Fast Ion Transfer Associated with Dehydration and Modulation of Hydration Structure in Electric Double-Layer Capacitors Using Molecular Dynamics Simulations and Experiments
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Performance of EDLCs Containing Aqueous Electrolyte and Graphene
3.2. Ion Dynamics in MD Simulations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Commission on Environment and Development. Our Common Future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afif, A.; Rahman, S.M.H.; Tasfiah Azad, A.; Zaini, J.; Islan, M.A.; Azad, A.K. Advanced materials and technologies for hybrid supercapacitors for energy storage—A review. J. Energy Storage 2019, 25, 100852. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Capacitive Energy Storage in Nanostructured Carbon-Electrolyte Systems. Acc. Chem. Res. 2012, 46, 1094–1103. [Google Scholar] [CrossRef]
- Takamatsu, H.; Khan, M.S.; Araki, T.; Urita, C.; Urita, K.; Ohba, T. Sequential and simultaneous ion transfer into carbon nanopores during charge–discharge cycles in electrical double layer capacitors. Sustain. Energy Fuels 2022, 6, 2001–2009. [Google Scholar] [CrossRef]
- Ohba, T. Fast Ion Transportation Associated with Recovering Hydration Shells in a Nanoelectrolyte between Conical Carbon Nanopores during Charging Cycles. J. Phys. Chem. C 2017, 121, 10439–10444. [Google Scholar] [CrossRef]
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262. [Google Scholar] [CrossRef]
- Sato, T.; Masuda, G.; Takagi, K. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim. Act. 2004, 49, 3603–3611. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M. Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon 2004, 42, 2929–2937. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, T.; Yang, X.; Zhang, L.; Leng, K.; Huang, Y.; Chen, Y. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ. Sci. 2013, 6, 1623–1632. [Google Scholar] [CrossRef]
- Tanabe, Y.; Ito, Y.; Sugawara, K.; Koshino, M.; Kimura, S.; Naito, T.; Johnson, I.; Takahashi, T.; Chen, M. Dirac Fermion Kinetics in 3D Curved Graphene. Adv. Mater. 2020, 32, 2005838. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-C.; Ye, J.; Jiang, G.; Ni, K.; Shu, N.; Taberna, P.-L.; Zhu, Y.; Simon, P. Electrochemical Characterization of Single Layer Graphene/Electrolyte Interface: Effect of Solvent on the Interfacial Capacitance. Angew. Chem. Int. Ed. 2021, 60, 13317–13322. [Google Scholar] [CrossRef]
- Ke, Q.; Liu, Y.; Liu, H.; Zhang, Y.; Hu, Y.; Wang, J. Surfactant-modified chemically reduced graphene oxide for electrochemical supercapacitors. RSC Adv. 2014, 4, 26398–26406. [Google Scholar] [CrossRef]
- Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes—A review. J. Mater. 2016, 2, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Elliott, J.D.; Papaderakis, A.A.; Dryfe, R.A.W.; Carbone, P. The electrochemical double layer at the graphene/aqueous electrolyte interface: What we can learn from simulations, experiments, and theory. J. Mater. Chem. C 2022, 10, 15225–15262. [Google Scholar] [CrossRef]
- Liang, M.; Luo, B.; Zhi, L. Application of graphene and graphene-based materials in clean energy-related devices. Int. J. Energy Res. 2009, 33, 1161–1170. [Google Scholar] [CrossRef]
- Cai, M.; Outlaw, R.A.; Quinlan, R.A.; Premathilake, D.; Butler, S.M.; Miller, J.R. Fast Response, Vertically Oriented Graphene Nanosheet Electric Double Layer Capacitors Synthesized from C2H2. ACS Nano 2014, 8, 5873–5882. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Mechanical properties of graphene and graphene-based nanocomposites. Progress Mater. Sci. 2017, 90, 75–127. [Google Scholar] [CrossRef]
- Fukaya, Y.; Entani, S.; Sakai, S.; Mochizuki, I.; Wada, K.; Hyodo, T.; Shamoto, S.-I. Spacing between graphene and metal substrates studied with total-reflection high-energy positron diffraction. Carbon 2016, 103, 1–4. [Google Scholar] [CrossRef]
- Lecce, V.D.; Gnudi, A.; Gnani, E.; Reggiani, S.; Baccarani, G. Simulations of Graphene Base Transistors with Improved Graphene Interface Model. IEEE Electron Device Lett. 2015, 36, 969–971. [Google Scholar] [CrossRef]
- Fathzadeh, M.; Fahrvandi, H.; Nadimi, E. Electronic properties of graphene-ZnO interface: A density functional theory investigation. Nanotechnology 2020, 31, 025710. [Google Scholar] [CrossRef]
- Varma, S.; Rempe, S.B. Coordination numbers of alkali metal ions in aqueous solutions. Biophys. Chem. 2006, 124, 192–199. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, Y.; Wang, J.; Lin, J.; Sun, X.; Mao, S. The effect of various electrolyte cations on electrochemical performance of polypyrrole/RGO based supercapacitors. Phys. Chem. Chem. Phys. 2015, 17, 28666–28673. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Zhou, Y.; Li, Y.; Li, C.; Peng, H.; Zhang, J.; Liu, Z.; Dai, L.; Shi, G. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci. Rep. 2013, 3, 2248. [Google Scholar] [CrossRef] [Green Version]
- Shao, Q.; Huang, L.; Zhou, J.; Lu, L.; Zhang, L.; Lu, X.; Jiang, S.; Gubbins, K.E.; Shen, W. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes. Phys. Chem. Chem. Phys. 2008, 10, 1896–1906. [Google Scholar] [CrossRef]
- Doll, J.J.; Steele, W.A. The physical interaction of gases with crystalline solids: III. Heat capacity and the localized-to-mobile transition. Surf. Sci. 1974, 44, 449–462. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. A.03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [Green Version]
- Kitayama, H.; Shimizu, K.; Ohba, T. Graphene-laminated architectures obtained by chemical vapor deposition: From graphene to graphite. Chem. Phys. Lett. 2017, 687, 303–306. [Google Scholar] [CrossRef]
- Faraezi, S.; Khan, M.S.; Ohba, T. Dehydration of Cations Inducing Fast Ion Transfer and High Electrical Capacitance Performance on Graphene Electrode in Aqueous Electrolytes. Ind. Eng. Chem. Res. 2020, 59, 5768–5774. [Google Scholar] [CrossRef]
- Kitayama, H.; Ekayev, M.C.; Ohba, T. Piezoresistive and chemiresistive gas sensing by metal-free graphene layers. Phys. Chem. Chem. Phys. 2020, 22, 3089–3096. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Zhao, X.; Qiao, Z.; Jung, J.; Zhu, Y.; Lu, Y.; Zhang, L.L.; MacDonald, A.H.; Ruoff, R.S. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 2014, 5, 3317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, J.-H.; Liu, J.-Y.; Li, Q.; Li, M.-G.; Zeng, Z.-C.; Hu, S.; Wu, D.-Y.; Cai, W.; Ren, B. Interfacial capacitance of graphene: Correlated differential capacitance and in situ electrochemical Raman spectroscopy study. Electrochim. Act. 2013, 110, 754–761. [Google Scholar] [CrossRef]
- Qorbani, M.; Esfandiar, A.; Mehdipour, H.; Chaigneau, M.; Irajizad, A.; Moshfegh, A.Z. Shedding Light on Pseudocapacitive Active Edges of Single-Layer Graphene Nanoribbons as High-Capacitance Supercapacitors. ACS Appl. Energy Mater. 2019, 2, 3665–3675. [Google Scholar] [CrossRef]
- Zou, Y.; Walton, A.S.; Kinloch, I.A.; Dryfe, R.A. Investigation of the Differential Capacitance of Highly Ordered Pyrolytic Graphite as a Model Material of Graphene. Langmuir 2016, 32, 11448–11455. [Google Scholar] [CrossRef] [Green Version]
- Ohba, T. Water Assistance in Ion Transfer during Charge and Discharge Cycles. J. Phys. Chem. C 2015, 119, 15185–15194. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasumi, S.; Iwakami, S.; Sasaki, Y.; Faraezi, S.; Khan, M.S.; Ohba, T. Fast Ion Transfer Associated with Dehydration and Modulation of Hydration Structure in Electric Double-Layer Capacitors Using Molecular Dynamics Simulations and Experiments. Batteries 2023, 9, 212. https://doi.org/10.3390/batteries9040212
Hasumi S, Iwakami S, Sasaki Y, Faraezi S, Khan MS, Ohba T. Fast Ion Transfer Associated with Dehydration and Modulation of Hydration Structure in Electric Double-Layer Capacitors Using Molecular Dynamics Simulations and Experiments. Batteries. 2023; 9(4):212. https://doi.org/10.3390/batteries9040212
Chicago/Turabian StyleHasumi, Shunsuke, Sogo Iwakami, Yuto Sasaki, Sharifa Faraezi, Md Sharif Khan, and Tomonori Ohba. 2023. "Fast Ion Transfer Associated with Dehydration and Modulation of Hydration Structure in Electric Double-Layer Capacitors Using Molecular Dynamics Simulations and Experiments" Batteries 9, no. 4: 212. https://doi.org/10.3390/batteries9040212
APA StyleHasumi, S., Iwakami, S., Sasaki, Y., Faraezi, S., Khan, M. S., & Ohba, T. (2023). Fast Ion Transfer Associated with Dehydration and Modulation of Hydration Structure in Electric Double-Layer Capacitors Using Molecular Dynamics Simulations and Experiments. Batteries, 9(4), 212. https://doi.org/10.3390/batteries9040212