Electrode Fabrication Techniques for Li Ion Based Energy Storage System: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanical Energy Storage System (MES)
2.2. Thermal Energy Storage System (TES)
2.3. Chemical Energy Storage System (CES)
2.4. Electrochemical Energy Storage System (ECES)
2.5. Electrical Energy Storage System (EES)
3. Li Ion-Based Energy Storage System
3.1. Electrolyte
3.2. Separator
3.3. Electrodes
4. Electrode Fabrication Techniques for Li Ion-Based Energy Storage System
4.1. Chemical Vapor Deposition (CVD)
4.2. Doctor Blade (Tape Casting)
4.3. Drop Casting
4.4. Nano Rod Growing
4.5. Brush Coating
4.6. Roll to Roll (RTR)
4.7. Dip Coating
4.8. Electrodeposition
4.9. Coating, Pressing, and Stamping
4.10. Inkjet Printing (IJP)
4.11. Direct Ink Writing (DIW)
4.12. Fused Deposition Modelling (FDM)
4.13. Stereolithography (SLA)
- Fabrication speed, i.e., if the process is fast or slow;
- If it is possible to fabricate on a bigger surface or larger area;
- Thickness of produced film, i.e., in nanometer (nm) or micrometer (µm) range;
- Fabrication cost, i.e., if its high or low cost;
- Wastage of material during the deposition process.
Technology | Fabrication Speed (Fast/Slow) | Possibility of Fabrication on Larger Area | Film Thickness Range (nm) or (µm) | Fabrication Cost | Material Wastage (More/Less) | Refs. |
---|---|---|---|---|---|---|
CVD | Fast | Yes | nm | High | Less | [34] |
Doctor blade | Slow | Yes | µm | Low | More | [37] |
Drop casting | Fast | No | nm | Low | Less | [39] |
Nanorod growing | nm | - | Less | [41] | ||
Brush coating | Fast | Yes | nm and µm | Low | More | [43] |
RTR | Fast | Yes | µm | Low | More | [45,46] |
Dip coating | Slow | Yes | nm and µm | Low | More | [48] |
Electrodeposition | Slow | No | nm | High | More | [51] |
Coating, pressing and stamping | Fast | Yes | µm | Low | Less | [53] |
IJP | Fast | Yes | nm | High | Less | [55] |
DIW | Fast | No | µm | High | Less | [57] |
FDM | Fast | No | µm | High | Less | [60] |
SLA | Fast | No | µm | High | Less | [64,66] |
5. Publication Statistics for Li Ion Based Electrode Fabrication Techniques
- -
- Articles published from 2016–2022.
- -
- Final application solely dedicated to Li ion-based storage system.
- -
- Considering AM techniques, including lithography, IJP, DIW and FDM.
- -
- Publications where AM techniques were classified in terms of Selective Laser Sintering (SLS), Multi Jet Fusion (MJF), Digital Light Process (DLP), Electron Beam Melting (EBM), PolyJet and Direct Metal Laser Sintering (DMLS); and those that are not used for the application of Li ion-based energy storage.
6. Challenges and Future Prospects for Li Ion Based Energy Storage
7. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
μm | Micrometer |
ABS | Acrylonitrile butadiene styrene |
AC | Activated Carbon |
Ag NPs | Silver nanoparticles |
Al2O3 | Alumina |
AM | Additive manufacturing |
BP2000 | Black Pearls 2000 |
CES | Chemical energy storage |
CH3COOLi | Lithium acetate |
CNTs | Carbon/carbon nanotubes |
CVD | Chemical Vapor deposition |
DI | De-ionized water |
DIW | Direct ink writing |
DEC | Diethyl carbonate |
DMC | Dimethyl carbonate |
DMM | 1,2-dimethoxymethane |
DOL | 1,3-dioxolane |
EC | Ethylene Carbonate |
ECES | Electrochemical energy storage |
EES | Electrical energy storage |
EG | Exfoliated Graphene |
EMC | Ethyl methyl carbonate |
ESS | Energy storage system |
EU | European Union |
F/g | farad per gram |
FDM | Fused deposition modelling |
GO | Graphene Oxide |
IEA | International Energy Agency |
IJP | Inkjet printing |
K | Potassium |
kWh | kilowatt hour |
KOH | Potassium hydroxide |
K4P2O7 | Potassium pyrophosphate |
LFP | Lithium iron phosphate (LiFePO4) |
Li | Lithium |
LiCl | Lithium chloride |
LiClO4 | Lithium perchlorate |
LCO | Lithium cobalt oxide (LiCoO2) |
LiNO3 | Lithium nitrate |
LiPF6 | Lithium hexafluorophosphate |
Li2SO4 | Lithium sulfate |
LiTFSI | Lithium bis(trifluoromethanesulfonyl)imide |
LMFPC | LiMn1−xFexPO4 |
LMO | Lithium manganese dioxide (LiMnO2) |
LTO | Lithium titanium oxide (LiTiO2) |
mA | milliampere |
mAh/g | milliampere hours per gram |
MES | Mechanical energy storage |
Mg | Magnesium |
MW | Megawatt |
MWNTs | Multiwalled carbon nanotubes |
Na | Sodium |
NGP | Nano graphene platelets |
Ni | Nickel |
NiCl2 | Nickel chloride |
NiSn | Nickel tin |
NMP | N-methyl-2-pyrrolidone |
NW | Nano-wire |
PC | Propylene carbonate |
PE | Polyethylene |
PE-CNT | Polyethylene-Carbon nano-tubes |
PP | Polypropylene |
Pt | Platinum |
PVA | Poly(vinyl) alcohol |
PVDF | Polyvinylidene fluoride |
PVDF-co-HFP | Poly(vinylidene fluoride-co-hexafluoropropylene) |
Pyr13TFSI | N-propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide |
rGO | Reduced graphene oxide |
RTR | Roll to roll |
SLA | Stereolithography |
SnCl2 | Tin(II) chloride |
SWCNT | Single-walled carbon nanotube |
TES | Thermal energy storage |
TiO2 | Titanium dioxide |
ZEBRA | Zeolite battery research Africa project |
References
- IEA. Data and Statistics. Available online: https://www.iea.org/data-and-statistics/data-browser?country=WORLD&fuel=Energy+consumption&indicator=TotElecCons (accessed on 18 September 2022).
- Simplified Energy Balances. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_bal_s/default/table?lang=en (accessed on 18 September 2022).
- Workman, D. Electricity Exports by Country. Available online: https://www.worldstopexports.com/electricity-exports-country/ (accessed on 18 September 2022).
- Electricity Imports—Country Rankings. Available online: https://www.theglobaleconomy.com/rankings/electricity_imports/ (accessed on 18 March 2022).
- Riffat, S.B.; Mardiana, M.A. Building Energy Consumption and Carbon Dioxide Emissions: Threat to Climate Change. J. Earth Sci. Clim. Chang. 2015, s3, 1. [Google Scholar] [CrossRef] [Green Version]
- Guney, M.S.; Tepe, Y. Classification and Assessment of Energy Storage Systems. Renew. Sustain. Energy Rev. 2017, 75, 1187–1197. [Google Scholar] [CrossRef]
- Ye Htut, A. Forecasting Climate Change Scenarios in the Bago River Basin, Myanmar. J. Earth Sci. Clim. Chang. 2014, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Welborn, S.S.; Kumar, H.; Li, M.; Wang, Z.; Shenoy, V.B.; Detsi, E. High-Rate and Long Cycle-Life Alloy-Type Magnesium-Ion Battery Anode Enabled Through (De)Magnesiation-Induced Near-Room-Temperature Solid-Liquid Phase Transformation. Adv. Energy Mater. 2019, 9, 1902086. [Google Scholar] [CrossRef]
- Pandit, B.; Goda, E.S.; Ubaidullah, M.; Shaikh, S.F.; Nakate, U.T.; Khedulkar, A.P.; Rana, A.; Ul, H.S.; Kumar, D.; Doong, R. Hexagonal δ-MnO2 Nanoplates as Efficient Cathode Material for Potassium-Ion Batteries. Ceram. Int. 2022, 48, 28856–28863. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Zhao, G.; Zhu, L.; Sun, Y.; Besenbacher, F.; Yu, M. Rechargeable Mg-Ion Full Battery System with High Capacity and High Rate. ACS Appl. Mater. Interfaces 2021, 13, 40451–40459. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, A.; Kim, D.-W. Sodium-Ion Batteries: New Opportunities beyond Energy Storage by Lithium. J. Power Sources 2018, 395, 336–348. [Google Scholar] [CrossRef]
- Walter, M.; Kovalenko, M.V.; Kravchyk, K. V Challenges and Benefits of Post-Lithium-Ion Batteries. N. J. Chem. 2020, 44, 1677–1683. [Google Scholar] [CrossRef] [Green Version]
- Pandolfo, T.; Ruiz, V.; Sivakkumar, S.; Nerkar, J. General Properties of Electrochemical Capacitors. In Supercapacitors; Wiley: Hoboken, NJ, USA, 2013; pp. 69–109. [Google Scholar] [CrossRef]
- Khan, N.; Dilshad, S.; Khalid, R.; Kalair, A.R.; Abas, N. Review of Energy Storage and Transportation of Energy. Energy Storage 2019, 1, e49. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, D.; Loose, V. Evaluating Utility Procured Electric Energy Storage Resources: A Perspective for State Electric Utility Regulators. In A Study for the DOE Energy Storage Systems Program, Sandia National Laboratories; U.S. Department of Commerce, National Technical Information Service: Springfield, VA, USA, 2012. [Google Scholar]
- Gogus, Y. Energy Storage Systems-Volume I; EOLSS Publications: Oxford, UK, 2009; ISBN 1848261624. [Google Scholar]
- Cabeza, L.F.; Martorell, I.; Miró, L.; Fernández, A.I.; Barreneche, C. Introduction to Thermal Energy Storage (TES) Systems. In Advances in Thermal Energy Storage Systems; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–28. [Google Scholar] [CrossRef]
- Uner, D. Storage of Chemical Energy and Nuclear Materials, Energy Storage Systems-Volume II. In Encyclopedia of Life Support Systems (EOLSS); UNESCO: London, UK, 2009; ISBN 978-1-84826-613-1. [Google Scholar]
- Linden, D. Reddy: TB Handbook of Batteries; McGraw-Hill Education: New York, NY, USA, 2002; ISBN 9780071624213. [Google Scholar]
- Zakeri, B.; Syri, S. Electrical Energy Storage Systems: A Comparative Life Cycle Cost Analysis. Renew. Sustain. Energy Rev. 2015, 42, 569–596. [Google Scholar] [CrossRef]
- DOE Global Energy Storage Database. Available online: https://sandia.gov/ess-ssl/gesdb/public/ (accessed on 30 September 2022).
- Abedin, A.H.; Rosen, M.A. Closed and Open Thermochemical Energy Storage: Energy-and Exergy-Based Comparisons. Energy 2012, 41, 83–92. [Google Scholar] [CrossRef]
- Nithyanandam, K.; Pitchumani, R. Analysis and Optimization of a Latent Thermal Energy Storage System with Embedded Heat Pipes. Int. J. Heat Mass Transf. 2011, 54, 4596–4610. [Google Scholar] [CrossRef]
- Adinberg, R.; Zvegilsky, D.; Epstein, M. Heat Transfer Efficient Thermal Energy Storage for Steam Generation. Energy Convers. Manag. 2010, 51, 9–15. [Google Scholar] [CrossRef]
- Ahmad, S. RETRACTED ARTICLE: Polymer Electrolytes: Characteristics and Peculiarities. Ionics 2009, 15, 309–321. [Google Scholar] [CrossRef]
- Thevenin, J.G.; Muller, R.H. Impedance of Lithium Electrodes in a Propylene Carbonate Electrolyte. J. Electrochem. Soc. 1987, 134, 273. [Google Scholar] [CrossRef] [Green Version]
- Tarascon, J.M.; Guyomard, D. New Electrolyte Compositions Stable over the 0 to 5 V Voltage Range and Compatible with the Li1+XMn2O4/Carbon Li-Ion Cells. Solid State Ion. 1994, 69, 293–305. [Google Scholar] [CrossRef]
- Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104, 4303–4418. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xie, X.; Li, W.; Huang, Q.; Huang, H.; Hao, S.-M.; Fan, L.-Z.; Zhou, W. Recent Progress of Polymer Electrolytes for Solid-State Lithium Batteries. ACS Sustain. Chem. Eng. 2023, 11, 1253–1277. [Google Scholar] [CrossRef]
- Arora, P.; Zhang, Z. Battery Separators. Chem. Rev. 2004, 104, 4419–4462. [Google Scholar] [CrossRef] [PubMed]
- Jamil, M.A.; Ali, G.; Khan, K.I.; Jan Iftikhar, F.; Zaman, S.; Shaikh, S.F.; Pandit, B.; Wali, Q.; Patil, S.A. Highly Efficient Tin Fluoride Nanocomposite with Conductive Carbon as a High Performance Anode for Li-Ion Batteries. J. Alloys Compd. 2022, 900, 163447. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, T.; Zhou, Q.; Sun, Y.; Qu, M.; Zeng, Z.; Ju, Y.; Li, L.; Wang, K.; Chi, F. A Review of Technologies and Applications on Versatile Energy Storage Systems. Renew. Sustain. Energy Rev. 2021, 148, 111263. [Google Scholar] [CrossRef]
- Martin, P.M. Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology; William Andrew: Norwich, NY, USA, 2009; ISBN 0815520328. [Google Scholar]
- Ren, J.; Zhang, Y.; Bai, W.; Chen, X.; Zhang, Z.; Fang, X.; Weng, W.; Wang, Y.; Peng, H. Elastic and Wearable Wire-shaped Lithium-ion Battery with High Electrochemical Performance. Angew. Chem. 2014, 126, 7998–8003. [Google Scholar] [CrossRef]
- Howatt, G.N.; Breckenridge, R.G.; Brownlow, J.M. Fabrication of Thin Ceramic Sheets for Capacitors. J. Am. Ceram. Soc. 1947, 30, 237–242. [Google Scholar] [CrossRef]
- Krebs, F.C. Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, C.; Song, H.; Zhang, C.; Liu, Y.; Nan, X.; Cao, G. Mesocrystal MnO Cubes as Anode for Li-Ion Capacitors. Nano Energy 2016, 22, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.K.S.; Zhang, Y.; Li, D.; Compton, R.G. A Mini-Review: How Reliable Is the Drop Casting Technique? Electrochem. Commun. 2020, 121, 106867. [Google Scholar] [CrossRef]
- Senthilkumar, S.T.; Selvan, R.K.; Ulaganathan, M.; Melo, J.S. Fabrication of Bi2O3||AC Asymmetric Supercapacitor with Redox Additive Aqueous Electrolyte and Its Improved Electrochemical Performances. Electrochim. Acta 2014, 115, 518–524. [Google Scholar] [CrossRef]
- Scarabelli, L.; Sánchez-Iglesias, A.; Pérez-Juste, J.; Liz-Marzán, L.M. A “Tips and Tricks” Practical Guide to the Synthesis of Gold Nanorods. J. Phys. Chem. Lett. 2015, 6, 4270–4279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, B.; Dong, H.; Lei, T.; Yue, N.; Xiao, L.; Liu, J. Post-Annealing Tailored 3D Cross-Linked TiNb2O7 Nanorod Electrode: Towards Superior Lithium Storage for Flexible Lithium-Ion Capacitors. Sci. China Mater. 2020, 63, 492–504. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.; Guo, C.; Chuang, W.; Wang, C.; Wang, Q.; Liu, H.; Hsu, C.; Jiang, L. Directional Solution Coating by the Chinese Brush: A Facile Approach to Improving Molecular Alignment for High-Performance Polymer TFTs. Adv. Mater. 2017, 29, 1606987. [Google Scholar] [CrossRef]
- Hao, Y.J.; Lai, Q.Y.; Wang, L.; Xu, X.-Y.; Chu, H.Y. Electrochemical Performance of a High Cation-Deficiency Li2Mn4O9/Active Carbon Supercapacitor in LiNO3 Electrolyte. Synth. Met. 2010, 160, 669–674. [Google Scholar] [CrossRef]
- Goodship, V.D.; Middleton, B.; Cherrington, R. Design and Manufacture of Plastic Components for Multifunctionality: Structural Composites, Injection Molding, and 3D Printing; William Andrew: Norwich, NY, USA, 2015; ISBN 0323353843. [Google Scholar]
- Carlson, S. Innovative Manufacturing and Materials for Low Cost Lithium Ion Batteries; Optodot Corporation: Woburn, MA, USA, 2015. [Google Scholar]
- Ping, L.; Zheng, J.; Shi, Z.; Qi, J.; Wang, C. Electrochemical Performance of MCMB/(AC+LiFePO4) Lithium-Ion Capacitors. Chin. Sci. Bull. 2013, 58, 689–695. [Google Scholar] [CrossRef] [Green Version]
- Dislich, H.; Hinz, P. History and Principles of the Sol-Gel Process, and Some New Multicomponent Oxide Coatings. J. Non. Cryst. Solids 1982, 48, 11–16. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Q.; Wang, A.; Xu, J.; Wu, S.; Shen, J. Bamboo-like Composites of V2O5/Polyindole and Activated Carbon Cloth as Electrodes for All-Solid-State Flexible Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 3776–3783. [Google Scholar] [CrossRef] [PubMed]
- Nasirpouri, F.; Alipour, K.; Daneshvar, F.; Sanaeian, M.-R. Electrodeposition of Anticorrosion Nanocoatings. In Corrosion Protection at the Nanoscale; Elsevier: Amsterdam, The Netherlands, 2020; pp. 473–497. [Google Scholar] [CrossRef]
- Wang, R.; Wu, J. Structure and Basic Properties of Ternary Metal Oxides and Their Prospects for Application in Supercapacitors. In Metal Oxides in Supercapacitors; Elsevier: Amsterdam, The Netherlands, 2017; pp. 99–132. [Google Scholar] [CrossRef]
- Jin, H.; Zhou, L.; Mak, C.L.; Huang, H.; Tang, W.M.; Chan, H.L.W. Improved Performance of Asymmetric Fiber-Based Micro-Supercapacitors Using Carbon Nanoparticles for Flexible Energy Storage. J. Mater. Chem. A 2015, 3, 15633–15641. [Google Scholar] [CrossRef]
- Chan, B.-D.; Hsieh, K.-H.; Yang, S.-Y. Fabrication of Organic Flexible Electrodes Using Transfer Stamping Process. Microelectron. Eng. 2009, 86, 586–589. [Google Scholar] [CrossRef]
- Babu, B.; Lashmi, P.G.; Shaijumon, M.M. Li-Ion Capacitor Based on Activated Rice Husk Derived Porous Carbon with Improved Electrochemical Performance. Electrochim. Acta 2016, 211, 289–296. [Google Scholar] [CrossRef]
- Kolchanov, D.S.; Mitrofanov, I.; Kim, A.; Koshtyal, Y.; Rumyantsev, A.; Sergeeva, E.; Vinogradov, A.; Popovich, A.; Maximov, M.Y. Inkjet Printing of Li-rich Cathode Material for Thin-film Lithium-ion Microbatteries. Energy Technol. 2020, 8, 1901086. [Google Scholar] [CrossRef]
- Sundriyal, P.; Bhattacharya, S. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 38507–38521. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, H.; Zhao, X.; Malyi, O.I.; Peng, J.; Lu, C.; Li, X.; Zhang, Y.; Zeng, Z.; Xing, G. Printable Ink Design towards Customizable Miniaturized Energy Storage Devices. ACS Mater. Lett. 2020, 2, 1041–1056. [Google Scholar] [CrossRef]
- Izumi, A.; Sanada, M.; Furuichi, K.; Teraki, K.; Matsuda, T.; Hiramatsu, K.; Munakata, H.; Kanamura, K. Development of High Capacity Lithium-Ion Battery Applying Three-Dimensionally Patterned Electrode. Electrochim. Acta 2012, 79, 218–222. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Wu, B.; Cui, C.; Guo, Y.; Yan, C. A Critical Review of Fused Deposition Modeling 3D Printing Technology in Manufacturing Polylactic Acid Parts. Int. J. Adv. Manuf. Technol. 2019, 102, 2877–2889. [Google Scholar] [CrossRef]
- Vithani, K.; Goyanes, A.; Jannin, V.; Basit, A.W.; Gaisford, S.; Boyd, B.J. An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-Based Drug Delivery Systems. Pharm. Res. 2019, 36, 4. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Li, D.; Jiang, W.; Gu, Z.; Wang, X.; Zhang, Z.; Sun, Z. 3D Printable Graphene Composite. Sci. Rep. 2015, 5, 11181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes, C.; Somogyi, R.; Niu, S.; Cruz, M.A.; Yang, F.; Catenacci, M.J.; Rhodes, C.P.; Wiley, B.J. Three-Dimensional Printing of a Complete Lithium Ion Battery with Fused Filament Fabrication. ACS Appl. Energy Mater. 2018, 1, 5268–5279. [Google Scholar] [CrossRef]
- Bártolo, P.J. Stereolithography: Materials, Processes and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; ISBN 0387929045. [Google Scholar]
- Manapat, J.Z.; Chen, Q.; Ye, P.; Advincula, R.C. 3D Printing of Polymer Nanocomposites via Stereolithography. Macromol. Mater. Eng. 2017, 302, 1600553. [Google Scholar] [CrossRef]
- Seo, J.; Kushner, D.I.; Hickner, M.A. 3D Printing of Micropatterned Anion Exchange Membranes. ACS Appl. Mater. Interfaces 2016, 8, 16656–16663. [Google Scholar] [CrossRef]
- Zhakeyev, A.; Wang, P.; Zhang, L.; Shu, W.; Wang, H.; Xuan, J. Additive Manufacturing: Unlocking the Evolution of Energy Materials. Adv. Sci. 2017, 4, 1700187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, E.; Menkin, S.; Lifshits, M.; Kamir, Y.; Gladkich, A.; Kosa, G.; Golodnitsky, D. Novel Rechargeable 3D-Microbatteries on 3D-Printed-Polymer Substrates: Feasibility Study. Electrochim. Acta 2018, 265, 690–701. [Google Scholar] [CrossRef]
- Zuo, W.; Wang, C.; Li, Y.; Liu, J. Directly Grown Nanostructured Electrodes for High Volumetric Energy Density Binder-Free Hybrid Supercapacitors: A Case Study of CNTs//Li4Ti5O12. Sci. Rep. 2015, 5, 7780. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, C.; Zhao, Y.; Liu, Z.; Chang, Z.; Fu, L.; Zhu, Y.; Wu, Y.; Zhao, D. A Quasi-solid-state Li-ion Capacitor Based on Porous TiO2 Hollow Microspheres Wrapped with Graphene Nanosheets. Small 2016, 12, 6207–6213. [Google Scholar] [CrossRef]
- Brandt, A.; Balducci, A. A Study about the Use of Carbon Coated Iron Oxide-Based Electrodes in Lithium-Ion Capacitors. Electrochim. Acta 2013, 108, 219–225. [Google Scholar] [CrossRef]
- Yang, P.; Ding, Y.; Lin, Z.; Chen, Z.; Li, Y.; Qiang, P.; Ebrahimi, M.; Mai, W.; Wong, C.P.; Wang, Z.L. Low-Cost High-Performance Solid-State Asymmetric Supercapacitors Based on MnO2 Nanowires and Fe2O3 Nanotubes. Nano Lett. 2014, 14, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Khomenko, V.; Raymundo-Piñero, E.; Béguin, F. High-Energy Density Graphite/AC Capacitor in Organic Electrolyte. J. Power Sources 2008, 177, 643–651. [Google Scholar] [CrossRef]
- Ahn, W.; Lee, D.U.; Li, G.; Feng, K.; Wang, X.; Yu, A.; Lui, G.; Chen, Z. Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors. ACS Appl. Mater. Interfaces 2016, 8, 25297–25305. [Google Scholar] [CrossRef] [PubMed]
- Leng, K.; Zhang, F.; Zhang, L.; Zhang, T.; Wu, Y.; Lu, Y.; Huang, Y.; Chen, Y. Graphene-Based Li-Ion Hybrid Supercapacitors with Ultrahigh Performance. Nano Res. 2013, 6, 581–592. [Google Scholar] [CrossRef]
- Ye, L.; Liang, Q.; Lei, Y.; Yu, X.; Han, C.; Shen, W.; Huang, Z.-H.; Kang, F.; Yang, Q.-H. A High Performance Li-Ion Capacitor Constructed with Li4Ti5O12/C Hybrid and Porous Graphene Macroform. J. Power Sources 2015, 282, 174–178. [Google Scholar] [CrossRef]
- Lim, E.; Jo, C.; Kim, H.; Kim, M.-H.; Mun, Y.; Chun, J.; Ye, Y.; Hwang, J.; Ha, K.-S.; Roh, K.C. Facile Synthesis of Nb2O5@ Carbon Core–Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors. ACS Nano 2015, 9, 7497–7505. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, X.; Peng, R.; Huang, Y.; Guo, L.; Qi, Y. LiMn2O4/Graphene Composites as Cathodes with Enhanced Electrochemical Performance for Lithium-Ion Capacitors. RSC Adv. 2016, 6, 54866–54873. [Google Scholar] [CrossRef]
- Choi, H.S.; Im, J.H.; Kim, T.; Park, J.H.; Park, C.R. Advanced Energy Storage Device: A Hybrid BatCap System Consisting of Battery–Supercapacitor Hybrid Electrodes Based on Li4Ti5O12-Activated-Carbon Hybrid Nanotubes. J. Mater. Chem. 2012, 22, 16986–16993. [Google Scholar] [CrossRef]
- Brousse, T.; Marchand, R.; Taberna, P.-L.; Simon, P. TiO2 (B)/Activated Carbon Non-Aqueous Hybrid System for Energy Storage. J. Power Sources 2006, 158, 571–577. [Google Scholar] [CrossRef]
- Li, B.; Dai, F.; Xiao, Q.; Yang, L.; Shen, J.; Zhang, C.; Cai, M. Nitrogen-Doped Activated Carbon for a High Energy Hybrid Supercapacitor. Energy Environ. Sci. 2016, 9, 102–106. [Google Scholar] [CrossRef]
- Han, P.; Ma, W.; Pang, S.; Kong, Q.; Yao, J.; Bi, C.; Cui, G. Graphene Decorated with Molybdenum Dioxide Nanoparticles for Use in High Energy Lithium Ion Capacitors with an Organic Electrolyte. J. Mater. Chem. A 2013, 1, 5949–5954. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, Y.; Fan, Z. Printable Fabrication of Nanocoral-structured Electrodes for High-performance Flexible and Planar Supercapacitor with Artistic Design. Adv. Mater. 2017, 29, 1701736. [Google Scholar] [CrossRef] [PubMed]
- ZHAO, Y.-M.; XU, J.; LIU, L.; YANG, J.; JIANG, Z.-Y. Thin Film LiCoO_2 Cathode Prepared by Using Ink-Jet Printing Technique and Its Electrochemical Properties. Chem. J. Chin. Univ. 2007, 28, 1122–1125. [Google Scholar]
- Lee, J.-H.; Wee, S.-B.; Kwon, M.-S.; Kim, H.-H.; Choi, J.-M.; Song, M.S.; Park, H.B.; Kim, H.; Paik, U. Strategic Dispersion of Carbon Black and Its Application to Ink-Jet-Printed Lithium Cobalt Oxide Electrodes for Lithium Ion Batteries. J. Power Sources 2011, 196, 6449–6455. [Google Scholar] [CrossRef]
- Delannoy, P.-E.; Riou, B.; Brousse, T.; Le Bideau, J.; Guyomard, D.; Lestriez, B. Ink-Jet Printed Porous Composite LiFePO4 Electrode from Aqueous Suspension for Microbatteries. J. Power Sources 2015, 287, 261–268. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, A.; Sohn, H.; Nicoletti, C.; Iqbal, Z.; Federici, J.F. Fabrication of Rechargeable Lithium Ion Batteries Using Water-Based Inkjet Printed Cathodes. J. Manuf. Process. 2015, 20, 198–205. [Google Scholar] [CrossRef]
- Chen, B.; Jiang, Y.; Tang, X.; Pan, Y.; Hu, S. Fully Packaged Carbon Nanotube Supercapacitors by Direct Ink Writing on Flexible Substrates. ACS Appl. Mater. Interfaces 2017, 9, 28433–28440. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, Y.; Cui, S.; Duan, Y.; Liu, T.; Guo, H.; Lin, L.; Lin, Y.; Zheng, J.; Amine, K. 3D-printed Cathodes of LiMn1−XFexPO4 Nanocrystals Achieve Both Ultrahigh Rate and High Capacity for Advanced Lithium-ion Battery. Adv. Energy Mater. 2016, 6, 1600856. [Google Scholar] [CrossRef]
- Li, J.; Leu, M.C.; Panat, R.; Park, J. A Hybrid Three-Dimensionally Structured Electrode for Lithium-Ion Batteries via 3D Printing. Mater. Des. 2017, 119, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, C.; Xie, H.; Gao, T.; Yao, Y.; Pastel, G.; Han, X.; Li, Y.; Zhao, J.; Fu, K. 3D-printed All-fiber Li-ion Battery toward Wearable Energy Storage. Adv. Funct. Mater. 2017, 27, 1703140. [Google Scholar] [CrossRef]
- Zhou, L.; Ning, W.; Wu, C.; Zhang, D.; Wei, W.; Ma, J.; Li, C.; Chen, L. 3D-printed Microelectrodes with a Developed Conductive Network and Hierarchical Pores toward High Areal Capacity for Microbatteries. Adv. Mater. Technol. 2019, 4, 1800402. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Q.; Gao, X.; Wang, C.; Li, W.; Holness, F.B.; Zheng, M.; Li, R.; Price, A.D.; Sun, X. Toward High Areal Energy and Power Density Electrode for Li-Ion Batteries via Optimized 3D Printing Approach. ACS Appl. Mater. Interfaces 2018, 10, 39794–39801. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.X.; Sim, G.J.; Tan, J.C.; Low, H.Y.; Yang, H.Y. 3D-Printed, Carbon-Nanotube-Wrapped, Thermoresponsive Polymer Spheres for Safer Lithium-Ion Batteries. Energy Technol. 2018, 6, 1715–1722. [Google Scholar] [CrossRef]
- Liu, C.; Xu, F.; Liu, Y.; Ma, J.; Liu, P.; Wang, D.; Lao, C.; Chen, Z. High Mass Loading Ultrathick Porous Li4Ti5O12 Electrodes with Improved Areal Capacity Fabricated via Low Temperature Direct Writing. Electrochim. Acta 2019, 314, 81–88. [Google Scholar] [CrossRef]
- Cao, D.; Xing, Y.; Tantratian, K.; Wang, X.; Ma, Y.; Mukhopadhyay, A.; Cheng, Z.; Zhang, Q.; Jiao, Y.; Chen, L. 3D Printed High-performance Lithium Metal Microbatteries Enabled by Nanocellulose. Adv. Mater. 2019, 31, 1807313. [Google Scholar] [CrossRef]
- Wei, T.; Ahn, B.Y.; Grotto, J.; Lewis, J.A. 3D Printing of Customized Li-ion Batteries with Thick Electrodes. Adv. Mater. 2018, 30, 1703027. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Wei, T.; Ahn, B.Y.; Seo, J.Y.; Dillon, S.J.; Lewis, J.A. 3D Printing of Interdigitated Li-Ion Microbattery Architectures. Adv. Mater. 2013, 25, 4539–4543. [Google Scholar] [CrossRef] [Green Version]
- Shen, K.; Mei, H.; Li, B.; Ding, J.; Yang, S. 3D Printing Sulfur Copolymer-graphene Architectures for Li-S Batteries. Adv. Energy Mater. 2018, 8, 1701527. [Google Scholar] [CrossRef]
- Qiao, Y.; Liu, Y.; Chen, C.; Xie, H.; Yao, Y.; He, S.; Ping, W.; Liu, B.; Hu, L. 3D-printed Graphene Oxide Framework with Thermal Shock Synthesized Nanoparticles for Li-CO2 Batteries. Adv. Funct. Mater. 2018, 28, 1805899. [Google Scholar] [CrossRef]
- Blake, A.J.; Kohlmeyer, R.R.; Hardin, J.O.; Carmona, E.A.; Maruyama, B.; Berrigan, J.D.; Huang, H.; Durstock, M.F. 3D Printable Ceramic–Polymer Electrolytes for Flexible High-performance Li-ion Batteries with Enhanced Thermal Stability. Adv. Energy Mater. 2017, 7, 1602920. [Google Scholar] [CrossRef]
- Cheng, M.; Jiang, Y.; Yao, W.; Yuan, Y.; Deivanayagam, R.; Foroozan, T.; Huang, Z.; Song, B.; Rojaee, R.; Shokuhfar, T. Elevated-temperature 3D Printing of Hybrid Solid-state Electrolyte for Li-ion Batteries. Adv. Mater. 2018, 30, 1800615. [Google Scholar] [CrossRef]
- Kohlmeyer, R.R.; Blake, A.J.; Hardin, J.O.; Carmona, E.A.; Carpena-Núñez, J.; Maruyama, B.; Berrigan, J.D.; Huang, H.; Durstock, M.F. Composite Batteries: A Simple yet Universal Approach to 3D Printable Lithium-Ion Battery Electrodes. J. Mater. Chem. A 2016, 4, 16856–16864. [Google Scholar] [CrossRef]
- Fu, K.; Wang, Y.; Yan, C.; Yao, Y.; Chen, Y.; Dai, J.; Lacey, S.; Wang, Y.; Wan, J.; Li, T. Graphene Oxide-based Electrode Inks for 3D-printed Lithium-ion Batteries. Adv. Mater. 2016, 28, 2587–2594. [Google Scholar] [CrossRef]
- Gao, X.; Sun, Q.; Yang, X.; Liang, J.; Koo, A.; Li, W.; Liang, J.; Wang, J.; Li, R.; Holness, F.B. Toward a Remarkable Li-S Battery via 3D Printing. Nano Energy 2019, 56, 595–603. [Google Scholar] [CrossRef]
- Foster, C.W.; Down, M.P.; Zhang, Y.; Ji, X.; Rowley-Neale, S.J.; Smith, G.C.; Kelly, P.J.; Banks, C.E. 3D Printed Graphene Based Energy Storage Devices. Sci. Rep. 2017, 7, 42233. [Google Scholar] [CrossRef] [PubMed]
- Vernardou, D.; Vasilopoulos, K.C.; Kenanakis, G. 3D Printed Graphene-Based Electrodes with High Electrochemical Performance. Appl. Phys. A 2017, 123, 623. [Google Scholar] [CrossRef]
- Maurel, A.; Courty, M.; Fleutot, B.; Tortajada, H.; Prashantha, K.; Armand, M.; Grugeon, S.; Panier, S.; Dupont, L. Highly Loaded Graphite-Polylactic Acid Composite-Based Filaments for Lithium-Ion Battery Three-Dimensional Printing. Chem. Mater. 2018, 30, 7484–7493. [Google Scholar] [CrossRef]
- Ragones, H.; Menkin, S.; Kamir, Y.; Gladkikh, A.; Mukra, T.; Kosa, G.; Golodnitsky, D. Towards Smart Free Form-Factor 3D Printable Batteries. Sustain. Energy Fuels 2018, 2, 1542–1549. [Google Scholar] [CrossRef] [Green Version]
- Ning, H.; Pikul, J.H.; Zhang, R.; Li, X.; Xu, S.; Wang, J.; Rogers, J.A.; King, W.P.; Braun, P. V Holographic Patterning of High-Performance on-Chip 3D Lithium-Ion Microbatteries. Proc. Natl. Acad. Sci. USA 2015, 112, 6573–6578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Xu, R.; He, Z.; Zhao, K.; Pan, L. Printing 3D Gel Polymer Electrolyte in Lithium-Ion Microbattery Using Stereolithography. J. Electrochem. Soc. 2017, 164, A1852. [Google Scholar] [CrossRef]
- Scopus. Available online: https://www.scopus.com/search/form.uri?display=basic#basic (accessed on 30 September 2022).
- Pillot, C. The Rechargeable Battery Market and Main Trends 2018–2030. In Proceedings of the 36th Annual International Battery Seminar & Exhibit—Avicenne Energy, Fort Lauderdale, FL, USA, 25–28 March 2019; Available online: http://cdn.ceo.ca.s3.amazonaws.com/1em2t4r-02%20-%20Presentation%20Avicenne%20-%20Christophe%20Pillot%20-%2028%20Mai%202019.pdf (accessed on 30 September 2022).
- Outlook, IEA Global EV. Entering the Decade of Electric Drive; International Energy Agency: Paris, France, 2020. [Google Scholar]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The Lithium-Ion Battery: State of the Art and Future Perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
Energy Storage System | MW Capacity | % |
---|---|---|
Li ion | 1629 | 79.44 |
Na based (NaS and Zebra) | 204.315 | 9.96 |
Flow batteries | 71.87 | 3.5 |
Lead Acid | 68.173 | 3.32 |
Capacitor | 30.903 | 1.52 |
Ni based | 30.385 | 1.48 |
Metal Air battery | 15.987 | 0.78 |
Sr. | Tech. | Electrodes | Electrolyte and Solvent | Separator | Voltage (V) | Capacity | Cycle Retention (%) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | CVD | MWCNT-LTO//MWCNT-LMO | 1 M LiPF6 in mixture of EC, DEC, and DMC (1:1:1 w/w) | - | 0–1.5 | 138 mAh/g at 0.01 mA | 97% (1000 cycle) | [35] |
MWCNT//LTO | 1 M LiPF6 in EC and DEC (1:1 by volume) | Polypropylene membrane | 0–3.0 | - | 92% (3000 cycle) | [68] | ||
2 | Doctor blade | AC//MnO | 1 M LiPF6 in mixture of EC, DMC and DEC (1:1:1 by volume) | Polypropylene film (Celgard 2400) | 0–4.0 | 637 mA h/g at 100 mA/g | 92.5% (3500 cycle) | [38] |
EEG//TiO2@EEG | 1 M LiPF6 gel based | - | 0–3.0 | 58 F/g at 0.4 A/g | 68% (1000 cycle) | [69] | ||
AC//carbon coated α-Fe2O3 | 1 M LiPF6 in PC | Whatman GF/D glass microfiber filter | 0.6–3.0 | 750 mAh/g at 0.13 A/g | 99% (100 cycle) | [70] | ||
3 | Drop casting | AC//Bi2O3 | KI added in 1 M Li2SO4 | Polypropylene sheet | 0–1.6 | 99.5 F/g | 72% (1000 cycle) | [40] |
4 | Nanorod growing | AC//Nb2O5 | 1 M LiPF6 in EC and DMC (1:1 by volume) | - | 1–3.5 | 220 mA h/g at 1 C | 73% (2500 cycle) | [42] |
MnO2 NW//Fe2O3 NT | PVA/LiCl gel in DI | NKK TF40 | 0–1.6 | 91.3 F/g at 2 mA/cm2 | 84% (5000 cycle) | [71] | ||
5 | Brush coating | Li2Mn4O9//AC | 1 M LiNO3 in NMP | - | 0–1.4 | 54.6 F/g at 100 mA/g | 80% (1000 cycle) | [44] |
6 | RTR | AC/LiFePO4//MCMB | 1 M LiPF6 in EC/DEC mixture (1:1 v/v) | polypropylene microporous sheet (C2400, Celgard) | 2.0–3.8 | 23.80 mAh/g | 92.9% (100 cycle) | [47] |
AC//Graphite | 1 M LiPF6 in EC/DMC | Glassy fibrous separator | 1.5–4.5 | 120 mF | 84% (300 cycle) | [72] | ||
AC//HOG-Li | 1 M LiPF6 in EC/DMC | - | 2.0–4.2 | 73.1 mAh/g at 20 mA/g | 84.2% (1000 cycle) | [73] | ||
G-LTO//G-SU | 1 M LiPF6 in EC, DMC and DEC with a volume ratio (1:1:1 v/v) | - | 0–3.0 | 75 mAh/g at 1 A/g | 87% (500 cycle) | [74] | ||
7 | Dip coating | V2O5/Pin@ACC//rGO@ACC | 5 M LiNO3/PVA in DI | Filter paper saturated with LiNO3/PVA | 0–1.8 | 275.5 F/g at 0.4 A/g | 91.1% (5000 cycle) | [49] |
8 | Electro deposition | MCNP//FCNP MnO2 | LiCl/PVA gel electrolyte in DI | - | 0–1.8 | - | 81.2% (10,000 cycle) | [52] |
9 | Coating, Pressing and stamping | (RHDPC-H3PO4) and (RHDPC-KOH)//LTO | 1 M LiPF6 in EC and DEC mixture with 1:1 v/v | Microporous glass fiber separator (Whatman1823-090, UK) | 0–3.0 | 80 F/g and 120 F/g at 2 A/g | 92% (2000 cycle) | [54] |
Graphene//LTO/C | 1 M LiPF6 in EC and DEC | Celgard 2500 | 1.0–3.0 | 58 F/g at 10 A/g | 65% (1000 cycle) | [75] | ||
AC(MSP-20)//T-Nb2O5@Carbon core | 1 M LiPF6 in EC and DECmixture with 1:1 v/v | - | 1–3.5 | 180 mA h/g at 0.05 A/g | Without significant fading(1000 cycles) | [76] | ||
LiMn2O4/Graphene//AC | 1 M LiPF6 in EC/DEC/DMC (1:1:1 vol %) | Celgard 2400 polypropylene membrane | 0–2.3 | 43.7 F/g at 2C | 90.6% (500 cycle) | [77] | ||
AC//LTO/AC | 1 M LiPF6 in EC/DEC (1:1 v/v) | Celgard 2400 | 1.0–2.5 | 128 mA h/g at 100 mA/g | 67% (160 cycles) | [78] | ||
AC//TiO2 | 1 M LiPF6 in EC/DEC (1:2 molar ratio) | Glass fiber paper | 0–3.2 | 117 mAh/g | 85.47% (400 cycles) | [79] | ||
N-ACs//Si/C | 1.2 M LiPF6 in EC/DMC | - | 2–4.5 | 79 mA h/g at 0.4 A/g | 76.3% (8000 cycle) | [80] | ||
G-MoO2//G-MoO2 Graphene | 1 M LiPF6 in DMC | Glass-fiber separator | 0–3.0 | 173.2 F/g at 50 mA/g | 91.2% (500 cycle) | [81] | ||
10 | IJP | GO//MnO2/AC | PVA/LiCl in DI | Gel | 2.0 | 1.586 F cm−2 | 89.6% (9000 cycles) | [56] |
Ni//MnO2 | CH3COOLi/PVA in DI | - | 0–0.8 | 52.9 mF cm−2 | 77.4% (500 cycles) | [82] | ||
LTO//LTO | - | - | 1.0–2.0 | 153 mAh g−1 at 10.4 μA cm−2 | 300 cycles | [83] | ||
LCO//LCO | - | - | - | 110 mAh g−1 at 75 mA g−1 | 95% (100 cycles) | [84] | ||
LiFePO4//LiFePO4 | - | Glass-fiber separator | 0.062–0.930 | 125 mAh g−1 at 9C | - | [85] | ||
LiFePO4//LiFePO4 | - | Celgard 2400 | 2.0–4.0 | 110 mAh g−1 at 750 mA g−1 | 96.4% | [86] | ||
SWCNT//SWCNT | PVA/LiCl in DI | Gel | - | 15.34 F cm−3 | 96.5% (5000 cycles) | [87] | ||
11 | DIW | LTO//AB | - | Porous PP film | 1.0–3.0 | ~80 mAh g−1 at 1C | 90% (200 cycles) | [58] |
LMFPC//LMFPC | - | Celgard membrane | 2.0–4.5 | 150.21 mAh g−1 at 10 C | 1000 cycles | [88] | ||
LMO//LMO | - | PP/PE/PP membrane (Celgard) | 3.0–4.2 | 0.83 mAh cm−2 at 1 C | - | [89] | ||
LFP/LTO//CNT | - | LiPF6 in EC/DEC solution | 1.0–4.0 | 89 mAh g−1 at 50 mA g−1 | 81% (30 cycles) | [90] | ||
LFP/LTO//CNT | - | Celgard 2400 | 1.0–4.3 | 102 mAh g−1 at 0.2 C | 92.2% (100 cycles) | [91] | ||
LFP//MWCNT | - | - | 2.5–4.2 | 80 mAh g−1 at 4 C; 132 mAh g−1 at 1 C | 51.8% (115 cycles) | [92] | ||
PE-CNT | 1 M LiPF6 in xylene, NMP | Celgard 2325 | - | 80 mAh g−1 at 1C | - | [93] | ||
LTO//LTO | - | - | - | 140 mAh g−1 at 0.5 C | 100 cycles | [94] | ||
Li//LFP | 1 M LiTFSI in DMM/DOL | - | 0.05 | 140 mA h g−1 at 0.2 C | 85% (3000 cycles) | [95] | ||
LTO//LFP | 1 M LiTFSI in PC | Ceramic-filled polymer composites | 0.5–3.0 | 33 mAh g−1 at 0.2 mA cm−2 | - | [96] | ||
LTO//LFP | 1 M LiClO4 in EC/DMC (1:1 v/v) | - | 1.8 | 1.5 mAh cm−2 at 5 C | - | [97] | ||
Li//GO | 1 M LiTFSI in DMM/DOL | - | 1.5–3.0 | 812.8 mAh g−1 | 43.4% (50 cycles) | [98] | ||
Li//Ni/rGO | - | - | 1.25 | 1000 mA h g−1 at 100 mA g−1 | - | [99] | ||
LTO//LFP | Al2O3/PVDF in glycerol | Celgard 2325 | - | 154 mAh g−1 at 0.2 C | - | [100] | ||
LTO//LiCoO2 | 1 M LiPF6 in 1:1 ratio of EC/DEC | - | 1.0–2.1 | 150 mAh g−1 at 0.2 C | - | [101] | ||
Li//MnO2 | PVDF-co-HFP/Pyr13TFSI/LiTFSI/TiO2 in NMP | Porous polymer film | - | 127.3 mAh g−1 | 98.6% (100 cycles) | [102] | ||
LTO/GO//LTO/GO | 1 M LiPF6 in EC and DEC | Gel polymer electrolyte | 2–4 | 185 mAh g−1 at 10 mA g−1 | 100% (10 cycle) | [103] | ||
Li//S/BP2000 | 1 M LiTFSI in DMM/DOL | Celgard 2400 | - | 1009 mAh g−1 at 5.5 mg cm−2 | 87% (200 cycles) | [104] | ||
LFP/CNT//LFP/CNT | 1 M LiPF6 in EC and DEC | - | 2.5–4.2 | 150 mAh g−1 at 0.1 C | 51.8% (115 cycles) | [92] | ||
LTO//LFP | 1 M LiPF6 in EC and DEC | Celgard 2400 | 1.0–2.5 and 2.0–4.3 | 128 mAh g−1 at 0.2 C | - | [91] | ||
12 | FDM | LTO//LMO | 1 M LiClO4 EMC and PC (50/50 vol %) | 25 μm PP disk | 2.0–3.0 | 3.91 mAh cm−3 | - | [62] |
Graphene//Li | 1 M LiPF6 in EC and DEC | Celgard 2400 | 0.01–3.0 | 40 mAh g−1 at 120 C | - | [105] | ||
Graphene//Pt | 1 M LiCl | - | −1.0 to −0.5 | 248 mAh g−1 at 40 mA g−1 | 93% (1000 cycles) | [106] | ||
Graphite//PLA/Li | 1 M LiPF6 in EC and DEC | PVDF-co-HFP | 0.01 | 215 mAh g−1 at 18.6 mA g−1 | - | [107] | ||
LTO/NGP//LMO/MWCNT | 1 M LiClO4 in EMC and PC (50/50 vol %) | Al2O3 | 2.0–3.0 | 7.48 mAh cm−3 at 1 C | - | [62] | ||
LTO//LFP/GO/MWCNT | 1 M LiPF6 in EC and DEC | Celgard | 2.6–3.8 | 80 mAh g−1 at 2 C | - | [108] | ||
13 | Lithography (SLA) | NiSn//LMO | 1 M LiClO4 in EC:DMC (1:1 mass ratio) | - | 1.4–3.2 | ≈2.9 µAh cm−2 µm−1 at 1 C | 80% (1000 cycles) | [109] |
LTO//LFP | 1 M LiPF6 in EC and DEC | - | 1.9–3.2 | 500 mAh cm−2 at 0.1 C | - | [67] | ||
LTO//LFP | 1 M LiClO4 in EC:DMC | - | 1.5–4.2 | 1.4 μAh cm−2 at 2–4 μA | 97.7% | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, V.; Kuthe, S.; Skorodumova, N.V. Electrode Fabrication Techniques for Li Ion Based Energy Storage System: A Review. Batteries 2023, 9, 184. https://doi.org/10.3390/batteries9030184
Singh V, Kuthe S, Skorodumova NV. Electrode Fabrication Techniques for Li Ion Based Energy Storage System: A Review. Batteries. 2023; 9(3):184. https://doi.org/10.3390/batteries9030184
Chicago/Turabian StyleSingh, Veena, Sudhanshu Kuthe, and Natalia V. Skorodumova. 2023. "Electrode Fabrication Techniques for Li Ion Based Energy Storage System: A Review" Batteries 9, no. 3: 184. https://doi.org/10.3390/batteries9030184
APA StyleSingh, V., Kuthe, S., & Skorodumova, N. V. (2023). Electrode Fabrication Techniques for Li Ion Based Energy Storage System: A Review. Batteries, 9(3), 184. https://doi.org/10.3390/batteries9030184