. Furthermore, the Sb@C@NC anodes also exhibited excellent rate capability in
sodium-ion batteries (Figures S7 and S8, Supplementary Materials) due to their high carbon
content. Above all, these results fully reveal that the spindle-structured Sb@C@NC anode
possessed exceptional cycling and rate capabilities.

To further investigate the origin of the superior rate capability of the spindle-structured
Sb@C@NC anodes, CV measurements at different scan rates were performed. In Figure 6a,
the CV profiles at 0.2, 0.4, 0.7, 1.0, and 1.5 mV s−1 have a well-overlapped shape. Figure 6b
shows the relationship between the scan rate (logv) and peak current (logi) of the Sb@C@NC
anode, which can be defined as follows [41,42]:

log i = b log v + log a (3)

where a and b are empirical parameters. Normally, the b-value is equal to 0.5, representing
that the charging and discharging process is completely controlled by diffusion, and the
b-value is 1 representing a capacitance-dominated process. As shown in Figure 5b, the
b-values of anodic and cathodic peaks were 0.595 and 0.505, respectively; both were over
0.5, indicating fast kinetics owing to the pseudocapacitive effect. Figure 6c and Figure
S9 (Supplementary Materials) exhibit the capacitive contribution (the blue curves) and
the total current contribution (the red area). The ratios of pseudocapacitive contribution
(Figure 6d) were 37.6%, 53.8%, 62.0%, 69.3%, 74.4%, and 79.7% at the scan rates of 0.1, 0.2,
0.4, 0.7, 1.0 and 1.5 mV s−1, respectively, which reveals that the pseudocapacitive effect
occupied a high ratio to the total capacity [41]. Lastly, the rate capability of the current
spindle-structured Sb@C@NC with other previously designed Sb-based materials for LIBs
is simply summarized in Table S1. The current spindle-structured Sb@C@NC anode also
emerged with distinct superiority in specific capacity and cycling capability [43–49]. The
advantages of these spindle-structured Sb@C@NC can be summarized as follows: the
unique porous spindle-structured structure of Sb@C@NC endows sufficient interspace to
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inhibit the volume fluctuations while the ions reciprocate insertion/desertion. Moreover,
the Sb@C@NC anodes with porous features favor the infiltration of electrolytes, and boost
electron and ion transportation. Lastly, the double-carbon-modified framework can effec-
tively improve electrical conductivity and maintain structural stability, thereby achieving
good electrochemical properties.
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Figure 6. Kinetic analysis of Sb@C@NC: (a) CV curves at different scan rates. (b) Relationship between
peak current and scan rates. (c) Pseudocapacitive contribution at 1.0 mV s−1. (d) Pseudocapacitive
contribution ratio of capacitive summarized from 0.1 to 1.5 mV s−1.

3. Conclusions

In summary, a robust spindle-structured Sb@C@NC anode was successfully fabricated
via a metal–organic-framework-derived route, followed by PDA coating and galvanic re-
placement. For LIBs, the Sb@C@NC exhibited exceptional lithium-ion storage performance.
This Sb@C@NC anode achieved an ICE of 45.1%, and cycling at 50, 100, 200, 500, 1000, and
2000 mA g−1 attained a reversible specific capacity of 698, 536, 492, 438, 393, and 343 mAh g−1,
respectively. Furthermore, the Sb@C@NC anodes also exhibited excellent rate capability
in SIBs (sodium-ion batteries). The excellent electrochemical properties of Sb@C@NC
possessed can be ascribed to the unique double-carbon-coated spindle-structured feature,
which could significantly moderate the volume fluctuation and avoid the irreversible ag-
glomeration of active Sb nanoparticles, thus improving the electrochemical reaction kinetics,
and possessing superior cycling performance and rate capability. This galvanic replacement
route and MOF-derived strategy open a window to designing double-carbon-modified
nanomaterials for alkali-ion storage devices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/batteries8110245/s1. Figure S1: (a) Low- and (b) high-magnification
SEM images of Fe@C; Figure S2: SEM results of Sb@C; Figure S3: XRD pattern of Fe3C and Fe3C with
galvanic replacement; Figure S4: (a) Cyclic performance of Sb@C at 100 mA g−1. (b) Rate capability
of Sb@C; Figure S5: Specific capacity contribution of carbon and Sb for the Sb@C and Sb@C@NC
composites; Figure S6: Cyclic performance of Sb@C@NC anodes with a high loading of 3.2 mg cm−2
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at 1 A g−1; Figure S7: Cyclic performance of Sb@C at 100 mA g−1 for SIBs; Figure S8: (a) Cyclic
performance of Sb@C@NC at 100 mA g−1 for SIBs. (b) Rate capability of Sb@C@NC for SIBs; Figure
S9: Capacitive capacity contribution to the total current contribution at (a) 0.1 mV s−1, (b) 0.2 mV s−1,
(c) 0.4 mV s−1, (d) 0.7 mV s−1, and (e) 1.5 mV s−1; Table S1: Comparison of the rate performance of
Sb@C@NC with various Sb-based anode materials.
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