Switched Discharge Device for Enhanced Energy Extraction from Li-Ion 18650
Abstract
:1. Introduction
2. Materials and Methods
2.1. SOC and Impedance Measurement
2.2. Nyquist Plot Analysis
2.3. SWD Device
2.4. Discharge Setups
3. Results
3.1. SOC and Impedance Measurements Results
3.2. Pulsed Discharge Mode
3.3. Switched Discharge Mode
4. Discussion
4.1. Energy Loss during Switching
4.2. Energy Surplus Delivery
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Detailed Electronics Schematic of SWD
Nr. | Operating Mode | T1 | T2 | Jumper (Figure A1) |
---|---|---|---|---|
1 | Charge | ON | ON | J3ON, J6OFF |
2 | Continuous discharge | ON | ON | J3OFF, J6ON |
3 | Pulsed/switched discharge;dead-time = 2 µS | OFF-ON-OFF | ON-OFF-ON | J3OFF, J4ON, J6ON |
Appendix B. The Nyquist Plot of A1 versus SOC
References
- Keil, P.; Jossen, A. Aging of Lithium-Ion Batteries in Electric Vehicles: Impact of Regenerative Braking. World Electr. Veh. J. 2015, 7, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Wikner, E. Lithium Ion Battery Aging: Battery Lifetime Testing and Physics-Based Modeling for Electric Vehicle Applications. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2017. [Google Scholar]
- Jiang, J.; Zhang, C. Fundamentals of Applications of Lithium-Ion Batteries in Electric Drive Vehicles; John Wiley & Sons: Singapore, 2015; pp. 82–92. [Google Scholar]
- Huang, X.; Li, Y.; Acharya, A.B.; Sui, X.; Meng, J.; Teodorescu, R.; Stroe, D.-I. A Review of Pulsed Current Technique for Lithium-ion Batteries. Energies 2020, 13, 2458. [Google Scholar] [CrossRef]
- Benini, L.; Bruni, D.; Mach, A.; Macii, E.; Poncino, M. Discharge current steering for battery lifetime optimization. IEEE Trans. Comput. 2003, 522, 985–995. [Google Scholar] [CrossRef]
- DuBeshter, T.; Jorne, J. Pulse Polarization for Li-Ion Battery under Constant State of Charge: Part I. Pulse Discharge Experiments. J. Electrochem. Soc. 2017, 164, E3539. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, X.; Tomaszewska, A.; Chen, H.; Wei, Y.; Zhu, H.; Li, Y.; Cui, Z.; Huang, J.; Du, J.; et al. Lithium-ion batteries under pulsed current operation to stabilize future grids. Cell Rep. Phys. Sci. 2022, 3, 100708. [Google Scholar] [CrossRef]
- Chen, L.-R.; Chen, J.-J.; Ho, C.-M.; Wu, S.-L.; Shieh, D.-T. Improvement of Li-ion Battery Discharging Performance by Pulse and Sinusoidal Current Strategies. IEEE Trans. Ind. Electron. 2013, 60, 5620–5628. [Google Scholar] [CrossRef]
- Deng, Z.; Yang, L.; Cai, Y.; Deng, H. Maximum available capacity and energy estimation based on support vector machine regression for Lithium-ion battery. Energy Proc. 2017, 107, 68–75. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, J.; Wang, G.; He, T.; Wei, Y. Novel methods for estimating lithium-ion battery state of energy and maximum available energy. Appl. Energy 2016, 178, 1–8. [Google Scholar] [CrossRef]
- Sanchez-Gonzalez, A.; Medrano, N.; Calvo, B.; Martinez, P.A. A Multichannel FRA-Based Impedance Spectrometry Analyzer Based on a Low-Cost Multicore Microcontroller. Electronics 2018, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Dong, T.K.; Kirchev, A.; Mattera, F.; Koval, K.; Bultel, Y. Dynamic modelling of Li-Ion Batteries Using an Equivalent Electrical Circuit. J. Electrochm. Soc. 2011, 3, 158. [Google Scholar] [CrossRef]
- Leksono, E.; Haq, I.N.; Iqbal, M.; Soelami, F.X.; Merthayasa, U.G.N. State of Charge (SoC) estimation on LiFePO4 battery module using Coulomb counting methods with modified Peukert. In Proceedings of the 2013 Joint International Conference on Rural Information & Communication Technology and Electric-Vehicle Technology, Bandung-Bali, Indonesia, 26–28 November 2013. [Google Scholar] [CrossRef]
- Concha, B.M.; Diard, J.P. EIS Measurements: Potentio (PEIS) or Galvano (GEIS) Mode? That Is the Question; EC-Lab Application Note #49; Bio-Logic Science Instruments: Seyssinet-Pariset, France, 2019. [Google Scholar]
- Saidani, F.; Hutter, F.X.; Scurtu, R.-G.; Braunwarth, W.; Burghartz, J.N. Lithium-ion battery models: A comparative study and a model-based powerline communication. Ad. Radio Sci. 2017, 15, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Theiler, M.; Schneider, D.; Endisch, C. Experimental Investigation of State and Parameter Estimation within Reconfigurable Battery Systems. Batteries 2023, 9, 145. [Google Scholar] [CrossRef]
- Morali, U.; Erol, S. Analysis of electrochemical impedance spectroscopy response for commercial lithium-ion batteries: Modeling of equivalent circuit elements. Turk. J. Chem. 2020, 44, 602–613. [Google Scholar] [CrossRef] [PubMed]
- Landinger, T.F.; Schwarzberger, G.; Jossen, A. High frequency impedance characteristics of cylindrical lithium-ion cells: Physical-based modeling of cell state and cell design dependencies. J. Power Sources 2021, 488, 229463. [Google Scholar] [CrossRef]
- Panasonic Energy, Product Specification. Rechargeable Lithium Ion Battery Model NCR18650B. 2017. Available online: https://www.imrbatteries.com/content/panasonic_ncr18650b-2.pdf (accessed on 11 November 2022).
Rated Capacity at 25 deg. C | 3200 mAh |
Nominal Capacity at 25 deg. C | Min. 3250 mAh |
Typ. 3350 mAh | |
Nominal Voltage | 3.6 V |
Charging Method | CC-CV |
Charging Voltage | 4.2 V |
Charging current | 1625 mA |
Charging Time | 4 h |
Cathode material | Nichel Oxide Based New Platform (NNP) |
SOC [%] | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
OCV [V] | 3.12 | 3.407 | 3.511 | 3.572 | 3.624 | 3.693 | 3.693 | 3.877 | 3.955 | 4.054 | 4.15 |
VSOCe | 2.52 | 2.84 | 3.05 | 3.14 | 3.22 | 3.29 | 3.36 | 3.44 | 3.52 | 3.61 | 4.15 |
Set-Ups | A1p versus A1c | B1p versus B1c | C1p versus C1c | |||
---|---|---|---|---|---|---|
Capacity [Ah] | 3.51 | 3.18 | 3.47 | 3.2 | 3.22 | 2.94 |
Capacity increase [%] | 10.37 | 8.43 | 9.52 | |||
Total discharge time | 1 h:03 min | 55 min | 1 h:02 min | 56 min | 57 min | 51 min |
Surplus discharge time [min] | 8 | 6 | 6 |
Set-Ups | A1-A2p versus A1 || A2c | B1-B2p versus B1 || B2c | C1-C2p versus C1 || C2c | |||
---|---|---|---|---|---|---|
Capacity [Ah] | 7.50 | 6.43 | 7.49 | 6.49 | 6.82 | 6.14 |
Capacity increase [%] | 16.64 | 15.40 | 11.07 | |||
Total discharge time | 2 h:12 min | 1 h:51 min | 2 h:11 min | 1 h:52 min | 2 h:01 min | 1 h:46 min |
Surplus discharge time | 21 min | 19 min | 15 min |
Nr. | Freq, F | Period, T | Total Discharge Time (t) | Switching Number n = t/(T/2) | Switch Loss (Sl) n·Eswitch | Continuous Loss (Cl) t·RDS·I2 |
---|---|---|---|---|---|---|
Hz | µs | s | W·h | W·h | ||
1 | 570 | 1754 | 3435 | 3.915.621 | 0.006 | 0.034 |
2 | 2300 | 434 | 3476 | 16.081.433 | 0.024 | 0.0345 |
3 | 5800 | 172 | 3705 | 43.081.395 | 0.069 | 0.0358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surducan, V.; Bruj, O.-R. Switched Discharge Device for Enhanced Energy Extraction from Li-Ion 18650. Batteries 2023, 9, 214. https://doi.org/10.3390/batteries9040214
Surducan V, Bruj O-R. Switched Discharge Device for Enhanced Energy Extraction from Li-Ion 18650. Batteries. 2023; 9(4):214. https://doi.org/10.3390/batteries9040214
Chicago/Turabian StyleSurducan, Vasile, and Olivia-Ramona Bruj. 2023. "Switched Discharge Device for Enhanced Energy Extraction from Li-Ion 18650" Batteries 9, no. 4: 214. https://doi.org/10.3390/batteries9040214
APA StyleSurducan, V., & Bruj, O. -R. (2023). Switched Discharge Device for Enhanced Energy Extraction from Li-Ion 18650. Batteries, 9(4), 214. https://doi.org/10.3390/batteries9040214