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Abstract: Novel (80Li2S − 20AlI3)·yLiI composite solid electrolytes (y = 5, 10, 15) were prepared by
mechannochemical synthesis. XRD results showed that the pattern of 80Li2S − 20AlI3 was similar to
that of AlI3, which means that Li2S was dissolved in AlI3 matrix during preparation. This structure
was still maintained after LiI addition. The current measured at constant applied DC voltage indicated
that (80Li2S− 20AlI3)·yLiI composites are intrinsically pure Li-ion conductors. The ionic conductivity
at 25 ◦C of y = 10 was about 2.3 × 10−4 Scm−1, which was about three times higher than that of
y = 0. The conductivity of y = 10 increased 20 times to 2.2 × 10−3 Scm−1 at 70 ◦C. These values
were highest among those observed from Li2S-based materials. It was revealed that Li-ion moves in
80Li2S − 20AlI3 by a hoping mechanism, while the lattice dipoles are the origin of Li-ion movement
in (80Li2S − 20AlI3)·yLiI. The polarization measurements using Lix90 (80Li2S − 20AlI3)·10LiIxLi and
LixLi6PS5Clx90 (80Li2S − 20AlI3)·10LiIxLi6PS5ClxLi cells proved that 90 (80Li2S − 20AlI3)·10LiI reacts
with Li metal, but it is relatively stable at a low voltage. Sample y = 10 was also employed as a solid
electrolyte in the positive electrode of a solid-state Li-S battery to study its stability in the voltage
range of the positive electrode. CuS and Li4.4Si were the electrode-active materials. The cell was
cycled in CC-CV mode at 1.0 mA cm−2 (CC) with a cut-off voltage of 1.0–2.3 V. The cell delivered a
stable capacity of about 400 mAh g−1

CuS after 40 cycles.

Keywords: Li2S conductivity; Li-S battery; solid-state battery; complex impedance spectroscopy

1. Introduction

Sulfide-based solid electrolytes (SEs) are one of the candidates for all-solid-state (ASS)
Li-ion batteries due to their high ionic conductivity at room temperature and suitable
mechanical properties [1–3]. Li7P3S11, Li10GeP2S12, and Li5.5PS4.5Cl1.5 exhibited ionic
conductivity higher than 10−2 Scm−1 at 25 ◦C [4–6]. Sulfide-based solid electrolytes can
be prepared using different methods: solid-state reaction at high temperature, mechano-
synthesis, and liquid phase synthesis [7–9]. Until now, most of the reported sulfide-based
solid electrolytes have belonged to Li2S-P2S5-LiX (X = halogen) groups; therefore, the search
for sulfide-based electrolytes that do not contain P2S5 is an interesting research direction.

The glass and glass-ceramic electrolytes of the (100− x)Li2S-xAl2S3 group were synthe-
sized using planetary ball milling and thoroughly studied [10]. Amorphous 60Li2S·40AlS1.5
was obtained with a milling speed of 230 rpm, while glass-ceramic containing Li5AlS4
crystal was directly obtained with a milling speed of 510 rpm for 2 h. The highest con-
ductivity of 3.4 × 10−5 Scm−1 at 25 ◦C was obtained for the 60Li2S·40AlS1.5 amorphous
electrolytes. Li2S-SiS2 and Li3PO4-Li2S-SiS2 glassy SEs were also prepared by the melt-
quenching method, and their ionic conductivities and electrochemical properties were
investigated [11,12]. The highest conductivity, of about 7.6 × 10−4 Scm−1 at 25 ◦C, was
obtained in those systems. The solid-state cell using graphite as active material and
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0.03Li3PO4-0.58Li2S-0.39SiS2 as solid electrolyte showed good cycle performance. On
the other hand, Li2S-SiS2 amorphous materials were also prepared by mechanochemical
synthesis and showed the highest conductivity of about 3.4 × 10−4 Scm−1 at 25 ◦C [13].

Li2S has been intensively used as positive electrode material in the Li-S battery because
its usage enables the employment of graphite or silicon in the negative electrode. However,
Li2S is a natural insulator to both electrons and ions; much effort has been made to increase
the electron and ionic conductivity of Li2S. Fabricating composites with carbonaceous mate-
rials, such as graphene, carbon nanotubes, or carbon nanofibers, will increase the electronic
conductivity of Li2S [14–17]. On the other hand, many other methods for increasing the
ionic conductivity of Li2S have been reported so far. Composite nanoparticles with Li2S as
the core and Li3PS4 as the shell exhibit ionic conductivity of about 10−7 Scm−1 at 25 ◦C,
which is 104 times higher than that of Li2S nanoparticles [18]. The ionic conductivity of
Li2S- Li3PS4 reaches 10−4 Scm−1 at 25 ◦C in another report [19]. The ionic conductivity
of Li2S-LiX solid solution (X = halogen) is about 10−6 Scm−1, which is about 102 times
higher than that of Li2S [20]. Solid solutions of Li2S and multivalence cation sulfides,
Li2-2xMgxS (0.05 ≤ x ≤ 0.2) and Li2-3xAlxS (0 ≤ x ≤ 0.1667), also show improved ionic
conductivity compared with Li2S [21,22]. The ionic conductivity of 80Li2S·20AlI3 even
reaches 6.0 × 10−5 Scm−1 at 25 ◦C [23]. In the same study, 99.5Li2S·0.5AlI3 acted as both
SE and active material in an all-solid-state battery. In addition, antiperovskite-like type
Li3SI had an ionic conductivity of 2.2 × 10−5 Scm−1 at 25 ◦C and was employed as SE in
the ASS Li-ion battery [24]. It should be noted that the application of Li2S-based as SE in
the ASS battery is very rare due to its low ionic conductivity.

In this study, a series of (100 − x)Li2S-xAlI3 and (80Li2S − 20AlI3)·yLiI composite
solid electrolytes (y = 5, 10, 15) were prepared by mechanochemical synthesis and inves-
tigated using XRD and AC impedance spectroscopy. The ionic conductivity at 25 ◦C
(80Li2S − 20AlI3)·yLiI (y = 5, 10, 15) is higher than that of 80Li2S·20AlI3 and Li3SI be-
cause LiI addition reduces the resistance at the grain boundary and interface; to the best
of our knowledge, such effects of LiI have not been reported before. Among them, sample
(80Li2S − 20AlI3)·10LiI has the highest ionic conductivity, which is about 2.3 × 10−4 Scm−1

at 25 ◦C. In addition, the complex conductivity suggested the formation of a composite con-
sisting of 80Li2S − 20AlI3 and LiI rather than a solid solution due to the existence of two
slopes in the low-frequency region. The use of complex conductivity to differentiate solid
solutions from composites has also not been noted before. The electronic conductivity of
(80Li2S − 20AlI3)·10LiI is about 1.1 × 10−8 Scm−1; therefore, (80Li2S − 20AlI3)·10LiI is
a pure Li-ion conductor. The solid-state cell, which employs CuS as active material and
(80Li2S − 20AlI3)·10LiI as solid electrolyte, delivers a stable capacity after 40 cycles.

2. Experimental

Li2S (99.9%), LiCl (99.9%), AlI3 (99.9%), Si (99.99%), Li metal (99.99%), CuS (99.9%),
and LiI (99.9%) were purchased from Sigma. P2S5 (99%) was purchased from Merck Group.
All chemicals were used without purification.

(100 − x)Li2S-xAlI3 and (80Li2S − 20AlI3)·yLiI composite solid electrolytes (y = 5, 10, 15)
were prepared via planetary ball milling using the same conditions as reported previ-
ously [23]. For a typical batch, Li2S, AlI3, and LiI were manually mixed for 10 min prior
to introduction into 45 mL zirconia pots with zirconia balls (10 mm, 15 balls). The pots
were then rotated at 500 rpm for 12 h using a Pulverisette 7 (Fritsch). The obtained sam-
ples were recovered and used without any further heat treatment. Li4.4Si was prepared
using the procedure reported by Tamori et al. [25]. A total of 0.7814 g Li and 0.7186 g Si
(Li:Si = 4.4:1.0 mole ratio) was manually mixed using an agate mortar for about 15 min;
the obtained mixture was then introduced into 45 mL zirconia pots with zirconia balls
(4 mm, 10 balls). The pots were then rotated at 200 rpm. For one cycle, 10 min milling time
and 5 min resting time was employed to avoid the sample from temperature increasing.
Li4.4Si was recovered after 50 h of milling time. Li6PS5Cl was prepared using the same
method. In a typical batch, 2 g of Li2S, P2S5, and LiCl with a stoichiometric ratio of 5:1:2
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was employed. The raw materials were manually mixed for 10 min prior to introduction
into 45 mL zirconia pots with zirconia balls (10 mm, 10 balls). A rotation speed of 600 rpm
and a rotation time of 20 h were employed.

XRD patterns were recorded using Bruker X8 with a CuKα radiation. The samples
were covered with amorphous Kapton film because of their hygroscopic properties.

The total resistivity of the prepared samples was investigated using AC impedance
spectroscopy, as reported previously [26]. DC conduction was recorded using stainless
steel (SUS) rods as blocking electrodes and lithium metal sheets as non-blocking electrodes.
Prior to the measurements, the sample (80Li2S − 20AlI3)·10LiI was made into pellets
of about 10 mm in diameter (550 MPa, at RT). Since the sample (80Li2S − 20AlI3)·10LiI
continuously reacts with Li metal, a thin layer of Li6PS5Cl solid electrolyte was introduced
to the cell to prevent (80Li2S − 20AlI3)·10LiI from direct contact with Li metal. Two SUS
rods were employed as current collectors. The currents were measured using a potentiostat
(PGSTAT302N, Autolab, Herisau, Switzerland) with applied voltages of 0.2–0.7 V (DC) for
60 min.

DC polarization curves were recorded using the cell LixLi6PS5Clx(80Li2S − 20AlI3)·
10LiIxLi6PS5ClxLi cycling at ±0.05, ±0.1, and ±0.2 mA cm−1 [27].

Two-step planetary ball milling was used to prepare the composite cathode. In total,
0.3 g of CuS and Ketjen Black (weight ratio of 4:1) were mixed in zirconia pots using 30 g of
zirconia balls (4 mm) at 410 rpm for 10 h. Then, 0.2 g of (80Li2S − 20AlI3)·10LiI was added,
and the positive electrode composites were obtained after 2 h mixing at 300 rpm. The ASS
Li-S cell was constructed as previously reported using the prepared electrode composite,
Li6PS5Cl, and Li4.4Si [26]. The cells were cycles using either CC or CC-CV mode to study
the stability of (80Li2S − 20AlI3)·10LiI at a high voltage range. The current density was
0.25 mA cm−2.

All the experiments were carried out in a glove box (Ar-filled, [H2O] < 0.1 ppm) or an
airtight sample holder.

3. Results and Discussion

Figure 1 shows the XRD patterns of (100− x)Li2S-xAlI3 (Figure 1a) and (80Li2S− 20AlI3)·yLiI
(Figure 1b) composite solid electrolytes (y = 5, 10, 15). Sample Li2S (x = 0) was characterized
by four intense peaks located at 2θ ≈ 27.03, 31.22, 44.77, and 53.15◦. The pattern of AlI3
(x = 100) has two intense peaks at 2θ ≈ 25.24 and 29.06◦. Samples x = 7 and x = 10 exhibited
characteristic peaks of both Li2S and AlI3; however, the features of AlI3 were more clearly
observed in sample x = 10 than in sample x = 7. The features of Li2S disappeared in
the samples x = 20, 25, and 30, indicating that Li2S became amorphous or a new crystal
structure was formed because the XRD pattern of those samples did not completely cover
AlI3 peaks. It was also proved that samples 5 ≥ x ≥ 0 exhibited the crystal structure of
Li2S [23]. Therefore, (100 − x)Li2S-xAlI3 exhibits the structure of Li2S when 5 ≥ x ≥ 0 and
the structure of AlI3 when x ≥ 20; those results also show that the (100 − x)Li2S-xAlI3
solid solution can be prepared by mechanochemical synthesis, and its structure depends
on the Li2S mass fraction. XRD patterns of (80Li2S − 20AlI3)·yLiI composites and raw
materials are illustrated in Figure 1b. The (80Li2S − 20AlI3)·yLiI composites exhibited the
characteristic peaks of AlI3 and no trace of LiI (y = 100) was detected. However, fitting the
pattern of sample y = 15 disclosed that the peak at 25.4◦ is composed of two peaks at 25.4
and 25.9◦, and the peak at 29.4◦ is composed of two peaks at 29.4 and 30.2◦ (Figure 1c,d).
Those fitting results proved that LiI crystal still remained in sample y = 15, while its
existence in y = 5 and 10 was not detected. Therefore, LiI might form a solid solution with
80Li2S − 20AlI3 or it exists in the amorphous form in samples y = 5 and 10.



Batteries 2023, 9, 290 4 of 10Batteries 2023, 9, x FOR PEER REVIEW 4 of 10 
 

  

 

 

Figure 1. XRD patterns of the prepared samples. (a) XRD patterns of (100 − x)Li2S-xAlI3; (b) XRD 
patterns of (80Li2S-20AlI3)·yLiI (y = 0, 5, 10, 15); (c,d) Fitting result of peak at 25.4° and 29.4° of sample 
y = 15, respectively. 

Figure 2 shows the temperature dependence of the ionic conductivity of (100 − x)Li2S-
xAlI3 (Figure 2a) and (80Li2S-20AlI3)·yLiI (Figure 2b) composite solid electrolytes (y = 5, 
10, 15). The small insets show the activation energy of the samples. The ionic conductivity 
of Li2S at 25 °C was about 10−12 Scm−1 [18,23]. Sample x = 7 exhibited ionic conductivity at 
25 °C of about 2.8 × 10−5 Scm−1. Samples x = 20, 25, and 20 had ionic conductivity at 25 °C 
of about 5.8 × 10−5 Scm−1, 3.8 × 10−5 Scm−1, and 3.1 × 10−5 Scm−1, respectively. The activation 
energy of sample x = 5, 7, 20, 25, and 30 was about 56, 44, 38, 37, and 60 kJ mol−1. The 
activation energy of the samples decreased when x increased and reached the minima 
values of about 38 kJ mol−1 in samples x = 20, 25. Thus, forming a solid solution with AlI3 
could enhance the ionic conductivity of Li2S, but the ionic conductivity of (100 − x)Li2S-
xAlI3 at 25 °C was still lower than 10−4 Scm−1. It was reported that the ionic conductivity of 
Li3PS4 improved with LiI addition, so LiI was also added to 80Li2S-20AlI3 to investigate 
the ionic conductivity improvement [28,29]. The temperature dependence of the ionic con-
ductivity of (80Li2S-20AlI3)·yLiI composite solid electrolytes (y = 0, 5, 10, 15) are shown in 
Figure 2b. The conductivity of 80Li2S-20AlI3 (x = 20, y = 0) at 25 °C was about 5.8 × 10−5 
Scm−1; this value increased to 1.1 × 10−4, 2.3 × 10−4, and 1.0 × 10−4 Scm−1. The activation energy 
for the Li-ion movement was about 38, 40, 42, and 42 in samples y = 0, 5, 10, and 15, re-
spectively. The existence of LiI crystals, as shown in Figure 1c,d, is responsible for the 
decrease in conductivity of sample y = 15 compared with sample y = 10. Thus, LiI addition 
could enhance the ionic conductivity of 80Li2S-20AlI3 and (80Li2S-20AlI3)·10LiI had the 
highest Li-ion conductivity among the prepared sample at 25 °C. 

c d 

a b 

Figure 1. XRD patterns of the prepared samples. (a) XRD patterns of (100 − x)Li2S-xAlI3; (b) XRD
patterns of (80Li2S − 20AlI3)·yLiI (y = 0, 5, 10, 15); (c,d) Fitting result of peak at 25.4◦ and 29.4◦ of
sample y = 15, respectively.

Figure 2 shows the temperature dependence of the ionic conductivity of (100− x)Li2S-xAlI3
(Figure 2a) and (80Li2S− 20AlI3)·yLiI (Figure 2b) composite solid electrolytes (y = 5, 10, 15).
The small insets show the activation energy of the samples. The ionic conductivity of Li2S at
25 ◦C was about 10−12 Scm−1 [18,23]. Sample x = 7 exhibited ionic conductivity at 25 ◦C of
about 2.8× 10−5 Scm−1. Samples x = 20, 25, and 20 had ionic conductivity at 25 ◦C of about
5.8 × 10−5 Scm−1, 3.8 × 10−5 Scm−1, and 3.1 × 10−5 Scm−1, respectively. The activation
energy of sample x = 5, 7, 20, 25, and 30 was about 56, 44, 38, 37, and 60 kJ mol−1. The acti-
vation energy of the samples decreased when x increased and reached the minima values
of about 38 kJ mol−1 in samples x = 20, 25. Thus, forming a solid solution with AlI3 could
enhance the ionic conductivity of Li2S, but the ionic conductivity of (100 − x)Li2S-xAlI3
at 25 ◦C was still lower than 10−4 Scm−1. It was reported that the ionic conductivity of
Li3PS4 improved with LiI addition, so LiI was also added to 80Li2S − 20AlI3 to investigate
the ionic conductivity improvement [28,29]. The temperature dependence of the ionic
conductivity of (80Li2S − 20AlI3)·yLiI composite solid electrolytes (y = 0, 5, 10, 15) are
shown in Figure 2b. The conductivity of 80Li2S − 20AlI3 (x = 20, y = 0) at 25 ◦C was about
5.8 × 10−5 Scm−1; this value increased to 1.1 × 10−4, 2.3 × 10−4, and 1.0 × 10−4 Scm−1.
The activation energy for the Li-ion movement was about 38, 40, 42, and 42 in samples
y = 0, 5, 10, and 15, respectively. The existence of LiI crystals, as shown in Figure 1c,d,
is responsible for the decrease in conductivity of sample y = 15 compared with sample
y = 10. Thus, LiI addition could enhance the ionic conductivity of 80Li2S − 20AlI3 and



Batteries 2023, 9, 290 5 of 10

(80Li2S − 20AlI3)·10LiI had the highest Li-ion conductivity among the prepared sample
at 25 ◦C.
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Figure 2. Ionic conductivity of the prepared samples. (a) Temperature dependence of ionic con-
ductivity of (100 − x)Li2S-xAlI3 samples and the activation energy (small inset); (b) Temperature
dependence of ionic conductivity of (80Li2S− 20AlI3)·yLiI (y = 0, 5, 10, 15) samples and the activation
energy (small inset).

Figure 3a shows the time dependence of DC current when a voltage of 0.2, 0.5, and
0.7 V (DC) was applied to sample (80Li2S − 20AlI3)·10LiI using a blocking electrode. The
polarization was initially observed, and then the current became nearly constant. The
electronic conductivity was about 1.1 × 10−8 Scm−1. Since (80Li2S − 20AlI3)·10LiI reacts
with Li metal, a thin layer of Li6PS5Cl was employed to prevent (80Li2S − 20AlI3)·10LiI
from direct contact with Li metal. A constant current was obtained when 0.5 V (DC) was
applied to the cell LixLi6PS5Clx(80Li2S − 20AlI3)·10LiIx Li6PS5ClxLi (Figure 3b). The constant
current obtained using the non-blocking electrode was about 104 times higher than that
obtained using the blocking electrode; thus, (80Li2S − 20AlI3)·10LiI is considered a pure
Li-ion conductor with a Li-ion transport number higher than 0.999. In addition, the ionic
conductivity calculated from the current values was about 2.1 × 10−4 Scm−1 at 25 ◦C,
which resembled the value 2.3 × 10−4 Scm−1 obtained from AC impedance spectroscopy.
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Figure 3. Conductivity of (80Li2S − 20AlI3)·10LiI. (a) Time dependence of the conductivity
at constant applied voltage of 0.2, 0.5, and 0.7 V using blocking electrodes (SUSx(80Li2S −
20AlI3)·10LiIxSUS); the small inset illustrates the values of constant current at each applied volt-
age. (b) Time dependence of the conductivity at constant applied voltage of 0.5 V using block-
ing electrodes (SUSx(80Li2S − 20AlI3)·10LiIxSUS) and non-blocking electrodes LixLi6PS5Clx(80Li2S −
20AlI3)·10LiIxLi6PS5ClxLi.
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Figure 4a,b shows the Nyquist plots of 80Li2S − 20AlI3 and (80Li2S − 20AlI3)·10LiI
measured at 28–90 ◦C, respectively. All the plots consist of a semicircle and a low-frequency
tail, which is consistent with Li+ blocking at the SUS electrodes, expressing ionic conductive
behavior. The diameter of the semicircle gradually decreased with increasing temperature
and was almost negligible at 90 ◦C. The total impedance value of the electrolyte pellet
is the value at the intersection point between the semicircle and the x-axis in the inter-
mediate frequency region [30]. The impedance spectra recorded at room temperature of
80Li2S − 20AlI3 and (80Li2S − 20AlI3)·10LiI are plotted in Figure 4c,d, respectively. The
equivalence circuit of the impedance spectrum is shown in Figure 4c. The impedance
resistance of 80Li2S − 20AlI3 is composed of bulk, interface, and grain boundary resis-
tances (the color-filled regions) [31,32]. The bulk resistance of the SE (Rbulk) is obtained
from the intersection between the semicircle and the x-axis in the high-frequency region.
The semicircle in the intermediate region is composed of interfacial resistance (RInterfacial)
and grain boundary resistance (RGrain boundary). The Rbulk value of 80Li2S − 20AlI3 is
close to that of (80Li2S − 20AlI3)·10LiI. While the RInterfacial + RGrain boundary value of
(80Li2S − 20AlI3)·10LiI is smaller than that of 80Li2S − 20AlI3. These results indicate
that LiI addition effectively reduces the value of RInterfacial + RGrain boundary.

The conductivity isotherms of 80Li2S − 20AlI3 and (80Li2S − 20AlI3)·10LiI recorded
from 28 to 90 ◦C, the real part σ′ of the complex conductivity plotted against frequency
F, are depicted in Figure 4e,f, respectively. The isotherms display a frequency indepen-
dence plateau in high and intermediate frequency regions, which is the so-called direct
current (DC) region [33,34]. This region indicates long-range ion transport. Frequency
dependence of conductivity is clearly observed in the low-frequency region, which exhibits
the polarization effect. Jonscher’s power law σ′ ∝ ωn was observed in the low-frequency
region, where ω is the angular frequency and n represents the interaction between the
mobile ion and its surrounding environment [35,36]. Temperature dependence of n is
clearly observed in sample 80Li2S − 20AlI3 and the n values are higher than 0.6, indicating
the dipole behaviors of charge carriers in this sample [36]. Two distinct slopes appear in
the low-frequency region of the isotherms of sample (80Li2S − 20AlI3)·10LiI, with n values
close to 0.7 and 0.5. The n values also indicated the dipoles behaviors of charge carriers, but
the presence of two slopes suggested the existence of two types of materials in the sample
(80Li2S − 20AlI3)·10LiI.

Lix(80Li2S − 20AlI3)·10LiIxLi and LixLi6PS5Clx(80Li2S − 20AlI3)·10LiIxLi6PS5ClxLi sym-
metric cells were employed to investigate the stability of (80Li2S − 20AlI3)·10LiI at a low
voltage region. The small inset in Figure 5a proved that the reaction between (80Li2S
− 20AlI3)·10LiI and Li metal is irreversible. However, the LixLi6PS5Clx(80Li2S − 20AlI3)·
10LiIxLi6PS5ClxLi symmetric cell exhibited a relatively steady charge–discharge voltage
for more than 200 h. These results indicated that (80Li2S − 20AlI3)·10LiI irreversibly re-
acts with Li metal, but it is quite stable in the low-voltage region. All-solid-state cells,
which employed (80Li2S − 20AlI3)·10LiI, as solid electrolyte in the positive electrode, were
fabricated to study their stability at high voltage regions. CuS and Li4.4Si were used as
active materials. Figure 5b–e illustrates the electrochemical performances of the prepared
cells. The 1st and 10th charge—discharge curves of the cells cycling using CC and CC-CV
modes are depicted in Figure 5b,d, respectively. Two distinct plateaus are observed in the
discharge curves, which arise from the following reactions [37]:

The first plateau: CuS + 1.96Li+ + 1.96e− → Li2S + Cu1.96S.
The second plateau: Cu1.96S + 2Li+ → Li2S + 1.96Cu.
Accordingly, two distinct plateaus also appeared in the charge curves. The charge

curve in Figure 5b was smooth at low voltage and bumpy at voltage higher than 2.3 V,
which illustrated the decomposition of (80Li2S − 20AlI3)·10LiI composite solid electrolyte.
The discharge and charge capacity were about 400 and 600 mAh g−1

CuS, respectively
(Figure 5c), resulting in the capacity loss of about 200 mAh g−1

CuS and unstable Coulom-
bic efficiency (Figure 5c). Figure 5c indicates that the discharge capacity was stable at
about 400 mAh g−1

CuS but the charge capacity was unsteady, showing the continuous
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decomposition of solid electrolyte. The cyclic voltammogram of Li3SI solid electrolyte also
indicated the oxidation of S2− at about 2 V, which was one of the reasons for low capacity
retention of the all-solid-state cell cycling in the voltage range of 2.0–3.6 V [24]. Thus,
(80Li2S − 20AlI3)·10LiI composite solid electrolyte was irreversibly decomposed at voltage
higher than 2.3 V. The cell cycling in CC-CV mode (CC: 0.25 mA cm−2, CV: 2.30 V) ex-
hibits smooth charge–discharge curves (Figure 5d), confirming that (80Li2S − 20AlI3)·10LiI
was stable in this voltage region. The charge–discharge capacity was stable at about
400 mAh g−1

CuS, resulting in a Coulombic efficiency higher than 99.5%.
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Figure 4. (a) Nyquist plots of 80Li2S− 20AlI3 measured from 28 to 90 ◦C (the inset shows the Nyquist
plot at 28 ◦C); (b) Nyquist plots of (80Li2S − 20AlI3)·10LiI measured from 28 to 90 ◦C; (c,d) the
matching impedance figures, equivalent circuit of 80Li2S − 20AlI3 and (80Li2S − 20AlI3)·10LiI
measured at 28 ◦C, respectively; (e) conductivity isotherms (10 Hz to 1 MHz) of 80Li2S − 20AlI3

measured from 28 to 90 ◦C; (f) conductivity isotherms (10 Hz to 1 MHz) of (80Li2S − 20AlI3)·5LiI
measured from 28 to 90 ◦C.
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Figure 5. (a) Cyclability of the symmetric LixLi6PS5Clx(80Li2S − 20AlI3)·10LiIxLi6PS5ClxLi and
Lix(80Li2S − 20AlI3)·10LiIxLi (small inset); (b) 1st and 10th charge–discharge curves of the solid-
state cell cycled using CC mode; (c) cyclic properties of the solid-state cell using CC mode; (d) 1st and
10th charge–discharge curves of the solid-state cell cycled using CC-CV mode; (e) cyclic properties of
the solid-state cell using CC-CV mode.

4. Conclusions

(100 − x)Li2S-xAlI3 and (80Li2S − 20AlI3)·yLiI (y = 0, 5, 10, 15) composite solid elec-
trolytes were successfully prepared by mechanochemical synthesis. XRD results revealed
that Li2S and AlI3 formed a solid solution, while LiI crystals remained in sample y = 15.
It was also proved that (80Li2S − 20AlI3)·10LiI is a pure Li-ion conductor with the ionic
conductivity of about 2.3 × 10−4 Scm−1 at 25 ◦C, about three times higher than that of the
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80Li2S − 20AlI3 sample. The impedance spectroscopy results revealed that LiI addition
enhanced the grain boundary and interfacial resistance of the prepared samples. The results
from XRD and AC impedance suggested that LiI might be present in the amorphous form
in samples y = 5 and 10. The symmetric and all-solid-state cell performance illustrated that
(80Li2S − 20AlI3)·10LiI was relatively stable at voltage lower than 2.3 V.
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