Survey on Battery Technologies and Modeling Methods for Electric Vehicles
Abstract
:1. Introduction
2. Highlights and Contributions
- ▪
- State-of-the-art battery storage systems are classified according to their technical maturity, development timeline, and existing applications. Accordingly, the traditional generation includes lead-acid and nickel-based batteries, the current generation consists of lithium-based batteries, while the future generation encompasses batteries that are currently not mature enough but are expected to succeed previous generations. The future generation includes metal-ion, metal-air, solid-state, and sodium-beta batteries.
- ▪
- The complete battery cycle is described from the perspective of automakers. Several interconnected aspects including manufacturing, application, and recycling are detailed. Based on this, two distinct qualitative factors are introduced: key performance indicators and design markers.
- ▪
- The generation-wise evolution of batteries is comprehensively reviewed based on the introduced qualitative factors. This makes it possible to predict the development of relevant technologies and, consequently, to furnish the blueprint of technologies that are expected to flourish in the future.
- ▪
- Contemporary and emerging methods for battery modeling and state estimation are discussed in detail with relevance to battery management and power control units. The methods discussed are then ranked and prioritized according to key next-generation requirements: accuracy, computational load, scalability, resilience, implementation, maturity, etc.
- ▪
- As a conclusion, the paper provides a detailed techno-economic assessment of what to expect, and highlights future challenges and opportunities for industry, academia, and policy makers. The overall contents are graphically presented in Figure 4.
3. Battery Storage: Evolution and Key Trends
3.1. Traditional Generation of Batteries
3.1.1. Lead-Acid Batteries
3.1.2. Nickel-Based Batteries
3.2. Current Generation of Batteries
3.2.1. Lithium-Ion Batteries
3.2.2. Lithium-Ion Polymer Batteries
3.2.3. Lithium-Metal Batteries
3.3. Future Generation of Batteries
3.3.1. Sodium-Beta Batteries
3.3.2. Metal-Ion Batteries
3.3.3. Metal-Air Batteries
3.3.4. Solid-State Batteries
4. Battery Management and Modeling
4.1. Electrical (Equivalent Circuit) Models
4.2. Electrochemical Models
4.3. Data-Driven Models
5. Battery State Estimation
5.1. Simplistic Estimators
5.2. Filter-Based Estimators
5.3. Data-Driven Estimators
6. Open Discussion: Challenges, Opportunities, and Key Developments
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BEV | Battery electric vehicle |
BSS | Battery storage system |
BMS | Battery management system |
DQFs | Distinct qualitative factors |
ECU | Electronic control unit |
EIS | Electrochemical Ζ spectroscopy |
EVs | Electric vehicles |
FCHEV | Fuel cell hybrid electric vehicle |
GHG | Greenhouse gasses |
GHEV | Gasoline hybrid electric vehicle |
HEVs | Hybrid electric vehicles |
KPIs | Key performance indicators |
KDIs | Key design indicators |
Kf | Kalman filter |
Pf | Particle filter |
r-HEV | Range extender hybrid vehicle |
SoC | State-of-charge |
SoH | State-of-health |
SoT | State-of-temperature |
VRLA | Valve-regulated lead-acid |
References
- Group, R. Preliminary 2020 Global Greenhouse Gas Emissions Estimates. Available online: https://rhg.com/research/preliminary-2020-global-greenhouse-gas-emissions-estimates/ (accessed on 20 December 2022).
- Tran, M.-K.; Panchal, S.; Khang, T.D.; Panchal, K.; Fraser, R.; Fowler, M. Concept Review of a Cloud-Based Smart Battery Management System for Lithium-Ion Batteries: Feasibility, Logistics, and Functionality. Batteries 2022, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Fang, K.; Li, C.; Tang, Y.; He, J.; Song, J. China’s pathways to peak carbon emissions: New insights from various industrial sectors. Appl. Energy 2022, 306, 118039. [Google Scholar] [CrossRef]
- Abhyankar, N.; Mohanty, P.; Phadke, A. Illustrative Strategies for the United States to Achieve 50% Emissions Reduction by 2030; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2021. [Google Scholar]
- Mock, P.; Díaz, S. Pathways to decarbonization: The European passenger car market in the years 2021–2035. Communications 2021, 49, 847129–848102. [Google Scholar]
- Yuan, M.; Thellufsen, J.Z.; Lund, H.; Liang, Y. The electrification of transportation in energy transition. Energy 2021, 236, 121564. [Google Scholar] [CrossRef]
- Hossain Lipu, M.S.; Miah, M.S.; Ansari, S.; Wali, S.B.; Jamal, T.; Elavarasan, R.M.; Kumar, S.; Naushad Ali, M.M.; Sarker, M.R.; Aljanad, A.; et al. Smart Battery Management Technology in Electric Vehicle Applications: Analytical and Technical Assessment toward Emerging Future Directions. Batteries 2022, 8, 219. [Google Scholar] [CrossRef]
- Cunanan, C.; Tran, M.-K.; Lee, Y.; Kwok, S.; Leung, V.; Fowler, M. A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles. Clean Technol. 2021, 3, 474–489. [Google Scholar] [CrossRef]
- Dimitrova, Z.; Nader, W.B. PEM fuel cell as an auxiliary power unit for range extended hybrid electric vehicles. Energy 2022, 239, 121933. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Y.; Zhu, F.; Du, J.; Zhao, Z.; Ouyang, M. The path enabling storage of renewable energy toward carbon neutralization in China. eTransportation 2023, 16, 100226. [Google Scholar] [CrossRef]
- Zhu, A.L.; Wilkinson, D.P.; Zhang, X.; Xing, Y.; Rozhin, A.G.; Kulinich, S.A. Zinc regeneration in rechargeable zinc-air fuel cells—A review. J. Energy Storage 2016, 8, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, X.; Yang, M.; Chen, W. High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective. Energy Storage Mater. 2021, 41, 522–545. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Luo, L.; Fan, Y.; Du, Z. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 2022, 238, 121652. [Google Scholar] [CrossRef]
- Aroua, A.; Lhomme, W.; Verbelen, F.; Bouscayrol, A.; Stockman, K. Inversion-based Control of Scaled PMSM for Battery Electric Vehicles. In Proceedings of the 2021 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 25–28 October 2021; pp. 1–6. [Google Scholar]
- Iqbal, M.; Becherif, M.; Ramadan, H.S.; Badji, A. Dual-layer approach for systematic sizing and online energy management of fuel cell hybrid vehicles. Appl. Energy 2021, 300, 117345. [Google Scholar] [CrossRef]
- Iqbal, M.; Ramadan, H.S.; Becherif, M. Health-aware frequency separation method for online energy management of fuel cell hybrid vehicle considering efficient urban utilization. Int. J. Hydrogen Energy 2021, 46, 16030–16047. [Google Scholar] [CrossRef]
- Tran, M.-K.; Bhatti, A.; Vrolyk, R.; Wong, D.; Panchal, S.; Fowler, M.; Fraser, R. A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives. World Electr. Veh. J. 2021, 12, 54. [Google Scholar] [CrossRef]
- Wang, Y.; Lou, D.; Xu, N.; Fang, L.; Tan, P. Energy management and emission control for range extended electric vehicles. Energy 2021, 236, 121370. [Google Scholar] [CrossRef]
- Zine, Y.; Laurent, J.; Iqbal, M.; Benmouna, A.; Becherif, M.; Hissel, D. Experimental implementation of fuzzy logic control to track the maximum efficiency point of an open cathode fuel cell system. In Proceedings of the 2022 10th International Conference on Systems and Control (ICSC), Marseille, France, 23–25 November 2022; pp. 366–371. [Google Scholar]
- Liu, W.; Placke, T.; Chau, K.T. Overview of batteries and battery management for electric vehicles. Energy Rep. 2022, 8, 4058–4084. [Google Scholar] [CrossRef]
- Bridge, G.; Faigen, E. Towards the lithium-ion battery production network: Thinking beyond mineral supply chains. Energy Res. Soc. Sci. 2022, 89, 102659. [Google Scholar] [CrossRef]
- Nurdiawati, A.; Agrawal, T.K. Creating a circular EV battery value chain: End-of-life strategies and future perspective. Resour. Conserv. Recycl. 2022, 185, 106484. [Google Scholar] [CrossRef]
- Yang, Y.; Bremner, S.; Menictas, C.; Kay, M. Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review. Renew. Sustain. Energy Rev. 2022, 167, 112671. [Google Scholar] [CrossRef]
- García-Miguel, P.L.; Alonso-Martínez, J.; Arnaltes Gómez, S.; García Plaza, M.; Asensio, A.P. A Review on the Degradation Implementation for the Operation of Battery Energy Storage Systems. Batteries 2022, 8, 110. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, R.; Zhou, C.; Kang, X.; Chen, Z. Digital twin and cloud-side-end collaboration for intelligent battery management system. J. Manuf. Syst. 2022, 62, 124–134. [Google Scholar] [CrossRef]
- Tang, H.; Wu, Y.; Cai, Y.; Wang, F.; Lin, Z.; Pei, Y. Design of power lithium battery management system based on digital twin. J. Energy Storage 2022, 47, 103679. [Google Scholar] [CrossRef]
- Yin, J.; Lin, H.; Shi, J.; Lin, Z.; Bao, J.; Wang, Y.; Lin, X.; Qin, Y.; Qiu, X.; Zhang, W. Lead-carbon batteries toward future energy storage: From mechanism and materials to applications. Electrochem. Energy Rev. 2022, 5, 1–32. [Google Scholar] [CrossRef]
- Gibb, B.C. The rise and rise of lithium. Nat. Chem. 2021, 13, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-S.; Hsiao, K.-C.; Sireesha, P.; Huang, J.-Y. Lithium Silicates in Anode Materials for Li-Ion and Li Metal Batteries. Batteries 2022, 8, 2. [Google Scholar] [CrossRef]
- Ramasubramanian, B.; Sundarrajan, S.; Chellappan, V.; Reddy, M.V.; Ramakrishna, S.; Zaghib, K. Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review. Batteries 2022, 8, 133. [Google Scholar] [CrossRef]
- Taniguchi, A.; Fujioka, N.; Ikoma, M.; Ohta, A. Development of nickel/metal-hydride batteries for EVs and HEVs. J. Power Sources 2001, 100, 117–124. [Google Scholar] [CrossRef]
- Ruetschi, P.; Meli, F.; Desilvestro, J. Nickel-metal hydride batteries. The preferred batteries of the future? J. Power Sources 1995, 57, 85–91. [Google Scholar] [CrossRef]
- Xie, L.; Tang, C.; Bi, Z.; Song, M.; Fan, Y.; Yan, C.; Li, X.; Su, F.; Zhang, Q.; Chen, C. Hard Carbon Anodes for Next-Generation Li-Ion Batteries: Review and Perspective. Adv. Energy Mater. 2021, 11, 2101650. [Google Scholar] [CrossRef]
- Shahjalal, M.; Roy, P.K.; Shams, T.; Fly, A.; Chowdhury, J.I.; Ahmed, M.R.; Liu, K. A review on second-life of Li-ion batteries: Prospects, challenges, and issues. Energy 2022, 241, 122881. [Google Scholar] [CrossRef]
- Windisch-Kern, S.; Gerold, E.; Nigl, T.; Jandric, A.; Altendorfer, M.; Rutrecht, B.; Scherhaufer, S.; Raupenstrauch, H.; Pomberger, R.; Antrekowitsch, H.; et al. Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies. Waste Manag. 2022, 138, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Houache, M.S.E.; Yim, C.-H.; Karkar, Z.; Abu-Lebdeh, Y. On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review. Batteries 2022, 8, 70. [Google Scholar] [CrossRef]
- Zhao, H.; Lam, W.-Y.A.; Sheng, L.; Wang, L.; Bai, P.; Yang, Y.; Ren, D.; Xu, H.; He, X. Cobalt-Free Cathode Materials: Families and their Prospects. Adv. Energy Mater. 2022, 12, 2103894. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Negnevitsky, M. Connecting battery technologies for electric vehicles from battery materials to management. iScience 2022, 25, 103744. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, M.; Dong, Y.; Zhao, J. Two-Dimensional Materials for Dendrite-Free Zinc Metal Anodes in Aqueous Zinc Batteries. Batteries 2022, 8, 293. [Google Scholar] [CrossRef]
- Ni, Q.; Yang, Y.; Du, H.; Deng, H.; Lin, J.; Lin, L.; Yuan, M.; Sun, Z.; Sun, G. Anode-Free Rechargeable Sodium-Metal Batteries. Batteries 2022, 8, 272. [Google Scholar] [CrossRef]
- Dawson, J.A.; Famprikis, T.; Johnston, K.E. Anti-perovskites for solid-state batteries: Recent developments, current challenges and future prospects. J. Mater. Chem. A 2021, 9, 18746–18772. [Google Scholar] [CrossRef]
- Nowroozi, M.A.; Mohammad, I.; Molaiyan, P.; Wissel, K.; Munnangi, A.R.; Clemens, O. Fluoride ion batteries–past, present, and future. J. Mater. Chem. A 2021, 9, 5980–6012. [Google Scholar] [CrossRef]
- Carloni, A.; Baronti, F.; Di Rienzo, R.; Roncella, R.; Saletti, R. An Open-Hardware and Low-Cost Maintenance Tool for Light-Electric-Vehicle Batteries. Energies 2021, 14, 4962. [Google Scholar] [CrossRef]
- Gabbar, H.A.; Othman, A.M.; Abdussami, M.R. Review of Battery Management Systems (BMS) Development and Industrial Standards. Technologies 2021, 9, 28. [Google Scholar] [CrossRef]
- Hossain Lipu, M.S.; Hannan, M.A.; Karim, T.F.; Hussain, A.; Saad, M.H.M.; Ayob, A.; Miah, M.S.; Indra Mahlia, T.M. Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook. J. Clean. Prod. 2021, 292, 126044. [Google Scholar] [CrossRef]
- Dai, H.; Jiang, B.; Hu, X.; Lin, X.; Wei, X.; Pecht, M. Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends. Renew. Sustain. Energy Rev. 2021, 138, 110480. [Google Scholar] [CrossRef]
- Naguib, M.; Kollmeyer, P.; Emadi, A. Lithium-Ion Battery Pack Robust State of Charge Estimation, Cell Inconsistency, and Balancing: Review. IEEE Access 2021, 9, 50570–50582. [Google Scholar] [CrossRef]
- Pires, R.A.; Carvalho, S.A.; Cardoso Filho, B.J.; Pires, I.A.; Huebner, R.; Maia, T.A.C. The Assessment of Electric Vehicle Storage Lifetime Using Battery Thermal Management System. Batteries 2023, 9, 10. [Google Scholar] [CrossRef]
- Surya, S.; Rao, V.; Williamson, S.S. Comprehensive Review on Smart Techniques for Estimation of State of Health for Battery Management System Application. Energies 2021, 14, 4617. [Google Scholar] [CrossRef]
- Zhou, W.; Zheng, Y.; Pan, Z.; Lu, Q. Review on the Battery Model and SOC Estimation Method. Processes 2021, 9, 1685. [Google Scholar] [CrossRef]
- Tamilselvi, S.; Gunasundari, S.; Karuppiah, N.; Razak Rk, A.; Madhusudan, S.; Nagarajan, V.M.; Sathish, T.; Shamim, M.Z.M.; Saleel, C.A.; Afzal, A. A Review on Battery Modelling Techniques. Sustainability 2021, 13, 10042. [Google Scholar] [CrossRef]
- Miguel, E.; Plett, G.L.; Trimboli, M.S.; Lopetegi, I.; Oca, L.; Iraola, U.; Bekaert, E. Electrochemical Model and Sigma Point Kalman Filter Based Online Oriented Battery Model. IEEE Access 2021, 9, 98072–98090. [Google Scholar] [CrossRef]
- Hashemi, S.R.; Mahajan, A.M.; Farhad, S. Online estimation of battery model parameters and state of health in electric and hybrid aircraft application. Energy 2021, 229, 120699. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, X.; Zhang, H.; Yang, F.; Tong, L.; Yang, Y.; Yan, D.; Yang, A.; Yu, M.; Liu, Z.; et al. Online identification of battery model parameters and joint state of charge and state of health estimation using dual particle filter algorithms. Int. J. Energy Res. 2022, 46, 19615–19652. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Z.; Xiong, B.; Vilathgamuwa, D.M. Adaptive Ensemble-Based Electrochemical–Thermal Degradation State Estimation of Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 2022, 69, 6984–6996. [Google Scholar] [CrossRef]
- Wang, Z.; Gladwin, D.T.; Smith, M.J.; Haass, S. Practical state estimation using Kalman filter methods for large-scale battery systems. Applied Energy 2021, 294, 117022. [Google Scholar] [CrossRef]
- Hasib, S.A.; Islam, S.; Chakrabortty, R.K.; Ryan, M.J.; Saha, D.K.; Ahamed, M.H.; Moyeen, S.I.; Das, S.K.; Ali, M.F.; Islam, M.R.; et al. A Comprehensive Review of Available Battery Datasets, RUL Prediction Approaches, and Advanced Battery Management. IEEE Access 2021, 9, 86166–86193. [Google Scholar] [CrossRef]
- Becherif, M.; Ramadan, H.S.; Benmouna, A.; Jemei, S. Initial state of charge estimation of battery using impedance measurement for electrical vehicle applications. Sustain. Energy Technol. Assess. 2022, 53, 102727. [Google Scholar] [CrossRef]
- Movassagh, K.; Raihan, A.; Balasingam, B.; Pattipati, K. A Critical Look at Coulomb Counting Approach for State of Charge Estimation in Batteries. Energies 2021, 14, 4074. [Google Scholar] [CrossRef]
- Zine, B.; Bia, H.; Benmouna, A.; Becherif, M.; Iqbal, M. Experimentally Validated Coulomb Counting Method for Battery State-of-Charge Estimation under Variable Current Profiles. Energies 2022, 15, 8172. [Google Scholar] [CrossRef]
- Claude, F.; Becherif, M.; Ramadan, H.S. Experimental validation for Li-ion battery modeling using Extended Kalman Filters. Int. J. Hydrogen Energy 2017, 42, 25509–25517. [Google Scholar] [CrossRef]
- Cui, Z.; Hu, W.; Zhang, G.; Zhang, Z.; Chen, Z. An extended Kalman filter based SOC estimation method for Li-ion battery. Energy Rep. 2022, 8, 81–87. [Google Scholar] [CrossRef]
- Sharma, P.; Bora, B.J. A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-Ion Batteries. Batteries 2023, 9, 13. [Google Scholar] [CrossRef]
- Ren, X.; Liu, S.; Yu, X.; Dong, X. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM. Energy 2021, 234, 121236. [Google Scholar] [CrossRef]
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Li, Y.; Guo, J.; Pedersen, K.; Gurevich, L.; Stroe, D.-I. Recent Health Diagnosis Methods for Lithium-Ion Batteries. Batteries 2022, 8, 72. [Google Scholar] [CrossRef]
- Arun Chendhuran, R.; Senthil Kumar, J. Review of Model-Based State-Of-Charge Estimation Methods for Batteries of Electric Vehicles. In Advances in Automation, Signal Processing, Instrumentation, and Control; Springer: Singapore, 2021; pp. 2619–2625. [Google Scholar]
- Adaikkappan, M.; Sathiyamoorthy, N. Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: A review. Int. J. Energy Res. 2022, 46, 2141–2165. [Google Scholar] [CrossRef]
- Widyantara, R.D.; Zulaikah, S.; Juangsa, F.B.; Budiman, B.A.; Aziz, M. Review on Battery Packing Design Strategies for Superior Thermal Management in Electric Vehicles. Batteries 2022, 8, 287. [Google Scholar] [CrossRef]
- Wang, N.; Garg, A.; Su, S.; Mou, J.; Gao, L.; Li, W. Echelon Utilization of Retired Power Lithium-Ion Batteries: Challenges and Prospects. Batteries 2022, 8, 96. [Google Scholar] [CrossRef]
- Abdelbaky, M.; Peeters, J.R.; Dewulf, W. On the influence of second use, future battery technologies, and battery lifetime on the maximum recycled content of future electric vehicle batteries in Europe. Waste Manag. 2021, 125, 1–9. [Google Scholar] [CrossRef]
- Andre, D.; Kim, S.-J.; Lamp, P.; Lux, S.F.; Maglia, F.; Paschos, O.; Stiaszny, B. Future generations of cathode materials: An automotive industry perspective. J. Mater. Chem. A 2015, 3, 6709–6732. [Google Scholar] [CrossRef]
- Fichtner, M.; Edström, K.; Ayerbe, E.; Berecibar, M.; Bhowmik, A.; Castelli, I.E.; Clark, S.; Dominko, R.; Erakca, M.; Franco, A.A.; et al. Rechargeable Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective. Adv. Energy Mater. 2022, 12, 2102904. [Google Scholar] [CrossRef]
- Mauler, L.; Duffner, F.; Zeier, W.G.; Leker, J. Battery cost forecasting: A review of methods and results with an outlook to 2050. Energy Environ. Sci. 2021, 14, 4712–4739. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, C.-g.; Yang, J.; Xue, S.-c.; Gao, H.-l.; Yan, X.-h.; Huo, Q.-y.; Wang, S.-w.; Cao, Y.; Yan, J.; et al. Advances and challenges in improvement of the electrochemical performance for lead-acid batteries: A comprehensive review. J. Power Sources 2022, 520, 230800. [Google Scholar] [CrossRef]
- Pawar, A.S.; Kolte, M.T. Charging Techniques of Lead–Acid Battery: State of the Art. In Planning of Hybrid Renewable Energy Systems, Electric Vehicles and Microgrid: Modeling, Control and Optimization; Part of the Book: Energy Systems in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2022; pp. 553–583. [Google Scholar]
- Yanamandra, K.; Pinisetty, D.; Daoud, A.; Gupta, N. Recycling of li-ion and lead acid batteries: A review. J. Indian Inst. Sci. 2022, 102, 281–295. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abbas, Q.; Shinde, P.A.; Abdelkareem, M.A. Rechargeable batteries: Technological advancement, challenges, current and emerging applications. Energy 2023, 266, 126408. [Google Scholar] [CrossRef]
- Calborean, A.; Bruj, O.; Morari, C. Leaf and hexagonal grid designs for lead-acid battery. An EIS analysis. J. Energy Storage 2022, 56, 105933. [Google Scholar] [CrossRef]
- Bhatt, J.M.; Ramana, P.V.; Mehta, J.R. Performance assessment of valve regulated lead acid battery for E–bike in field test. Mater. Today Proc. 2022, 49, 2058–2065. [Google Scholar] [CrossRef]
- Andújar, J.M.; Segura, F.; Rey, J.; Vivas, F.J. Batteries and Hydrogen Storage: Technical Analysis and Commercial Revision to Select the Best Option. Energies 2022, 15, 6196. [Google Scholar] [CrossRef]
- Pradhan, S.; Nayak, R.; Mishra, S. A review on the recovery of metal values from spent nickel metal hydride and lithium-ion batteries. Int. J. Environ. Sci. Technol. 2022, 19, 4537–4554. [Google Scholar] [CrossRef]
- Qin, R.; Pan, Y.; Duan, Z.; Su, H.; Ren, K.; Wang, W.; Li, Y.; Xi, N.; Wang, Y.; Zhang, L. Achieving High Stability and Rate Performance Using Spherical Nickel-Zinc Layered Double Hydroxide in Alkaline Solution. J. Electrochem. Soc. 2021, 168, 070539. [Google Scholar] [CrossRef]
- Ergashev, B.; Shadimetov, Y.; Musabekov, Z.; Uralova, H. Experimental study on the presence of cadmium in the atmospheric air and other elements of the ecosystem of Tashkent. In AIP Conference Proceedings; American Institute of Physics: Tashkent, Uzbekistan, 2020; p. 050007. [Google Scholar]
- Verma, V.; Kumar, S.; Manalastas Jr, W.; Satish, R.; Srinivasan, M. Progress in Rechargeable Aqueous Zinc- and Aluminum-Ion Battery Electrodes: Challenges and Outlook. Adv. Sustain. Syst. 2019, 3, 1800111. [Google Scholar] [CrossRef] [Green Version]
- Petrovic, S. Nickel–cadmium batteries. In Battery Technology Crash Course; Springer: Berlin/Heidelberg, Germany, 2021; pp. 73–88. [Google Scholar]
- Habib, A.K.M.A.; Motakabber, S.M.A.; Ibrahimy, M.I. A Comparative Study of Electrochemical Battery for Electric Vehicles Applications. In Proceedings of the 2019 IEEE International Conference on Power, Electrical, and Electronics and Industrial Applications (PEEIACON), Dhaka, Bangladesh, 29 November–1 December 2019; pp. 43–47. [Google Scholar]
- Yang, J.; Chen, J.; Wang, Z.; Wang, Z.; Zhang, Q.; He, B.; Zhang, T.; Gong, W.; Chen, M.; Qi, M.; et al. High-Capacity Iron-Based Anodes for Aqueous Secondary Nickel−Iron Batteries: Recent Progress and Prospects. ChemElectroChem 2021, 8, 274–290. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, L.; Yang, Y.-S.; Wen, Y.-H.; Cao, G.-P.; Wang, X.-D. Preliminary study of single flow zinc–nickel battery. Electrochem. Commun. 2007, 9, 2639–2642. [Google Scholar] [CrossRef]
- Anani, A.; Visintin, A.; Petrov, K.; Srinivasan, S.; Reilly, J.J.; Johnson, J.R.; Schwarz, R.B.; Desch, P.B. Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries. J. Power Sources 1994, 47, 261–275. [Google Scholar] [CrossRef]
- Arun, V.; Kannan, R.; Ramesh, S.; Vijayakumar, M.; Raghavendran, P.S.; Siva Ramkumar, M.; Anbarasu, P.; Sundramurthy, V.P. Review on Li-Ion Battery vs Nickel Metal Hydride Battery in EV. Adv. Mater. Sci. Eng. 2022, 2022, 7910072. [Google Scholar] [CrossRef]
- Chabane, D.; Iqbal, M.; Harel, F.; Djerdir, A.; Candusso, D.; Elkedim, O.; Fenineche, N.-e. Coupling a metal hydride tank with a PEMFC for vehicular applications: A simulations framework. Int. J. Energy Res. 2021, 45, 16511–16523. [Google Scholar] [CrossRef]
- Li, M.M.; Wang, C.C.; Yang, C.C. Development of high-performance hydrogen storage alloys for applications in nickel-metal hydride batteries at ultra-low temperature. J. Power Sources 2021, 491, 229585. [Google Scholar] [CrossRef]
- Iqbal, M.; Laurent, J.; Benmouna, A.; Becherif, M.; Ramadan, H.S.; Claude, F. Ageing-aware load following control for composite-cost optimal energy management of fuel cell hybrid electric vehicle. Energy 2022, 254, 124233. [Google Scholar] [CrossRef]
- Panwar, N.G.; Singh, S.; Garg, A.; Gupta, A.K.; Gao, L. Recent Advancements in Battery Management System for Li-Ion Batteries of Electric Vehicles: Future Role of Digital Twin, Cyber-Physical Systems, Battery Swapping Technology, and Nondestructive Testing. Energy Technol. 2021, 9, 2000984. [Google Scholar] [CrossRef]
- Thackeray, M.M. Exploiting the Spinel Structure for Li-ion Battery Applications: A Tribute to John B. Goodenough. Adv. Energy Mater. 2021, 11, 2001117. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Das, A.; Jishnu, N.; Raphael, L.R.; Joyner, J.D.; Ahn, J.-H.; Jabeen Fatima, M.; Prasanth, R. The Great History of Lithium-Ion Batteries and an Overview on Energy Storage Devices. In Electrospinning for Advanced Energy Storage Applications; Springer: Singapore, 2021; pp. 1–21. [Google Scholar]
- Wu, X.; Ma, L.; Liu, J.; Zhao, K.; Wood, D.L.; Du, Z. Understanding the effect of salt concentrations on fast charging performance of Li-ion cells. J. Power Sources 2022, 545, 231863. [Google Scholar] [CrossRef]
- Landa-Medrano, I.; Eguia-Barrio, A.; Sananes-Israel, S.; Porcher, W.; Trad, K.; Moretti, A.; Carvalho, D.V.; Passerini, S.; de Meatza, I. Insights into the Electrochemical Performance of 1.8 Ah Pouch and 18650 Cylindrical NMC:LFP|Si:C Blend Li-ion Cells. Batteries 2022, 8, 97. [Google Scholar] [CrossRef]
- Camargos, P.H.; dos Santos, P.H.J.; dos Santos, I.R.; Ribeiro, G.S.; Caetano, R.E. Perspectives on Li-ion battery categories for electric vehicle applications: A review of state of the art. Int. J. Energy Res. 2022, 46, 19258–19268. [Google Scholar] [CrossRef]
- Kumar, J.; Neiber, R.R.; Park, J.; Ali Soomro, R.; Greene, G.W.; Ali Mazari, S.; Young Seo, H.; Hong Lee, J.; Shon, M.; Wook Chang, D.; et al. Recent progress in sustainable recycling of LiFePO4-type lithium-ion batteries: Strategies for highly selective lithium recovery. Chem. Eng. J. 2022, 431, 133993. [Google Scholar] [CrossRef]
- Un, C.; Aydın, K. Thermal Runaway and Fire Suppression Applications for Different Types of Lithium Ion Batteries. Vehicles 2021, 3, 480–497. [Google Scholar] [CrossRef]
- Verma, A.; Prajapati, A.; Rakshit, D. A Comparative Study on Prismatic and Cylindrical Lithium-Ion Batteries based on their Performance in High Ambient Environment. J. Inst. Eng. (India) Ser. C 2022, 103, 149–166. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Sarang, K.; Lutkenhaus, J.; Verduzco, R. Side-Chain Engineering for High-Performance Conjugated Polymer Batteries. Adv. Funct. Mater. 2021, 31, 2009263. [Google Scholar] [CrossRef]
- Jia, M.; Bi, Z.; Guo, X. Ionic–electronic dual-conductive polymer modified LiCoO2 cathodes for solid lithium batteries. Chem. Commun. 2022, 58, 8638–8641. [Google Scholar] [CrossRef] [PubMed]
- Çalışır, D.; Ekici, S.; Midilli, A.; Karakoc, T.H. Benchmarking environmental impacts of power groups used in a designed UAV: Hybrid hydrogen fuel cell system versus lithium-polymer battery drive system. Energy 2023, 262, 125543. [Google Scholar] [CrossRef]
- Biswas, P.K.; Liyanage, A.A.H.; Jadhav, M.; Agarwal, M.; Dalir, H. Higher strength carbon fiber lithium-ion polymer battery embedded multifunctional composites for structural applications. Polym. Compos. 2022, 43, 2952–2962. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, Y.; Zhou, J.; Liu, J.; Shen, X.; Ji, H.; Yan, C.; Qian, T. Processing robust lithium metal anode for high-security batteries: A minireview. Energy Storage Mater. 2022, 47, 122–133. [Google Scholar] [CrossRef]
- He, K.; Yuan, Y.; Yao, W.; You, K.; Dahbi, M.; Alami, J.; Amine, K.; Shahbazian-Yassar, R.; Lu, J. Atomistic Insights of Irreversible Li+ Intercalation in MnO2 Electrode. Angew. Chem. Int. Ed. 2022, 134, e202113420. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Recent Advances in Wearable Optical Sensor Automation Powered by Battery versus Skin-like Battery-Free Devices for Personal Healthcare—A Review. Nanomaterials 2022, 12, 334. [Google Scholar] [CrossRef]
- Lei, S.; Liu, Z.; Liu, C.; Li, J.; Lu, B.; Liang, S.; Zhou, J. Opportunities for biocompatible and safe zinc-based batteries. Energy Environ. Sci. 2022, 15, 4911–4927. [Google Scholar] [CrossRef]
- Hu, J.; Lai, C.; Chen, K.; Wu, Q.; Gu, Y.; Wu, C.; Li, C. Dual fluorination of polymer electrolyte and conversion-type cathode for high-capacity all-solid-state lithium metal batteries. Nat. Commun. 2022, 13, 7914. [Google Scholar] [CrossRef]
- Yang, J.S.; Min, J.K.; Yang, C.; Jung, K. Numerical study of natural convection heat transfer of vertical cylinder with multiple lateral baffles in square enclosure for sodium beta-alumina batteries. Int. Commun. Heat Mass Transf. 2022, 134, 106037. [Google Scholar] [CrossRef]
- Fertig, M.P.; Skadell, K.; Schulz, M.; Dirksen, C.; Adelhelm, P.; Stelter, M. From High- to Low-Temperature: The Revival of Sodium-Beta Alumina for Sodium Solid-State Batteries. Batter. Supercaps 2022, 5, e202100131. [Google Scholar] [CrossRef]
- Soni, C.B.; Sungjemmenla; Vineeth, S.K.; Kumar, V. Challenges in regulating interfacial-chemistry of the sodium-metal anode for room-temperature sodium-sulfur batteries. Energy Storage 2022, 4, e264. [Google Scholar] [CrossRef]
- Zhu, M.; Li, L.; Zhang, Y.; Wu, K.; Yu, F.; Huang, Z.; Wang, G.; Li, J.; Wen, L.; Liu, H.-K.; et al. An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte. Energy Storage Mater. 2021, 42, 145–153. [Google Scholar] [CrossRef]
- Eng, A.Y.S.; Kumar, V.; Zhang, Y.; Luo, J.; Wang, W.; Sun, Y.; Li, W.; Seh, Z.W. Room-temperature sodium–sulfur batteries and beyond: Realizing practical high energy systems through anode, cathode, and electrolyte engineering. Adv. Energy Mater. 2021, 11, 2003493. [Google Scholar] [CrossRef]
- Jeon, J.W.; Kim, D.-M.; Lee, J.; Kim, M.S.; Jeon, M.H.; Malpass-Evans, R.; McKeown, N.B.; Lee, K.T.; Kim, B.G. Shuttle-effect-free sodium–sulfur batteries derived from a Tröger’s base polymer of intrinsic microporosity. J. Power Sources 2021, 513, 230539. [Google Scholar] [CrossRef]
- Asghar, R.; Ullah, K.; Ullah, Z.; Waseem, A.; Ali, N.; Zeb, K. Assessment of the Performance and Shortcomings of Common Electric Vehicle Battery Technologies. In Proceedings of the 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Kuala Lumpur, Malaysia, 12–13 June 2021; pp. 1–6. [Google Scholar]
- Solyali, D.; Safaei, B.; Zargar, O.; Aytac, G. A comprehensive state-of-the-art review of electrochemical battery storage systems for power grids. Int. J. Energy Res. 2022, 46, 17786–17812. [Google Scholar] [CrossRef]
- Verma, J.; Kumar, D. Metal-ion batteries for electric vehicles: Current state of the technology, issues and future perspectives. Nanoscale Adv. 2021, 3, 3384–3394. [Google Scholar] [CrossRef] [PubMed]
- Au, H.; Crespo-Ribadeneyra, M. Polymers in Sodium-Ion Batteries. In Sodium-Ion Batteries: Materials, Characterization, and Technology; Wiley Online Library: Hoboken, NJ, USA, 2022; Volume 1, pp. 429–499. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, L.; Jiang, H.; Liu, Y.; Meng, C. Polyaniline-expanded the interlayer spacing of hydrated vanadium pentoxide by the interface-intercalation for aqueous rechargeable Zn-ion batteries. J. Colloid Interface Sci. 2021, 603, 641–650. [Google Scholar] [CrossRef]
- Yang, J.; Yao, G.; Li, Z.; Zhang, Y.; Wei, L.; Niu, H.; Chen, Q.; Zheng, F. Highly Flexible K-Intercalated MnO2/Carbon Membrane for High-Performance Aqueous Zinc-Ion Battery Cathode. Small 2022, 19, 2205544. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, Q.; Dong, S.; Wang, S. An aqueous zinc pyrovanadate nanowire cathode doped by nitrogen-doped carbon from PANI calcination for capacity and stability enhancement. Ionics 2022, 28, 295–305. [Google Scholar] [CrossRef]
- Olabi, A.G.; Sayed, E.T.; Wilberforce, T.; Jamal, A.; Alami, A.H.; Elsaid, K.; Rahman, S.M.; Shah, S.K.; Abdelkareem, M.A. Metal-Air Batteries—A Review. Energies 2021, 14, 7373. [Google Scholar] [CrossRef]
- Peng, X.; Li, T.; Zhong, L.; Lu, J. Flexible metal–air batteries: An overview. SmartMat 2021, 2, 123–126. [Google Scholar] [CrossRef]
- Wang, L.; Snihirova, D.; Deng, M.; Vaghefinazari, B.; Xu, W.; Höche, D.; Lamaka, S.V.; Zheludkevich, M.L. Sustainable aqueous metal-air batteries: An insight into electrolyte system. Energy Storage Mater. 2022, 52, 573–597. [Google Scholar] [CrossRef]
- Linden, D. Handbook of batteries. Fuel Energy Abstr. 2015, 4, 265. [Google Scholar]
- Lee, J.-S.; Tai Kim, S.; Cao, R.; Choi, N.-S.; Liu, M.; Lee, K.T.; Cho, J. Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air. Adv. Energy Mater. 2011, 1, 34–50. [Google Scholar] [CrossRef]
- Leong, K.W.; Wang, Y.; Ni, M.; Pan, W.; Luo, S.; Leung, D.Y.C. Rechargeable Zn-air batteries: Recent trends and future perspectives. Renew. Sustain. Energy Rev. 2022, 154, 111771. [Google Scholar] [CrossRef]
- Abraham, K.M. A Brief History of Non-Aqueous Metal-Air Batteries. ECS Trans. 2008, 3, 67. [Google Scholar] [CrossRef]
- De Geeter, E.; Mangan, M.; Spaepen, S.; Stinissen, W.; Vennekens, G. Alkaline fuel cells for road traction. J. Power Sources 1999, 80, 207–212. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Goh, K.; Zhao, L.; Sui, X.-L.; Gong, X.-F.; Cai, J.-J.; Zhou, Q.-Y.; Zhang, H.-D.; Li, L.; Kong, F.-R. Advanced non-noble materials in bifunctional catalysts for ORR and OER toward aqueous metal–air batteries. Nanoscale 2020, 12, 21534–21559. [Google Scholar] [CrossRef]
- Boaretto, N.; Garbayo, I.; Valiyaveettil-SobhanRaj, S.; Quintela, A.; Li, C.; Casas-Cabanas, M.; Aguesse, F. Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing. J. Power Sources 2021, 502, 229919. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, T.; Tian, H.; Su, D.; Zhang, Q.; Wang, G. Advances in lithium–sulfur batteries: From academic research to commercial viability. Adv. Mater. 2021, 33, 2003666. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lampkin, J.; Chien, Y.-C.; Furness, L.; Brandell, D.; Lacey, M.J.; Garcia-Araez, N. Operando characterization of active surface area and passivation effects on sulfur-carbon composites for lithium-sulfur batteries. Electrochim. Acta 2022, 403, 139572. [Google Scholar] [CrossRef]
- Bonnick, P.; Muldoon, J. Chapter 10—Future prospects for lithium-sulfur batteries: The criticality of solid electrolytes. In Lithium-Sulfur Batteries; Kumta, P.N., Hepp, A.F., Datta, M.K., Velikokhatnyi, O.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 327–351. [Google Scholar] [CrossRef]
- Wang, E. Characterizing Mass Transport and Crossover Reactions in Li-Air Batteries; University of Cambridge: Cambridge, UK, 2022. [Google Scholar]
- Iqbal, M.; Benmouna, A.; Eltoumi, F.; Claude, F.; Becherif, M.; Ramadan, H.S. Cooperative Operation of Parallel Connected Boost Converters for Low Voltage-High Power Applications: An Experimental Approach. Energy Procedia 2019, 162, 349–358. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, S.; Han, X.; Lu, L.; Li, W.; Zhang, F.; Ouyang, M. Toward more realistic microgrid optimization: Experiment and high-efficient model of Li-ion battery degradation under dynamic conditions. eTransportation 2022, 14, 100200. [Google Scholar] [CrossRef]
- Bairwa, B.L.; Pareek, K.; Hampannavar, S.k. Investigation on lithium ion battery equivalent circuit models for dynamic load profiles. Energy Storage 2021, 3, e231. [Google Scholar] [CrossRef]
- Bruch, M.; Millet, L.; Kowal, J.; Vetter, M. Novel method for the parameterization of a reliable equivalent circuit model for the precise simulation of a battery cell's electric behavior. J. Power Sources 2021, 490, 229513. [Google Scholar] [CrossRef]
- Pratap Singh, S.; Prakash Singh, P.; Niwas Singh, S.; Tiwari, P. State of charge and health estimation of batteries for electric vehicles applications: Key issues and challenges. Glob. Energy Interconnect. 2021, 4, 145–157. [Google Scholar] [CrossRef]
- Barletta, G.; DiPrima, P.; Papurello, D. Thévenin’s Battery Model Parameter Estimation Based on Simulink. Energies 2022, 15, 6207. [Google Scholar] [CrossRef]
- Li, D.; Wang, L.; Duan, C.; Li, Q.; Wang, K. Temperature prediction of lithium-ion batteries based on electrochemical impedance spectrum: A review. Int. J. Energy Res. 2022, 46, 10372–10388. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, K.; Zhu, C.; Zhang, X.; Zhang, D. Co-Estimation of State-of-Charge and State-of- Health for Lithium-Ion Batteries Using an Enhanced Electrochemical Model. IEEE Trans. Ind. Electron. 2022, 69, 2684–2696. [Google Scholar] [CrossRef]
- Pozzi, A.; Ciaramella, G.; Volkwein, S.; Raimondo, D.M. Optimal Design of Experiments for a Lithium-Ion Cell: Parameters Identification of an Isothermal Single Particle Model with Electrolyte Dynamics. Ind. Eng. Chem. Res. 2019, 58, 1286–1299. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Yin, Y.; Bi, Y.; Choe, S.-Y. A control oriented reduced order electrochemical model considering variable diffusivity of lithium ions in solid. J. Power Sources 2020, 468, 228322. [Google Scholar] [CrossRef]
- Li, C.; Cui, N.; Wang, C.; Zhang, C. Reduced-order electrochemical model for lithium-ion battery with domain decomposition and polynomial approximation methods. Energy 2021, 221, 119662. [Google Scholar] [CrossRef]
- Li, C.; Cui, N.; Wang, C.; Zhang, C. Simplified electrochemical lithium-ion battery model with variable solid-phase diffusion and parameter identification over wide temperature range. J. Power Sources 2021, 497, 229900. [Google Scholar] [CrossRef]
- Sui, X.; He, S.; Vilsen, S.B.; Meng, J.; Teodorescu, R.; Stroe, D.-I. A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery. Appl. Energy 2021, 300, 117346. [Google Scholar] [CrossRef]
- Manoharan, A.; Begam, K.M.; Aparow, V.R.; Sooriamoorthy, D. Artificial Neural Networks, Gradient Boosting and Support Vector Machines for electric vehicle battery state estimation: A review. J. Energy Storage 2022, 55, 105384. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, L.; Li, Q.; Wang, K. A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network. Int. J. Energy Res. 2022, 46, 5423–5440. [Google Scholar] [CrossRef]
- Wei, Y.; Han, T.; Wang, S.; Qin, Y.; Lu, L.; Han, X.; Ouyang, M. An efficient data-driven optimal sizing framework for photovoltaics-battery-based electric vehicle charging microgrid. J. Energy Storage 2022, 55, 105670. [Google Scholar] [CrossRef]
- Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 2019, 4, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, K.; Liu, X.; Wang, Y.; Zhang, L. Lithium-ion battery capacity estimation—A pruned convolutional neural network approach assisted with transfer learning. Appl. Energy 2021, 285, 116410. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, R.; Shen, W.; Lu, J.; Yang, X.-G. Deep neural network battery charging curve prediction using 30 points collected in 10 min. Joule 2021, 5, 1521–1534. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, R.; Shen, W.; Lu, J. State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach. Appl. Energy 2021, 291, 116812. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Chen, Z. A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries. Appl. Energy 2014, 135, 81–87. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, X.; Tomaszewska, A.; Chen, H.; Wei, Y.; Zhu, H.; Li, Y.; Cui, Z.; Huang, J.; Du, J.; et al. Lithium-ion batteries under pulsed current operation to stabilize future grids. Cell Rep. Phys. Sci. 2022, 3, 100708. [Google Scholar] [CrossRef]
- Ng, M.-F.; Zhao, J.; Yan, Q.; Conduit, G.J.; Seh, Z.W. Predicting the state of charge and health of batteries using data-driven machine learning. Nat. Mach. Intell. 2020, 2, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Klintberg, A.; Zou, C.; Fridholm, B.; Wik, T. Kalman filter for adaptive learning of two-dimensional look-up tables applied to OCV-curves for aged battery cells. Control. Eng. Pract. 2019, 84, 230–237. [Google Scholar] [CrossRef]
- Huang, C.W.; Lin, Y.C.; Lin, H.Y.; Hsu, S.H. Residual Capacity Estimation for Battery Energy Storage of Micro Grid with an Adaptive Coulomb-Counting Method. In Proceedings of the 2022 IEEE International Conference on Power Systems Technology (POWERCON), Kuala Lumpur, Malaysia, 12–14 September 2022; pp. 1–5. [Google Scholar]
- Iqbal, M. Design and Control of Hybrid Electric Vehicle for Efficient Urban Use; Université Bourgogne Franche-Comté: Dijon, France, 2022. [Google Scholar]
- Jiang, C.; Wang, S.; Wu, B.; Fernandez, C.; Xiong, X.; Coffie-Ken, J. A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter. Energy 2021, 219, 119603. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Zhang, Z.; Lin, H.; Zeng, Y.; Gao, M. A Hybrid Method for State-of-Charge Estimation for Lithium-Ion Batteries Using a Long Short-Term Memory Network Combined with Attention and a Kalman Filter. Energies 2022, 15, 6745. [Google Scholar] [CrossRef]
- Tang, X.; Liu, K.; Wang, X.; Gao, F.; Macro, J.; Widanage, W.D. Model Migration Neural Network for Predicting Battery Aging Trajectories. IEEE Trans. Transp. Electrif. 2020, 6, 363–374. [Google Scholar] [CrossRef]
- Chen, Y.; He, Y.; Li, Z.; Chen, L.; Zhang, C. Remaining Useful Life Prediction and State of Health Diagnosis of Lithium-Ion Battery Based on Second-Order Central Difference Particle Filter. IEEE Access 2020, 8, 37305–37313. [Google Scholar] [CrossRef]
- Ramadan, H.S.; Iqbal, M.; Becherif, M.; Haes Alhelou, H. Efficient control and multi-criteria energy scheduling of renewable-based utility grid via pareto-metaheuristic optimizers. IET Renew. Power Gener. 2022, 16, 1246–1266. [Google Scholar] [CrossRef]
- Ali, M.U.; Habib, B.; Iqbal, M. Fixed Head Short Term Hydro Thermal Scheduling using Improved Particle Swarm Optimization. Nucleus 2015, 52, 107–114. [Google Scholar]
- Wang, Y.; Han, X.; Guo, D.; Lu, L.; Chen, Y.; Ouyang, M. Physics-Informed Recurrent Neural Networks with Fractional-Order Constraints for the State Estimation of Lithium-Ion Batteries. Batteries 2022, 8, 148. [Google Scholar] [CrossRef]
- Song, Y.; Liu, D.; Liao, H.; Peng, Y. A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries. Appl. Energy 2020, 261, 114408. [Google Scholar] [CrossRef]
- Cai, L.; Meng, J.; Stroe, D.I.; Peng, J.; Luo, G.; Teodorescu, R. Multiobjective Optimization of Data-Driven Model for Lithium-Ion Battery SOH Estimation With Short-Term Feature. IEEE Trans. Power Electron. 2020, 35, 11855–11864. [Google Scholar] [CrossRef]
- Yalçın, S.; Panchal, S.; Herdem, M.S. A CNN-ABC model for estimation and optimization of heat generation rate and voltage distributions of lithium-ion batteries for electric vehicles. Int. J. Heat Mass Transf. 2022, 199, 123486. [Google Scholar] [CrossRef]
- Pang, H.; Wu, L.; Liu, J.; Liu, X.; Liu, K. Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions. J. Energy Chem. 2023, 78, 1–12. [Google Scholar] [CrossRef]
- Wei, Y.; Yao, Y.; Pang, K.; Xu, C.; Han, X.; Lu, L.; Li, Y.; Qin, Y.; Zheng, Y.; Wang, H.; et al. A Comprehensive Study of Degradation Characteristics and Mechanisms of Commercial Li(NiMnCo)O2 EV Batteries under Vehicle-To-Grid (V2G) Services. Batteries 2022, 8, 188. [Google Scholar] [CrossRef]
Battery Technologies | Key Performance Indicators | |||||||
---|---|---|---|---|---|---|---|---|
Generation | Family | Mention | Specific Energy (Wh/kg) | Specific Power (W/kg) | Cycles (×100) | Efficiency(%) | Memory Effect | Self-Discharge (%/Month) |
Traditional | Lead (Pb)-acid | L (30–50) | M (80–160) | L (3–5) | L (~75) | L | L-M | |
Nickel-based | Ni-Cd | L (35–80) | M (120–150) | H (8–20) | L m (~80) | H | M-H | |
Ni-MH | M (60–120) | H (150–450) | M (3–15) | M (~85) | H | H | ||
Current | Li-based | Li-ion (LFP) | H (120–200) | H (180–220) | VH (20–80) | H (~92) | VL | L |
Li-ion (NMC) | H (150–220) | H (180–270) | H (20–25) | H (~94) | VL | L | ||
Li-ion (LTO) | M (60–110) | ~VH | VH (40–90) | VH (~95) | VL | VL | ||
Li-poly (LCO) | H (120–220) | H (220–330) | H (10–22) | H (~92) | VL | L | ||
Li-metal (LMO) | VH (250–360) | H (160–230) | ~VH | VH (~95) | VL | VL | ||
Future | Solid-state (Li-S) | VH (~450) | ~H | M (~15) | M-H (~87) | - | H | |
Solid-state (Li-O2) | Ex (~5000) | ~M | L (~5) | L (~75) | - | VL | ||
Metal-air | Zn-air (Zn-O2) | VH (~450) | ~M | M (3–10) | H (~90) | - | VL | |
Na-beta | Na-S | H (115–200) | M (120–180) | H (8–30) | M (~85) | - | L-M | |
Metal-ion | Na-ion | H (100–160) | ~VH | H (5–20) | VH (~95) | VL | L |
Battery Technologies | Key Design Markers | ||||||||
---|---|---|---|---|---|---|---|---|---|
Gener-ation | Family | Mention | Cost (EUR /kWh) § | Operating Range (°C) | Toxicity /Hazards | Overcharge Tolerance @ | Abundance &/Mining | Recycling (Level) | Technical Maturity |
Tradit-ional | Lead (Pb)-acid | L-M (~255) | A (−20–+45) | H/F/P/C | H | N/N-T | S (Cp) | H | |
Nickel-based | Ni-Cd | M (~540) | A (0–+50) | H/P/C | M-H | N/N | S (Pa) | H | |
Ni-MH | ~M-H | A (0–+50) | L/C | L-M | N/N | N (Pa) | M | ||
Current | Li-based | Li-ion (LFP) | M (~425) | A (−20–+40) | L/F/C | L | N/N | N (Pa) | M |
Li-ion (NMC) | H (~985) | A (−20–+50) | M/F +/C | L | L/N-T | T (Pa) | M | ||
Li-ion (LTO) | M-H (~625) | E (−40–+60) | L | L | L/N-T | T (Pa) | L-M | ||
Li-poly (LCO) | ~M-H | A (−20–+45) | M/F +/C | L | L/N-T | T (Pa) | M | ||
Li-metal (LMO) | ~M | E (−40–+85) | L/F | - | N/N | - | L-M | ||
Future | Solid-state (Li-S) | ~L-M | E (−20–+70) | L/C | L | H/N | T (Pa) | L | |
Solid-state (Li-O2) | ~L-M | E (−50–+90) | L/C | - | H/N | - | L | ||
Metal-air | Zn-air (Zn-O2) | ~L | E (−20–+70) | L/C | - | H/N | N (Pa) | L | |
Na-beta | Na-S | ~L | Ht (+270–+350) | L/F */C | - | H/N | T (Pa) | L-M | |
Metal-ion | Na-ion | ~L | A (−20–+50) | L/F + | L-M | H/N | T (Pa/Cp) | L-M |
Technique | Complexity | Computation | Precision | Analysis | Maturity | Application for BMS |
---|---|---|---|---|---|---|
Electrical | L | L-M | M | H | H | Power and SoC |
Electrochemical | H | M-H | M-H | M | M-H | Design and understanding |
Data-driven | M | M-H | H | L | L | SoC, SoH, etc. |
State Estimators | Qualitative Indicators | |||||
---|---|---|---|---|---|---|
Implementation Level/Cost/App. | Data Required Training/Initial | Sensor Noise | Model Dependency | Precision | ||
Method | Mention | |||||
Simplistic | Lookup table | E/L/On | N/Y | S | N (Y *) | L-M |
Integrator | ||||||
Internal Ω and EIS | ||||||
Filters | Kalman and particle | M-H/M-H/On | N/N | NS | Y | M-H |
Data-driven | Neural network | M-H/H/Of + | Y/N | NS | N | H |
Vector machines | ||||||
Fuzzy inference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, M.; Benmouna, A.; Becherif, M.; Mekhilef, S. Survey on Battery Technologies and Modeling Methods for Electric Vehicles. Batteries 2023, 9, 185. https://doi.org/10.3390/batteries9030185
Iqbal M, Benmouna A, Becherif M, Mekhilef S. Survey on Battery Technologies and Modeling Methods for Electric Vehicles. Batteries. 2023; 9(3):185. https://doi.org/10.3390/batteries9030185
Chicago/Turabian StyleIqbal, Mehroze, Amel Benmouna, Mohamed Becherif, and Saad Mekhilef. 2023. "Survey on Battery Technologies and Modeling Methods for Electric Vehicles" Batteries 9, no. 3: 185. https://doi.org/10.3390/batteries9030185
APA StyleIqbal, M., Benmouna, A., Becherif, M., & Mekhilef, S. (2023). Survey on Battery Technologies and Modeling Methods for Electric Vehicles. Batteries, 9(3), 185. https://doi.org/10.3390/batteries9030185