A Two-State-Based Hybrid Model for Degradation and Capacity Prediction of Lithium-Ion Batteries with Capacity Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feature Settings
2.2. Causal Feature Selection
2.3. The Long Short-Term Memory Network
2.4. Gaussian Process Regression
2.5. Steps of the Proposed Method
- Step 1: Selecting Initial Features
- Step 2: Extracting Causal Features of Capacity
- Step 3: Life Cycle Data Segmentation Based on CR
- Step 4: CR Point Prediction Based on Relaxation Time
- Step 5: Capacity Prediction Based on Hybrid Model Considering Two Degradation States
3. Experimental Results
3.1. Dataset Description
3.2. Capacity Curve Segmentation
3.3. Causal Feature Selection
3.4. Battery Capacity Prediction Results Based on the Proposed Method
4. Discussion
4.1. Comparison with Initial Feature Sets
4.2. Comparison with the One-State-Based Model
4.3. Comparison with Different Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Che, Y.; Hu, X.; Lin, X.; Guo, J.; Teodorescu, R. Health prognostics for lithium-ion batteries, mechanisms, methods, and prospects. Energy Environ. Sci. 2023, 16, 338–371. [Google Scholar] [CrossRef]
- Yu, J. State of health prediction of lithium-ion batteries, Multiscale logic regression and Gaussian process regression ensemble. Reliab. Eng. Syst. Saf. 2018, 174, 82–95. [Google Scholar] [CrossRef]
- Zhao, J.; Ling, H.; Liu, J.; Wang, J.; Burke, A.F.; Lian, Y. Machine learning for predicting battery capacity for electric vehicles. ETransportation 2023, 15, 100214. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, T.; Yu, S.; Liu, G. Accurate Prediction Approach of SOH for Lithium-Ion Batteries Based on LSTM Method. Batteries 2023, 9, 177. [Google Scholar] [CrossRef]
- Richardson, R.R.; Osborne, M.A.; Howey, D.A. Gaussian process regression for forecasting battery state of health. J. Power Sources 2017, 357, 209–219. [Google Scholar] [CrossRef]
- Hasib, S.A.; Islam, S.; Chakrabortty, R.K.; Ryan, M.J.; Saha, D.K.; Ahamed, M.H.; Moyeen, S.I.; Badal, F.R. A comprehensive review of available battery datasets, RUL prediction approaches, and advanced battery management. IEEE Access 2021, 9, 86166–86193. [Google Scholar] [CrossRef]
- Xu, X.; Chen, N. A state-space-based prognostics model for lithium-ion battery degradation. Reliab. Eng. Syst. Saf. 2017, 159, 47–57. [Google Scholar] [CrossRef]
- Wei, J.; Dong, G.; Chen, Z. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression. IEEE Trans. Ind. Electron. 2017, 65, 5634–5643. [Google Scholar] [CrossRef]
- Safari, M.; Morcrette, M.; Teyssot, A.; Delacourt, C. Multimodal physics-based aging model for life prediction of Li-ion batteries. J. Electrochem. Soc. 2008, 156, A145. [Google Scholar] [CrossRef]
- Patil, M.A.; Tagade, P.; Hariharan, K.S.; Kolake, S.M.; Song, T.; Yeo, T.; Doo, S. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation. Appl. Energy 2015, 159, 285–297. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, M.; Chen, Y.; Tao, Y. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction. J. Power Sources 2016, 321, 1–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [Google Scholar] [CrossRef]
- Ren, L.; Dong, J.; Wang, X.; Meng, Z.; Zhao, L.; Deen, M.J. A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life. IEEE Trans. Ind. Inform. 2020, 17, 3478–3487. [Google Scholar] [CrossRef]
- Olivares, B.E.; Munoz, M.A.C.; Orchard, M.E.; Silva, J.F. Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena. IEEE Trans. Instrum. Meas. 2012, 62, 364–376. [Google Scholar] [CrossRef]
- Orchard, M.E.; Lacalle, M.S.; Olivares, B.E.; Silva, J.F.; Palma-Behnke, R.; Estévez, P.A.; Severino, B.; Calderon-Muñoz, W.; Cortés-Carmona, M. Information-theoretic measures and sequential monte carlo methods for detection of regeneration phenomena in the degradation of lithium-ion battery cells. IEEE Trans. Reliab. 2015, 64, 701–709. [Google Scholar] [CrossRef]
- Tong, Z.; Miao, J.; Mao, J.; Wang, Z.; Lu, Y. Prediction of Li-ion battery capacity degradation considering polarization recovery with a hybrid ensemble learning model. Energy Storage Mater. 2022, 50, 533–542. [Google Scholar] [CrossRef]
- Li, A.; Tian, H.; Li, K. Remaining useful life prediction of lithium-ion batteries using a spatial temporal network model based on capacity self-recovery effect. J. Energy Storage 2023, 67, 107557. [Google Scholar] [CrossRef]
- Lyu, G.; Zhang, H.; Zhang, Y.J.; Miao, Q. An interpretable remaining useful life prediction scheme of lithium-ion battery considering capacity regeneration. Microelectron. Reliab. 2022, 138, 114625. [Google Scholar] [CrossRef]
- Eddahech, A.; Briat, O.; Vinassa, J.M. Lithium-ion battery performance improvement based on capacity recovery exploitation. Electrochim. Acta 2013, 114, 750–757. [Google Scholar] [CrossRef]
- Qin, T.; Zeng, S.; Guo, J.; Skaf, Z. A rest time-based prognostic framework for state of health estimation of lithium-ion batteries with regeneration phenomena. Energies 2016, 9, 896. [Google Scholar] [CrossRef]
- Deng, L.; Shen, W.; Wang, H.; Wang, S. A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery. Neural Comput. Appl. 2021, 33, 2035–2046. [Google Scholar] [CrossRef]
- Ma, Q.; Zheng, Y.; Yang, W.; Zhang, Y.; Zhang, H. Remaining useful life prediction of lithium battery based on capacity regeneration point detection. Energy 2021, 234, 121233. [Google Scholar] [CrossRef]
- Pang, X.; Huang, R.; Wen, J.; Shi, Y.; Jia, J.; Zeng, J. A lithium-ion battery RUL prediction method considering the capacity regeneration phenomenon. Energies 2019, 12, 2247. [Google Scholar] [CrossRef]
- Qiao, J.; Liu, X.; Chen, Z. Prediction of the remaining useful life of lithium-ion batteries based on empirical mode decomposition and deep neural networks. IEEE Access 2020, 8, 42760–42767. [Google Scholar] [CrossRef]
- Couture, J.; Lin, X. Novel image-based rapid RUL prediction for li-ion batteries using a capsule network and transfer learning. IEEE Trans. Transp. Electrif. 2022, 9, 958–967. [Google Scholar] [CrossRef]
- Lally, N.; Hartman, B. Estimating loss reserves using hierarchical Bayesian Gaussian process regression with input warping. Insur. Math. Econ. 2018, 82, 124–140. [Google Scholar] [CrossRef]
- Tian, Y.; He, J.; Peng, Z.; Guan, Y.; Wu, L. Lithium-Ion Battery Degradation and Capacity Prediction Model Considering Causal Feature. IEEE Trans. Transp. Electrif. 2022, 8, 3630–3647. [Google Scholar] [CrossRef]
- Pearl, J. Probabilistic Reasoning in Intelligent Systems, Networks of Plausible Inference; Morgan Kaufmann: Burlington, MA, USA, 1988. [Google Scholar]
- Tsamardinos, I.; Aliferis, C.F. Towards Principled Feature Selection, Relevancy, Filters and Wrappers. In Proceedings of the International Workshop on Artificial Intelligence and Statistics, Key West, FL, USA, 3–6 January 2003; pp. 300–307. [Google Scholar]
- Yu, K.; Guo, X.; Liu, L.; Li, J.; Wang, H.; Ling, Z.; Wu, X. Causality-based feature selection, Methods and evaluations. ACM Comput. Surv. 2020, 53, 1–36. [Google Scholar] [CrossRef]
- Gao, T.; Ji, Q. Efficient Markov blanket discovery and its application. IEEE Trans. Cybern. 2016, 47, 1169–1179. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Seeger, M. Gaussian processes for machine learning. Int. J. Neural Syst. 2004, 14, 69–106. [Google Scholar] [CrossRef]
- Saha, B.; Goebel, K. Battery Data Set; National Aeronautics and Space Administration (NASA), Ames Prognostics Data Repository: Moffett Field, CA, USA, 2007. [Google Scholar]
- Sun, T.; Wang, S.; Jiang, S.; Xu, B.; Han, X.; Lai, X.; Zheng, Y. A cloud-edge collaborative strategy for capacity prognostic of lithium-ion batteries based on dynamic weight allocation and machine learning. Energy 2022, 239, 122185. [Google Scholar] [CrossRef]
Category | Code | Explanation |
---|---|---|
Degradation features | ‘char_c’ | Average charging current |
‘char_v’ | Average charging voltage | |
‘dischar_c’ | Average discharging current | |
‘dischar_v’ | Average voltage during discharging | |
‘char_const_c_t’ | Duration of constant current during charging | |
‘char_const_v_t’ | Duration of constant voltage during charging | |
‘dischar_const_c_t’ | Duration of constant current during discharging | |
‘char_temp’ | Average temperature during charging | |
‘dischar_temp’ | Average temperature during discharging | |
Relaxation features | ‘re_char_dischar’ | Interval time between charging and discharging (within the same cycle) |
‘re_char’ | Interval time between charging (adjacent cycles) | |
‘re_dischar’ | Interval time between discharging (adjacent cycles) | |
‘re_dischar_char’ | Interval between discharging and next charging (adjacent cycles) |
Battery | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
#5 | √ | √ | √ | ||||||
#6 | √ | √ | √ | ||||||
#7 | √ | √ | √ | ||||||
#18 | √ |
Battery | #5 | #6 | #7 | #18 | ||||
---|---|---|---|---|---|---|---|---|
Criteria | MAE/ (Ah) | RMSE/ (Ah) | MAE/ (Ah) | RMSE/ (Ah) | MAE/ (Ah) | RMSE/ (Ah) | MAE/ (Ah) | RMSE/ (Ah) |
Value | 0.0079 | 0.0103 | 0.0101 | 0.0121 | 0.0053 | 0.0069 | 0.0082 | 0.0135 |
Battery | #5 | #6 | #7 | #18 | ||||
---|---|---|---|---|---|---|---|---|
Criteria | MAE/ (Ah) | RMSE/ (Ah) | MAE/ (Ah) | RMSE/ (Ah) | MAE/ (Ah) | RMSE/ (Ah) | MAE/ (Ah) | RMSE/ (Ah) |
IOWA 1 | 0.0178 | 0.0233 | 0.0286 | 0.0362 | 0.0157 | 0.0198 | 0.0235 | 0.0300 |
GA-BP 1 | 0.0116 | 0.0131 | 0.0436 | 0.0484 | 0.0117 | 0.0151 | 0.0436 | 0.0484 |
GC-LSTM 2 | 0.0065 | 0.0093 | 0.0095 | 0.0110 | 0.0045 | 0.0112 | 0.0095 | 0.0087 |
Proposed | 0.0061 | 0.0083 | 0.0081 | 0.0103 | 0.0053 | 0.0069 | 0.0082 | 0.0135 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Tao, L.; Li, S.; Liu, H.; Wang, L. A Two-State-Based Hybrid Model for Degradation and Capacity Prediction of Lithium-Ion Batteries with Capacity Recovery. Batteries 2023, 9, 596. https://doi.org/10.3390/batteries9120596
Chen Y, Tao L, Li S, Liu H, Wang L. A Two-State-Based Hybrid Model for Degradation and Capacity Prediction of Lithium-Ion Batteries with Capacity Recovery. Batteries. 2023; 9(12):596. https://doi.org/10.3390/batteries9120596
Chicago/Turabian StyleChen, Yu, Laifa Tao, Shangyu Li, Haifei Liu, and Lizhi Wang. 2023. "A Two-State-Based Hybrid Model for Degradation and Capacity Prediction of Lithium-Ion Batteries with Capacity Recovery" Batteries 9, no. 12: 596. https://doi.org/10.3390/batteries9120596
APA StyleChen, Y., Tao, L., Li, S., Liu, H., & Wang, L. (2023). A Two-State-Based Hybrid Model for Degradation and Capacity Prediction of Lithium-Ion Batteries with Capacity Recovery. Batteries, 9(12), 596. https://doi.org/10.3390/batteries9120596