Design of Hierarchical Nickel-Cobalt Phosphide/Nickel Oxide with Tunable Electronic Structure and Strong Chemical Interface for Advanced Supercapacitors
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Fabrication of NiO Nanowall Arrays on Ni Foam
2.2. Synthesis of NiCoP/NiO Electrode
2.3. Materials Characterization
2.4. Electrochemical Measurement
3. Results and Discussion
3.1. Morphology and Structure
3.2. Electrochemical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Yang, Y.; Li, M.; Wang, X.; Wu, Y. Green energy storage chemistries based on neutral aqueous electrolytes. J. Mater. Chem. A 2014, 2, 10739–10755. [Google Scholar] [CrossRef]
- Zakeri, B.; Syri, S. Electrical energy storage systems: A comparative life cycle cost analysis. Renew. Sustain. Energy Rev. 2015, 42, 569–596. [Google Scholar] [CrossRef]
- Hao, Z.; He, X.; Li, H.; Trefilov, D.; Song, Y.; Li, Y.; Fu, X.; Cui, Y.; Tang, S.; Ge, H.; et al. Vertically aligned and ordered arrays of 2D MCo2S4@metal with ultrafast ion/electron transport for thickness-independent pseudocapacitive energy Storage. ACS Nano 2020, 14, 12719–12731. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef]
- Raghavendra, K.V.G.; Vinoth, R.; Zeb, K.; Muralee Gopi, C.V.V.; Sambasivam, S.; Kummara, M.R.; Obaidat, I.M.; Kim, H.J. An intuitive review of supercapacitors with recent progress and novel device applications. J. Energy Storage 2020, 31, 101652. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, J.; Ren, J.; Liu, N.; Chen, P.; Zhang, Y.; Deng, J.; Wang, Y.; Peng, H. Design of a hierarchical ternary hybrid for a fiber-shaped asymmetric supercapacitor with high volumetric energy density. J. Phys. Chem. C 2016, 120, 9685–9691. [Google Scholar] [CrossRef]
- Chang, X.; Li, W.; Liu, Y.; He, M.; Zheng, X.; Bai, J.; Ren, Z. Hierarchical NiCo2S4@NiCoP core-shell nanocolumn arrays on nickel foam as a binder-free supercapacitor electrode with enhanced electrochemical performance. J. Colloid Interface Sci. 2019, 538, 34–44. [Google Scholar] [CrossRef]
- Zhang, K.; Cen, Z.; Yang, F.; Xu, K. Rational construction of NiCo2O4@Fe2O3 core-shell nanowire arrays for high-performance supercapacitors. Prog. Nat. Sci. 2021, 31, 19–24. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Ji, S.; Wang, X.; Zhou, P.; Huo, S.; Linkov, V.; Wang, R. Hollow-structured NiCoP nanorods as high-performance electrodes for asymmetric supercapacitors. Mater. Des. 2020, 193, 108807. [Google Scholar] [CrossRef]
- Nguyen, T.; Boudard, M.; Carmezim, M.J.; Montemor, M.F. Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors. Sci. Rep. 2017, 7, 39980. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, Q.; Xu, K.; Zou, R.; Wang, C. Electrochemical energy storage application of CuO/CuO@Ni-CoMoO4·0.75H2O nanobelt arrays grown directly on Cu foam. Prog. Nat. Sci. 2022, 32, 163–170. [Google Scholar] [CrossRef]
- Moradlou, O.; Sharifpour, H. Interconnected NiCo2S4-coated NiO nanosheet arrays as electrode materials for high-performance supercapacitors. J. Energy Storage 2020, 32, 101886. [Google Scholar] [CrossRef]
- Xu, R.; Lin, J.; Wu, J.; Huang, M.; Fan, L.; Chen, H.; He, X.; Wang, Y.; Xu, Z. Two-step hydrothermal synthesis of NiCo2S4/Co9S8 nanorods on nickel foam for high energy density asymmetric supercapacitors. Appl. Surf. Sci. 2018, 434, 861–870. [Google Scholar] [CrossRef]
- Ren, F.; Ji, Y.; Tan, S.; Chen, F. Sponge-like NiCo2S4 nanosheets supported on nickel foam as high-performance electrode materials for asymmetric supercapacitors. Inorg. Chem. Front. 2020, 8, 72–78. [Google Scholar] [CrossRef]
- Xie, S.; Gou, J. Facile synthesis of Ni2P/Ni12P5 composite as long-life electrode material for hybrid supercapacitor. J. Alloys Compd. 2017, 713, 10–17. [Google Scholar] [CrossRef]
- Zhang, X.; Su, D.; Wu, A.; Yan, H.; Wang, X.; Wang, D.; Wang, L.; Tian, C.; Sun, L.; Fu, H. Porous NiCoP nanowalls as promising electrode with high-area and mass capacitance for supercapacitors. Sci. China Mater. 2019, 62, 1115–1126. [Google Scholar] [CrossRef]
- Wang, L.; Feng, Z.; Zhang, H.; Li, D.; Xing, P. One-step electrodeposited 3D porous NiCoSe2 nanosheet array for high-performance asymmetric supercapacitors. Nanotechnology 2020, 31, 125403. [Google Scholar] [CrossRef]
- Ye, B.; Cao, X.; Zhao, Q.; Zhou, A.; Wang, J. Free-standing NiCoSe2 nanostructure on Ni foam via electrodeposition as high-performance asymmetric supercapacitor electrode. Nanotechnology 2020, 31, 335706. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, R.; Qi, J.; Sui, Y.; He, Y.; Meng, Q.; Wei, F.; Ren, Y. Facile synthesis of hierarchical NiCoP nanowires@NiCoP nanosheets core–shell nanoarrays for high-performance asymmetrical supercapacitor. J. Mater. Sci. 2019, 55, 1157–1169. [Google Scholar] [CrossRef]
- Li, X.; Elshahawy, A.M.; Guan, C.; Wang, J. Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 2017, 13, 1701530. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.; Wang, Z.; Wang, W.; Ma, M.; Liu, D.; Hao, S.; Kong, R.; Du, G.; Asiri, A.M.; Yao, Y.; et al. NiCoP nanoarray: A superior pseudocapacitor electrode with high areal capacitance. Chemistry 2017, 23, 4435–4441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Li, Y.; Xu, J.; Li, J.; Wei, B.; Ding, Y.; Amorim, I.; Thomas, R.; Thalluri, S.M.; Liu, Y.; et al. High-performance flexible solid-state asymmetric supercapacitors based on bimetallic transition metal phosphide nanocrystals. ACS Nano 2019, 13, 10612–10621. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, S.; Fan, M.; Li, C.; Chen, D.; Tian, G.; Shu, K. Bimetallic nickel cobalt selenides: A new kind of electroactive material for high-power energy storage. J. Mater. Chem. A 2015, 3, 23653–23659. [Google Scholar] [CrossRef]
- Hu, Y.-M.; Liu, M.-C.; Hu, Y.-X.; Yang, Q.-Q.; Kong, L.-B.; Kang, L. One-pot hydrothermal synthesis of porous nickel cobalt phosphides with high conductivity for advanced energy conversion and storage. Electrochim. Acta 2016, 215, 114–125. [Google Scholar] [CrossRef]
- Huang, J.; Xiong, Y.; Peng, Z.; Chen, L.; Wang, L.; Xu, Y.; Tan, L.; Yuan, K.; Chen, Y. A general electrodeposition strategy for fabricating ultrathin nickel cobalt phosphate nanosheets with ultrahigh capacity and rate performance. ACS Nano 2020, 14, 14201–14211. [Google Scholar] [CrossRef]
- Wan, L.; Wang, Y.; Zhang, Y.; Du, C.; Chen, J.; Xie, M.; Tian, Z.; Zhang, W. Designing FeCoP@NiCoP heterostructured nanosheets with superior electrochemical performance for hybrid supercapacitors. J. Power Sources 2021, 506, 230096. [Google Scholar] [CrossRef]
- Hang, X.; Xue, Y.; Zhao, J.; Yang, R.; Pang, H. In situ generation of NiCoP nanoparticles on a bimetal-organic framework for high-performance supercapacitors. Inorg. Chem. 2022, 61, 10435–10441. [Google Scholar] [CrossRef]
- Anuratha, K.S.; Su, Y.-Z.; Huang, M.-K.; Hsieh, C.-K.; Xiao, Y.; Lin, J.-Y. High-performance hybrid supercapacitors based on electrodeposited amorphous bimetallic nickel cobalt phosphide nanosheets. J. Alloys Compd. 2022, 897, 163031. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, A.; Wang, X.; Tian, C.; An, R.; Fu, H. Porous NiCoP nanosheets as efficient and stable positive electrodes for advanced asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 17905–17914. [Google Scholar] [CrossRef]
- Hu, X.; Fan, J.; Wang, R.; Li, M.; Sun, S.; Xu, C.; Pan, F. Vacancies and interfaces engineering of core–shell heterostuctured NiCoP/NiO as trifunctional electrocatalysts for overall water splitting and zinc-air batteries. Green Energy Environ. 2021, 8, 601–611. [Google Scholar] [CrossRef]
- Liu, Q.; Tian, J.; Cui, W.; Jiang, P.; Cheng, N.; Asiri, A.M.; Sun, X. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem. Int. Ed. Engl. 2014, 53, 6710–6714. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Liu, Q.; Liang, Y.; Tian, J.; Asiri, A.M.; Sun, X. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem. Int. Ed. Engl. 2014, 53, 12855–12859. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Ammar, M.; Mukhtar, A.; Ahmed, T.; Ali, M.; Waqas, M.; Amin, M.N.; Rasheed, A. 3D NiO nanowires@NiO nanosheets core-shell structures grown on nickel foam for high performance supercapacitor electrode. J. Electroanal. Chem. 2020, 857, 113710. [Google Scholar] [CrossRef]
- Qu, G.; Sun, P.; Xiang, G.; Yin, J.; Wei, Q.; Wang, C.; Xu, X. Moss-like nickel-cobalt phosphide nanostructures for highly flexible all-solid-state hybrid supercapacitors with excellent electrochemical performances. Appl. Mater. Today 2020, 20, 100713. [Google Scholar] [CrossRef]
- Liu, H.; Ma, X.; Hu, H.; Pan, Y.; Zhao, W.; Liu, J.; Zhao, X.; Wang, J.; Yang, Z.; Zhao, Q.; et al. Robust NiCoP/CoP heterostructures for highly efficient hydrogen evolution electrocatalysis in alkaline solution. ACS Appl. Mater. Interfaces 2019, 11, 15528–15536. [Google Scholar] [CrossRef]
- Yang, X.; Lu, A.-Y.; Zhu, Y.; Hedhili, M.N.; Min, S.; Huang, K.-W.; Han, Y.; Li, L.-J. CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation. Nano Energy 2015, 15, 634–641. [Google Scholar] [CrossRef]
- Li, P.; Han, Y.; Yan, F.; Yan, L.; Huang, H.; Zhou, W. Engineering NiCoP arrays by cross-linked nanowires and nanosheets as advanced materials for hybrid supercapacitors. J. Energy Storage 2021, 38, 102503. [Google Scholar] [CrossRef]
- Zhu, Y.; An, S.; Sun, X.; Lan, D.; Cui, J.; Zhang, Y.; He, W. Core-branched NiCo2S4@CoNi-LDH heterostructure as advanced electrode with superior energy storage performance. Chem. Eng. J. 2020, 383, 123206. [Google Scholar] [CrossRef]
- Wang, M.; Zhong, J.; Zhu, Z.; Gao, A.; Yi, F.; Ling, J.; Hao, J.; Shu, D. Hollow NiCoP nanocubes derived from a prussian blue analogue self-template for high-performance supercapacitors. J. Alloys Compd. 2022, 893, 162344. [Google Scholar] [CrossRef]
- Liang, H.; Xia, C.; Jiang, Q.; Gandi, A.N.; Schwingenschlögl, U.; Alshareef, H.N. Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors. Nano Energy 2017, 35, 331–340. [Google Scholar] [CrossRef]
- Ni, S.; Qu, H.; Xu, Z.; Zhu, X.; Xing, H.; Wang, L.; Yu, J.; Liu, H.; Chen, C.; Yang, L. Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl. Catal. B 2021, 299, 120638. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Gopi, C.V.V.M.; Reddy, A.E.; Kim, H.-J. Facile synthesis of a NiO/NiS hybrid and its use as an efficient electrode material for supercapacitor applications. New J. Chem. 2018, 42, 5309–5313. [Google Scholar] [CrossRef]
- Wu, S.; Hui, K.S.; Hui, K.N.; Kim, K.H. Ultrathin porous NiO nanoflake arrays on nickel foam as an advanced electrode for high performance asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 9113–9123. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Sun, X. NiCo2O4@NiO hybrid arrays with improved electrochemical performance for pseudocapacitors. J. Mater. Chem. A 2015, 3, 13900–13905. [Google Scholar] [CrossRef]
- Jin, Y.; Zhao, C.; Jiang, Q.; Ji, C. Mesoporous NiCoP microflowers as a superior electrode material for supercapacitors. Appl. Surf. Sci. 2018, 450, 170–179. [Google Scholar] [CrossRef]
- Wang, X.; Jing, C.; Zhang, W.; Wang, X.; Liu, X.; Dong, B.; Zhang, Y. One-step phosphorization synthesis of CoP@NiCoP nanowire/nanosheet composites hybrid arrays on Ni foam for high-performance supercapacitors. Appl. Surf. Sci. 2020, 532, 147437. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.; Zong, Q.; Wang, Q.; Yang, H.; Zhang, Q. Hierarchical NiCoP/Co(OH)2 nanoarrays for high-performance asymmetric hybrid supercapacitors. Electrochim. Acta 2019, 321, 134746. [Google Scholar] [CrossRef]
- Shanmugam Anuratha, K.; Su, Y.Z.; Wang, P.J.; Hasin, P.; Wu, J.; Hsieh, C.K.; Chang, J.K.; Lin, J.Y. Free-standing 3D core-shell architecture of Ni3S2@NiCoP as an efficient cathode material for hybrid supercapacitors. J. Colloid Interface Sci. 2022, 625, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, L.; Ruan, G.; Fei, H.; Xiang, C.; Fan, X.; Tour, J.M. Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors. ACS Nano 2014, 8, 9622–9628. [Google Scholar] [CrossRef]
- Augustyn, V.; Come, J.; Lowe, M.A.; Kim, J.W.; Taberna, P.L.; Tolbert, S.H.; Abruna, H.D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Zhao, M.; Wang, H.; Shen, J.; Song, X. Enhanced cycling stability of hierarchical NiCo2S4@Ni(OH)2@PPy core–shell nanotube arrays for aqueous asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 2482–2493. [Google Scholar] [CrossRef]
- Chen, F.; Ji, S.; Liu, Q.; Wang, H.; Liu, H.; Brett, D.J.L.; Wang, G.; Wang, R. Rational design of hierarchically core-shell structured Ni3S2@NiMoO4 nanowires for electrochemical energy storage. Small 2018, 14, e1800791. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhou, J.; Yao, P.; Huang, J.; Sun, W.; Zhu, C.; Xu, J. A stretchable high performance all-in-one fiber supercapacitor. J. Power Sources 2019, 440, 227150. [Google Scholar] [CrossRef]
- Senthilkumar, S.T.; Fu, N.; Liu, Y.; Wang, Y.; Zhou, L.; Huang, H. Flexible fiber hybrid supercapacitor with NiCo2O4 nanograss@carbon fiber and bio-waste derived high surface area porous carbon. Electrochim. Acta 2016, 211, 411–419. [Google Scholar] [CrossRef]
- Sheng, P.; Ye, R.; Wu, D.; Zhang, L.; An, X.; Tao, S.; Qian, B.; Chu, P.K. Morphological modulation of cobalt selenide on carbon cloth by Ni doping for high-performance electrodes in supercapacitors. Colloids Surf. A Physicochem. Eng. Asp 2021, 624, 126818. [Google Scholar] [CrossRef]
- Chou, S.-H.; Lin, L.-Y.; Chiu, Y.-H. Pulse reverse electrodeposited nickel cobalt sulfide nanosheets on Ni foam as battery-type electrode for battery supercapacitor hybrids. J. Energy Storage 2019, 25, 100903. [Google Scholar] [CrossRef]
- Chen, Q.; Cai, D.; Zhan, H. Interconnected Ni-Co sulfide nanosheet arrays grown on nickel foam as binder-free electrodes for supercapacitors with high areal capacitance. J. Alloys Compd. 2017, 721, 205–212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Liu, J.; Shan, H.; Ma, Z.; Xu, Y.; Yang, Z.; Zuo, J.; Wang, J.; Li, S.; Li, X. Design of Hierarchical Nickel-Cobalt Phosphide/Nickel Oxide with Tunable Electronic Structure and Strong Chemical Interface for Advanced Supercapacitors. Batteries 2023, 9, 584. https://doi.org/10.3390/batteries9120584
Zhang G, Liu J, Shan H, Ma Z, Xu Y, Yang Z, Zuo J, Wang J, Li S, Li X. Design of Hierarchical Nickel-Cobalt Phosphide/Nickel Oxide with Tunable Electronic Structure and Strong Chemical Interface for Advanced Supercapacitors. Batteries. 2023; 9(12):584. https://doi.org/10.3390/batteries9120584
Chicago/Turabian StyleZhang, Gaini, Jingqian Liu, Hui Shan, Zhengdong Ma, Yuhui Xu, Zihao Yang, Jiaxuan Zuo, Jingjing Wang, Shufeng Li, and Xifei Li. 2023. "Design of Hierarchical Nickel-Cobalt Phosphide/Nickel Oxide with Tunable Electronic Structure and Strong Chemical Interface for Advanced Supercapacitors" Batteries 9, no. 12: 584. https://doi.org/10.3390/batteries9120584
APA StyleZhang, G., Liu, J., Shan, H., Ma, Z., Xu, Y., Yang, Z., Zuo, J., Wang, J., Li, S., & Li, X. (2023). Design of Hierarchical Nickel-Cobalt Phosphide/Nickel Oxide with Tunable Electronic Structure and Strong Chemical Interface for Advanced Supercapacitors. Batteries, 9(12), 584. https://doi.org/10.3390/batteries9120584