Design and Development of Cathode Materials for Rechargeable Batteries
1. Introduction
- Discovery of new cathode materials;
- Chemical/structural engineering of cathode materials;
- Degradation mechanism analysis;
- Synthesis of cathode materials;
- Electrode design;
- Development of high-nickel layered oxides electrodes;
- Development of lithium-rich layered oxides electrodes;
- Development of cation-disordered rocksalt transition metal oxides electrodes;
- Development of next-generation Li-ion batteries such as Li-air, Li-sulfur, Li-organic batteries;
- Cathode materials for sodium-ion batteries.
2. Design and Development of Cathode Materials for Li-Ion Batteries
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, W.; Erickson, E.M.; Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 2020, 5, 26–34. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Olivetti, E.A.; Ceder, G.; Gaustad, G.G.; Fu, X. Lithium-ion battery supply chain considerations: Analysis of potential bottlenecks in critical metals. Joule 2017, 1, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Rauh, N.; Franke, T.; Krems, J.F. Understanding the impact of electric vehicle driving experience on range anxiety. Hum. Factors 2015, 57, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Jamil, S.; Wang, G.; Fasehullah, M.; Xu, M. Challenges and prospects of nickel-rich layered oxide cathode material. J. Alloys Compd. 2022, 909, 164727. [Google Scholar] [CrossRef]
- Kim, D.H.; Song, J.H.; Jung, C.H.; Eum, D.; Kim, B.; Hong, S.H.; Kang, K. Stepwise Dopant Selection Process for High-Nickel Layered Oxide Cathodes. Adv. Energy Mater. 2022, 12, 2200136. [Google Scholar] [CrossRef]
- Zhang, M.; Kitchaev, D.A.; Lebens-Higgins, Z.; Vinckeviciute, J.; Zuba, M.; Reeves, P.J.; Grey, C.P.; Whittingham, M.S.; Piper, L.F.J.; Van der Ven, A.; et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 2022, 7, 522–540. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, W.; Zhao, Y.; Guo, Z.; Cai, Q. Fundamental understanding and practical challenges of lithium-rich oxide cathode materials: Layered and disordered-rocksalt structure. Energy Storage Mater. 2021, 40, 51–71. [Google Scholar] [CrossRef]
- Kim, B.; Song, J.H.; Eum, D.; Yu, S.; Oh, K.; Lee, M.H.; Jang, H.-Y.; Kang, K. A Theoretical Framework for Oxygen Redox Chemistry for Sustainable Batteries. Available online: https://doi.org/10.1038/s41893-022-00890-z (accessed on 30 May 2022).
- Clément, R.J.; Lun, Z.; Ceder, G. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes. Energy Environ. Sci. 2020, 13, 345–373. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 2014, 343, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Guo, H.; Fu, L.; Chou, S.; Thiele, S.; Wu, Y.; Wang, J. Critical advances in ambient air operation of nonaqueous rechargeable li–air batteries. Small 2021, 17, 1903854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shea, J.J.; Luo, C. Organic electrode materials for metal ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 5361–5380. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B. Design and Development of Cathode Materials for Rechargeable Batteries. Batteries 2022, 8, 68. https://doi.org/10.3390/batteries8070068
Kim B. Design and Development of Cathode Materials for Rechargeable Batteries. Batteries. 2022; 8(7):68. https://doi.org/10.3390/batteries8070068
Chicago/Turabian StyleKim, Byunghoon. 2022. "Design and Development of Cathode Materials for Rechargeable Batteries" Batteries 8, no. 7: 68. https://doi.org/10.3390/batteries8070068
APA StyleKim, B. (2022). Design and Development of Cathode Materials for Rechargeable Batteries. Batteries, 8(7), 68. https://doi.org/10.3390/batteries8070068