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Abstract: This study proposes an optimized random forest regression model to achieve online battery
prognostics and health management. To estimate the battery state of health (SOH), two aging features
(AFs) are extracted based on the incremental capacity curve (ICC) to quantify capacity degradation,
further analyzed through Pearson’s correlation coefficient. To further predict the remaining useful life
(RUL), the online AFs are extrapolated to predict the degradation trends through the closed-loop least
square method. To capture the underlying relationship between AFs and capacity, a random forest
regression model is developed; meanwhile, the hyperparameters are determined using Bayesian
optimization (BO) to enhance the learning and generalization ability. The method of co-simulation
using MATLAB and LabVIEW is introduced to develop a battery management system (BMS) for
online verification of the proposed method. Based on the open-access battery aging datasets, the
results for the mean error of estimated SOH is 1.8152% and the predicted RUL is 32 cycles, which is
better than some common methods.

Keywords: lithium-ion battery; prognostics and health management; state of health; remaining
useful life; random forest regression model; Bayesian optimization

1. Introduction

With the emergence of the energy crisis and environmental pollution, low-emission
and fuel-efficient vehicles relying mainly on electric vehicles (EVs) have been widely
focused on and applied in recent years [1,2]. The lithium-ion battery has become the
predominant battery in EVs, owing to its high energy density and cycle life, low self-
discharge performance, and eco-friendliness [3,4]. As a typical electrochemical energy
storage device, the side reactions inside batteries result in a decrease in the cell performance
after the continuous charging−discharging cycles. Such a decline in batteries in EVs results
in range reduction and even safety accidents (https://unece.org/transport/documents/20
22/04/standards/un-gtr-no22-vehicle-battery-durability-electrified-vehicles [5] (accessed
on 20 May 2023)). Thus, EVs involve prognostics and health management (PHM) to
evaluate the battery aging levels [6,7].

Two critical challenges confronted in battery PHM are the estimation of state of health
(SOH) and the prediction of remaining useful life (RUL). The definition of SOH is the
ratio between the current capacity and rated capacity [8,9], while RUL is the cycle number
when SOH reaches the presupposed level [10]. Therefore, the two key parameters can be
regarded as the battery aging state from different time-scale perspectives, respectively. The
safety and reliability of battery systems can be improved with accurate SOH and RUL.
In addition, SOH and RUL are a kind of internal characteristic that cannot directly be
measured; therefore, some techniques are employed to evaluate the battery aging state.

Batteries 2023, 9, 332. https://doi.org/10.3390/batteries9060332 https://www.mdpi.com/journal/batteries

https://doi.org/10.3390/batteries9060332
https://doi.org/10.3390/batteries9060332
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0000-0002-2976-347X
https://unece.org/transport/documents/2022/04/standards/un-gtr-no22-vehicle-battery-durability-electrified-vehicles
https://unece.org/transport/documents/2022/04/standards/un-gtr-no22-vehicle-battery-durability-electrified-vehicles
https://doi.org/10.3390/batteries9060332
https://www.mdpi.com/journal/batteries
https://www.mdpi.com/article/10.3390/batteries9060332?type=check_update&version=1


Batteries 2023, 9, 332 2 of 17

1.1. Review of the Methods for SOH

By reviewing the literature, existing techniques can be divided into direct measure-
ment, model-based, and data-driven methods.

1.1.1. Direct Measurement

Direct measurement implies measuring the capacity or resistance to calculate battery
SOH. For instance, the coulomb counting method is typically used to measure battery
capacity for SOH. However, the coulomb counting method requires a time-consuming
charging−discharging process, and deep charging damages the battery lifespan to some
extent [11]. Another technology is to measure the internal resistance through special equip-
ment such as internal resistance test devices or electrochemical impedance spectroscopy
(EIS) [12]. Direct measurement has the highest accuracy; however, it has limited application
scenarios. Therefore, direct measurement is more functional for calibrating things requiring
online estimation in electric vehicles.

1.1.2. Model-Based Methods

This type of method monitors battery degradation through a battery model and adap-
tive filter methods. The electrochemical model (EM) is a type of first-principle model
used to describe the battery dynamic performance through some partial differential equa-
tions [13,14]. Based on the pseudo-2D and single-particle models, Bi et al. [15] developed
a composite model where four sensitive parameters are selected and tracked through the
particle filter (PF). Allam et al. [16] established a temperature-dependent single-particle
model, and then an adaptive interconnected observer is employed for state estimation and
aging-sensitive transport parameter identification. Despite the simplification of the model,
EM still has a high computation complexity. Therefore, the equivalent circuit model (ECM)
is relatively more popular because of its simple structure and low computational complex-
ity [17]. Using the Thevenin model, Zou et al. [18] fused the capacity variable into the
state-space model for state of charge (SOC) estimation, after which the Extended Kalman
filter (EKF) is employed to achieve combined SOH and SOC estimation. Furthermore,
Lyu et al. [19] developed a linear aging model to illustrate and expand the underlying
relationship between the model parameters and battery capacity. ECM is a dynamic model
to describe the dynamic performance of batteries on a relatively short time scale; however,
it is weak in the description of aging on a long-time scale. Therefore, battery models play a
major role in the accuracy and robustness of model-based methods.

1.1.3. Data-Driven Methods

In recent years, machine learning has received widespread attention and application.
Data-driven methods utilize machine learning methods such as neural networks, deep learn-
ing, and Gaussian process regression to describe battery degradation [20]. Hamar et al. [21]
developed a neural network as the comparison of the semi-empirical holistic model based
on aging datasets from EVs. Pradyumna et al. [22] used a convolutional neural network
(CNN) to train the battery aging model based on the EIS test for accurate capacity es-
timation. Zhang et al. [23] developed a novel deep-learning approach for lithium-ion
batteries. Pan et al. [24] extracted the health indicators from the smoothed incremental
capacity curve (ICC); furthermore, an improved GPR is applied to estimate battery capacity.
Wu et al. [25] selected aging features (AFs) from the multi-source charging data, and a
GA-based support vector regression is utilized for SOH estimation. The data-driven meth-
ods are a type of model-free method to achieve online SOH estimation. As a result, great
sample data are necessary to train a “black box” with excellent nonlinear mapping and
generalization ability.
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1.2. Review of the Methods for RUL

Compared with SOH estimation, RUL cannot be measured using one or a few tests
directly. Thus, the methods for RUL prediction can only be categorized into two groups:
model-based and data-driven methods.

1.2.1. Model-Based Methods

The model tends to be an empirical model in RUL prediction, such as an exponen-
tial model, instead of a dynamic model. For instance, Zhang et al. [11] developed a
double-exponential model to predict RUL by tracking and extrapolating battery capacity
degradation through PF. Based on the same exponential model, Duong et al. [26] introduced
the Heuristic Kalman algorithm to address the sample degeneracy of PF for RUL prediction.
Wei et al. [27] established a support-vector-regression (SVR)-based aging model based on a
lumped parameter battery model; furthermore, PF is used to predict the capacity degrada-
tion. Downey et al. [28] proposed a half-cell model for degradation parameter extraction
and fitted a mathematical model to predict RUL. Liu et al. [29] used the parameters of
a simplified electrochemical model (SEM) as the state variables, and then PF is used to
achieve high-quality capacity extrapolation. Denoising and tracking are two advantages of
model-based RUL prediction; however, the empirical model cannot acclimatize to different
application scenarios.

1.2.2. Data-Driven Methods

Data-driven methods are used to predict RUL through some machine learning meth-
ods [30]. Afshari et al. [31] defined 19 features using the differential voltage and differen-
tial capacity curves, and sparse Bayesian learning is employed for early RUL prediction.
Feng et al. [32] fitted the surface temperature in a specified time range through an exponen-
tial model, and the change rate for the temperature is the AFs for predictive modelling of
capacity through the relevance vector machine (RVM). Relative to a single machine learning
method, some hybrid methods have been developed to assimilate the strong points of differ-
ent methods for better learning ability. Using AFs from the charging process, Yao et al. [33]
established an RVM model to depict the correlation between AFs and capacity, followed
by constructing an extreme learning machine (ELM) for predicting battery capacity based
on AFs. Meanwhile, the parameters of ELM and RVM are optimized by particle swarm
optimization (PSO). With adequate historical battery data, data-driven methods offer an
excellent solution to predict RUL.

1.3. Contribution of the Paper

According to the anterior analysis, SOH estimation and RUL prediction require an
accurate and robust battery aging model to quantify battery degradation. Either way, to
establish such a battery aging model, some issues need to be addressed: (1) how to link
up the online measurement information with the battery aging effectively and (2) how to
extrapolate the trend of battery aging using measurable information.

In this study, to solve the difficult problems for online SOH estimation and RUL predic-
tion, the contribution rests on three areas: (1) two online AFs are extracted to quantify the
battery capacity based on the partial charging process; (2) combined with the counted cycle
and linear regression, a close-loop framework to extrapolate the AFs is established; (3) an
optimized random forest (RF) regression model is developed to capture the underlying
mapping relationship between the AFs and capacity, then online SOH estimation and RUL
prediction are achieved.
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2. Aging Features for SOH and RUL

Battery SOH and RUL are two main indicators that reflect the battery aging level from
the perspective of capacity and cycle, respectively, as follows:{

SOH =Ci
C × 100%

RUL =Cycletotal − Cyclei
(1)

where the numerator and denominator C represent the current and rated capacity, respec-
tively. Cycle represents the number of cycles, and the subscript i and total represent the ith
cycle and the total cycles, respectively. A full charging−discharging process is defined as a
cycle. The failure threshold is set as 80% of the rated capacity.

2.1. Battery Aging Datasets and Aging Features

The open-access datasets provided by the Center for Advanced Life Cycle Engineering
(CALCE) were utilized. In the selected datasets, four prismatic battery cells (labeled CS
35, 36, 37, and 38) with a rated capacity of 1.1 Ah were tested. The detailed description
of the testing can be found in [34]. It should be noted that the four batteries were tested
with the same conditions; however, the final performances were different owing to the
inevitable inconsistency.

In [35], incremental capacity analysis (ICA) has been proven to be an effective tech-
nology to investigate battery aging. Under a constant-current charging state, the voltage
plateau can be transformed into a recognizable peak in the incremental capacity curve (ICC)
according to Equation (1).

ICC =
dQ
dV

= I × dt
dV

= I × 1
dV
dt

(2)

where Q is the charging capacity, which is the time t integral of current I. V is the terminal
voltage. Therefore, ICC can be further obtained based on the online measuring information.

According to the current research [34,35], the voltage range of 3.8–4.2 V is an impor-
tant range to evaluate battery degradation. Herein, 3.8–4.1 V is selected to calculate the
ICC for further battery aging assessment. However, the sampling noise inevitably has a
significant influence on the differential calculation. LOWESS is a non-parametric regression
technique that uses a weighted average of nearby data points to estimate a smooth curve.
It is particularly useful when dealing with noisy or non-linear data, as it can capture com-
plex relationships between variables. Therefore, the LOWESS method was employed to
smooth the noised ICC to eliminate or reduce threats of noise through the sliding window
mechanism and linear least squares. Meanwhile, the Gaussian smoothing and movmean
smoothing were used as the control groups to evaluate the smoothing performance. The
smoothing results are shown in Figure 1.
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As shown in Figure 1, the smoothed ICC by LOWESS can identify the profile of ICC
relative to the original ICC, including the peak of the incremental capacity curve (PICC)
and the area under the ICC (named charged capacity of equal voltage (CCEV)). In contrast,
Gaussian smoothing and movmean smoothing methods are both linear filters that smooth
out fluctuations in the data by averaging the nearby values. While they are useful for
removing noise and identifying trends, they may not accurately capture the underlying
relationships between variables. Therefore, LOWESS can achieve high fidelity denoising of
the noised ICC.

Furthermore, the ageing data of battery CS 38 were utilized to illustrate the evolutions
of ICCs, as shown in Figure 2, the smoothed ICC by LOWESS can identify the profile of
ICC relative to the original IC. The results indicate that ICCs exhibit a downward drift
with an increase in the number of cycles. The PICC in the ICC possesses unique features
in terms of shape, intensity, and position, providing insights into the electrochemical
process in LIBs. Previous literature suggests that the degradation of PICC observed in the
charging data may be attributed to the loss of active materials. As the cycle increases, the
active materials become unavailable for lithium insertion, leading to internal changes that
significantly impact the PICC. Additionally, such degradation mechanisms increase the
battery resistance. Overall, ICCs serve as an effective means to describe battery capacity
degradation during ageing. Therefore, the PICC and CCEV of the ICC can be extracted as
AFs to evaluate the battery aging level.
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The Pearson’s correlation coefficients Rp between the AFs and capacity are calculated
by Pearson correlation analysis according to Equation (2), to evaluate the effectiveness of
extracted Afs, and the results are shown Figure 3.

Rp =
∑ (X− X)(Y−Y)√

∑ (X− X)
2
√

∑ (Y−Y)2
(3)

where X and Y are the mean values of the AFs X and Y capacity, respectively.
Based on Figure 3, it is significant for AFS to describe battery capacity degradation.

Typically, a coefficient greater than 0.8 is considered strong, while a coefficient less than 0.5
is regarded as weak. In this case, the minimum value of Rp obtained is 0.9604, indicating
a strong correlation between the AFs and capacity degradation. Moreover, most of the
Rp values are approximately 0.98, further reinforcing the existence of a strong correlation
between these variables. Additionally, the high correlation coefficients (>0.98) obtained
between the ageing features suggest a strong coupling relationship between them. These
results provide valuable insights into the understanding of battery ageing mechanisms and
could have implications for the development of effective battery management strategies.
Based on the ICC-based AFs, SOH estimation can be further carried out.
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2.2. The Extrapolation of the Aging Features

For RUL prediction, the future aging trends need to be extrapolated standing on the
historical measurable or estimated information. The modelling based on estimated infor-
mation would introduce the predicted errors again, which leads to an inaccurate prediction
of RUL. Herein, we try to model the measure AFs for extrapolation and RUL prediction.

The two AFs can be regarded as the monotone series, respectively; meanwhile, the
cycle can be regarded as the time series. Thus, the monotonicity of AFs can be utilized to
model and predict the growing trend. For this purpose, Pearson’s correlation coefficients
are used to evaluate the relationship between the AFs and the cycle, and the results are
illustrated in Figure 4.
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Pearson’s correlation coefficient is a statistical measure that can quantify the degree
of correlation between variables. The coefficients range from −1 to +1, and a greater
coefficient implies a stronger correlation while the sign± indicates the positive and negative
correlation [36]. As shown in Figure 4, the coefficients are greater than 0.97. Such results
suggest that there are strong linear relationships between the two AFs and cycles. In other
words, linear fitting can be employed to model the trends between the AFs and cycle:{

PICCi = f (cyclei)
CCEVi = g(cyclei)

(4)

where f and g represent the two independent linear mappings. Herein, the least square
method is utilized to determine the linear mapping based on the known data. However,
the amount of online data increase gradually with battery age. The latest data need to be
incorporated with the known data to establish linear mapping. Therefore, the mechanism
of metabolism is introduced. The process of remodeling for AFs is shown in Figure 5:
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As shown in Figure 5, the modelling can be implemented as follows:
(1) Based on the offline training data, the AFs and cycle are extracted as the dependent

variable and independent variable, respectively. Then, the least square method is employed
to model the relationships between cycle and AFs; furthermore, the parameterized mapping
f and g are obtained.

(2) For a new battery, the cycle is defined as a sequence of real numbers that starts at 1.
Then, the defined cycle is fed into the parameterized mapping f and g, the outputs of f
and g are the two predicted AFs.

(3) When the battery is used, the measurable AFs and cycles are obtained. Combining
the measurable data with the offline training data based on the metabolism, the new data
are established. Then, the new data are employed to parameterize the f , g. With the
continuous charging and discharging of the battery, the measurable AFs and cycles are
used to reconstruct the modelling data continually.

Based on the predicted AFs, the further trend of battery degradation can be captured
for RUL prediction.

3. Methodologies

As mentioned previously, AFs can be utilized to evaluate the current aging state and
predict future degradation trends. How to establish a model for capturing the underlying
relationship between AFs and capacity is an important factor in SOH estimation and RUL
prediction. Herein, RF is employed to deal with this dilemma.

3.1. Random Forest Regression Optimization Model

RF is a typical bagging-based ensemble learning method that combines multiple ran-
domized decision trees and averages their outputs [37]. Through resampling the original
data using the Bootstrap sampling method, a new training set is constructed to build a
classification tree or regression tree for each new sample set using the CART method, as
well as to provide the final prediction results according to the results of all of the decision
trees. Compared with other machine learning algorithms, such as back propagation neu-
ral networks (BPNN) and SVR, RF exhibit superior scalability in processing large-scale
high-dimensional data with fewer optimization parameters. Additionally, RF’s built-in
estimation methods enhance the generalization ability of the prediction models, making it
a more advantageous approach in machine learning. A schematic representation of the RF
is depicted in Figure 6.
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As shown in Figure 6, the implementation steps of planning for RF are as follows:
(1) Bootstrap is employed to resample the origin data, and then T sample sets for

training are obtained and labeled {S1, S1, · · · ST}.
(2) The newly resampled training set is utilized to build the corresponding regression

tree model R1, R1, · · · RT . Prior to attribute selection for each internal node, T attributes
are randomly sampled from M attributes, and the optimal splitting method among these
attributes is employed to partition each node. The CART algorithm is utilized as the
splitting method. It should be noted that, unlike the decision tree algorithm, there is no
need to prune the CART. Finally, an RF model y = h(x) is determined.

(3) For unknown test samples, each regression tree can be used to calculate, and the corre-
sponding predicted value of each regression tree can be obtained {R1(X), R1(X), · · · RT(X)}.

(4) The predicted values obtained from each individual regression tree are averaged
and utilized as the final prediction outcome of the random forest model.

The new training set will not encompass all the data from the original training set
because of Bootstrap. The excluded dataset is referred to as an out-of-bag (OOB) sample.
Usually, a selection of two-thirds of the original training set samples is utilized to construct
the regression function. The remaining data constitute the OOB sample, which is the
new test set. The remaining data from the OOB sample are the new test set. Each time a
regression tree is constructed using the new training set, the performance of the regression
tree is evaluated by utilizing the OOB sample as a built-in cross-validation process. Thanks
to this, the RF algorithm is capable of computing unbiased generalization errors without
relying on unbiased estimation of such errors. The algorithm can also calculate unbiased
estimates of generalization errors without using external data subsets. In addition, this
built-in cross-validation feature enhances the ability to generalize RF algorithms using
independent test data. In addition, this built-in cross-validation feature enhances the ability
to generalize RF algorithms using independent test data. The error of OOB is calculated
as follows:

MSE ≈ MSEOOB =

s
∑

i=1
[ŷ(Xi)− yi]

2

s
(5)

where ŷ(Xi) and y(Xi) are the predicted and true values of Xi, respectively, and s is the
number of OOB samples.

Two of the most important hyperparameters in RF are necessary to determine the
following: (1) The complexity (depth) of the trees in the forest. Deep trees tend to overfit,
but shallow trees tend to underfit. (2) When growing the trees, the number of predictors
to sample at each node. How to determine the hyperparameters plays a vital role in the
prediction accuracy of RF to choose the best model.
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3.2. Bayesian Optimization

An optimization algorithm assumes that the objective function is known to obtain the
derivative and that the objective function is convex. Nonetheless, for some problems, in the
parameter adjustment process, the objective function may not have a convex form, requiring
heavy calculations and poor results. To solve such a problem, BO is developed. The core
idea of BO is to leverage prior knowledge for approximating the posterior distribution of an
unknown objective function, and subsequently selecting the next sampling hyperparameter
combination based on this distribution [38]. To approach the objective function as closely
as possible, the Bayesian algorithm adopts a proxy model, and the Gaussian process (GP)
is often used to establish such a proxy model. With the GP algorithm, prior functions
are defined that can be used to incorporate prior information about the objective function
(smoothness, for example). BO is composed of two parts: a Bayesian statistical model
is employed to represent the objective function, and an acquisition function is utilized
to determine where to sample next. After conducting the initial space-filling experiment
design, which typically involves selecting points uniformly at random to evaluate the
target; these points are then iteratively utilized to allocate the remaining budget for N
function evaluations. A typical pseudo-code of BO is shown in Algorithm 1:

Algorithm 1: Bayesian optimization

for n=1, 2, . . . , do
select new xn+1 by optimizing acquisition function α

xn+1 = arg
x
maxα(x; Dn)

query objective function to obtain yn+1
augment data Dn+1 = {Dn, (xn+1, yn+1)}
update statistical model
end for

Based on BO, two optimal hyperparameters can be obtained; furthermore, an op-
timized RF can be trained to possess excellent abilities for learning and generalization.
Then, the optimized RF can be utilized to capture the underlying correlation between AFs
and capacity.

3.3. The Flowchart for SOH and RUL

According to the optimized RF model, a framework is established for estimating
battery SOH and predicting RUL, as illustrated in Figure 7.

According to Figure 7, the process of SOH estimation and RUL prediction are described
as follows:

(1) Online AFs extraction and prediction: (1) Based on the charging process, the online
AFs are extracted to quantify the battery capacity degradation indirectly. Meanwhile, the
correlation analysis is implemented to judge the effectiveness. (2) The historical and online
AFs are modelled to predict the trends of AFs through extrapolation.

(2) Optimized random forest regression model: (1) According to the offline datasets,
the original datasets are divided into a training set and testing set. (2) BO is employed to
determine the optimal hyperparameters of RF based on the offline datasets. (3) The optimal
hyperparameter is applied to RF, and an optimized RF model is trained.

(3) Model evaluation: (1) The online extracted AFs are fed into the optimized RF model
to estimate battery capacity and calculate SOH. (2) The predicted AFs are simultaneously
fed into the optimized RF model to predict the battery capacity and RUL.
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Furthermore, the embedded development of the flowchart for BMS is implemented
based on hybrid programming through MATLAB and LabVIEW. MATLAB is regarded
as the data processing center, while LabVIEW is used to acquire data and develop the
human machine interface (HMI). In other words, MATLAB treats the online measurement
information, trains the optimized RF model, and then estimates SOH and predicts RUL.
The online information and the output are displayed on HMI by LabVIEW; meanwhile, the
results are stored locally along with metadata. The interface of BMS is shown in Figure 8.

In Figure 8, BMS can be implemented through the following steps:
(1) Offline data acquisition: The charging and discharging of the battery are imple-

mented through the Arbin battery test system.
(2) Online AFs extraction and prediction: Based on the online measurements, the

online AFs are extracted, and then the future trends of AFs are predicted based on the
online measurements and historical AFs.

(3) Online implementation: According to RF and BO, an optimal RF model is trained to
capture the correlation between AFs and capacity. Furthermore, the RF model is embedded
into LabVIEW for achieving online SOH estimation and RUL prediction based on the
extracted AFs and predicted AFs. The results are shown in HMI and saved locally.
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4. Results and Discussion

For the four batteries, batteries CS 36 and 38 are as the training datasets to obtain the
optimized RF model for BMS development, while batteries CS 35 and 37 are as the test
datasets for the validation of online SOH estimation and RUL prediction. Based on the
developed BMS, the signal collection is implemented through the file I/O interface, and
then the stored results of SOH estimation and RUL prediction for BMS are analyzed.

4.1. SOH Estimation

Taking the cycle number as the X axis, the SOH as the left Y axis, and the SOH error as
the right Y axis, draw the curves of the measured and estimated SOH, shown in Figure 9,
based on the results of SOH estimation.

Furthermore, the estimation error is analyzed from the different error evaluation
indicators, encompassing the maximum absolute error (MAE) and root mean square error
(RMSE), as illustrated in Equation (6):{

MAE = max(|y− ŷ|)
RMSE =

√
1
n ∑n

1 |y− ŷ|2
(6)

where y and ŷ are the true and estimated values, respectively; n is the number of the
sequence; and i is the index of the sequence.

The result of the statistics is shown in Table 1.
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Table 1. Error analysis of SOH estimation.

Index MAE (%) RMSE

CS 35 1.0379 0.4185
CS 37 2.5925 1.0976
Mean 1.8152 0.7581

Batteries 2023, 9, x FOR PEER REVIEW 12 of 17 
 

The result of the statistics is shown in Table 1. 

Table 1. Error analysis of SOH estimation. 

Index MAE (%) RMSE 

CS 35 1.0379 0.4185 

CS 37 2.5925 1.0976 

Mean 1.8152 0.7581 

 

 

Figure 9. BMS for online battery SOH estimation and SOH prediction: (a) CS35 and (b) CS37. 

Based on Figure 9 and Table 1, the following can be drawn: 

(1) As the cycle increases, the battery SOH has a nonlinear decreasing tendency. In 

addition, the local battery capacity regeneration phenomenon plays a vital role in battery 

capacity degradation. The phenomenon brings great difficulty to accurate capacity track-

ing. 

(2) The optimized RF model is capable of achieving precise battery SOH estimation. 

The estimated SOH has a high degree of coincidence with the measured SOH. However, 

the degree of deviation in the local capacity regeneration stage is greater than in the global 

degradation stage. 

(3) From the perspective of SOH estimation error, the maximum MAE and RMSE for 

the two batteries are 2.5925 and 1.0976, respectively. In addition, the mean MAE and 

EMSE are 1.8152 and 0.7581, respectively, the mean MAE and RMSE suggest that the de-

veloped BMS can achieve accurate SOH estimation. 

4.2. RUL Prediction 

Similarly, taking the cycle number as the X axis, the RUL as the left Y axis, and the 

RUL error as the right Y axis, the curves of the measured and estimated SOH are drawn 

as shown in Figure 10 based on the results of RUL estimation. 

Figure 9. BMS for online battery SOH estimation and SOH prediction: (a) CS35 and (b) CS37.

Based on Figure 9 and Table 1, the following can be drawn:
(1) As the cycle increases, the battery SOH has a nonlinear decreasing tendency. In

addition, the local battery capacity regeneration phenomenon plays a vital role in battery
capacity degradation. The phenomenon brings great difficulty to accurate capacity tracking.

(2) The optimized RF model is capable of achieving precise battery SOH estimation.
The estimated SOH has a high degree of coincidence with the measured SOH. However,
the degree of deviation in the local capacity regeneration stage is greater than in the global
degradation stage.

(3) From the perspective of SOH estimation error, the maximum MAE and RMSE for
the two batteries are 2.5925 and 1.0976, respectively. In addition, the mean MAE and EMSE
are 1.8152 and 0.7581, respectively, the mean MAE and RMSE suggest that the developed
BMS can achieve accurate SOH estimation.

4.2. RUL Prediction

Similarly, taking the cycle number as the X axis, the RUL as the left Y axis, and the
RUL error as the right Y axis, the curves of the measured and estimated SOH are drawn as
shown in Figure 10 based on the results of RUL estimation.
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Furthermore, the estimation error is analyzed from the different error evaluation
indicators, consisting of MAE and RMSE. The results of the statistics are shown in Table 2.

Table 2. Error analysis of RUL prediction.

Index MAE (Cycle) RMSE

CS 35 32 20.3961
CS 37 32 29.3198
Mean 32 24.8580

Based on Figure 10 and Table 2, the following can be drawn:
(1) As the cycle increases, RUL continues to gradually decline. Combined with the

definition of RUL, there is a significant negative linear correlation between the number of
cycles and the measured RUL.

(2) The predicted RUL can track the measured RUL, and the predicted curves vibrate
around the true RUL. In addition, the differences between the measured and predicted
RUL remain basically unchanged during the full life cycle. According to the predicted RUL,
the developed BMS can achieve continuous RUL prediction.

(3) In the whole prediction process, the maximum MAE and RMSE for the two batteries
are 32 and 29.3198 cycles. Furthermore, the mean MAE and RMSE are 32 and 24.8580 cycles,
respectively. Comparatively speaking, the developed BMS can predict the RUL with a high
accuracy continuously.

4.3. Discussion

For providing a fair performance comparison, different methods are implemented for
SOH estimation and RUL prediction with the same framework; herein, the traditional BP
neural network (BPNN) with a single hidden layer, 20 nodes, and a Sigmoid activation
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function [39]; SVM with a radial basis kernel function [35]; and RF without optimization are
selected. Meanwhile, the means of evaluation indexes for the two batteries are calculated,
and the results are shown in Table 3.

Table 3. Error comparison analysis.

Batteries Index Mean MAE Mean RMSE

BPNN
SOH estimation 2.6138 1.0838
RUL prediction 33.5 28.2835

SVM
SOH estimation 3.1786 1.3333
RUL prediction 33.5 33.5

RF
SOH estimation 2.7293 1.1627
RUL prediction 33.5 30.6125

According to the results shown in Table 3, the mean MAEs of SOH estimation for
the three methods are 2.6138, 3.1786, and 2.7293, and the mean RMSEs are 1.0838, 1.3333,
and 1.1627; for RUL prediction, the mean MAEs are about 33.5, while the mean RMSEs
are 28.2835, 33.5, and 30.6125. Relatively speaking, BPNN has the best performance for
the SOH estimation and RUL prediction in the three methods; however, the results are
still worse than the proposed optimization model. Especially, RF without optimization
cannot determine the appropriate hyperparameters; thus, the estimation or prediction
performance is lower than the RF optimization model.

To sum up, the excellent SOH estimation and RUL prediction suggest that the devel-
oped optimized RF model and BMS can achieve the effective online application of PHM. As
the main components of the framework, the embedded method for BMS plays a crucial role.

(1) The bagging is employed in RF to avoid the correlation among multiple decision
trees. Furthermore, the diversity of the trees can be improved by constructing different
subsets of training data. Therefore, the RF model becomes more robust to slight variations
in input data due to greater stability by utilizing bagging; also, bagging reduces noise
through generating non-correlated trees using different training samples.

(2) It is necessary for the RF model to only tune two hyperparameters. Herein, BO is
effective at addressing optimization problems where the objective function is unknown
or a black-box function. BO amalgamates the function’s prior distribution with the sam-
ple information (evidence) to derive the function’s posterior property, and subsequently
employs this information to ascertain the optimal position of the said function based on
predetermined criteria. Therefore, in a small number of samples, BO can achieve high
accuracy in a short time.

(3) The development of co-simulation using LabVIEW and MATLAB for verification
of the optimized RF model is carried out. Based on BMS, the co-simulation technology
brings about a new idea to implement the simulation of the hardware in the loop.

5. Conclusions

In this study, an optimized RF model is developed for online SOH estimation and
RUL prediction, as follows:

(1) Based on the partial charging data, two ICC-based AFs are extracted. In addition,
the AFs are proven to have a strong correlation with battery capacity and quantify the
battery capacity degradation.

(2) An RF model is developed to capture the underlying relationship between battery
capacity and AFs. Meanwhile, BO is employed to determine the hyperparameters of the
RF model, in order to obtain an optimized RF model.

(3) The developed RF optimization model is deployed through co-simulation using
LabVIEW and MATLAB for online SOH estimation and RUL prediction. The aging datasets
are employed to validate the effectiveness of the proposed method with an average SOH
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estimation error of less than 1.8152% and an average RUL prediction error of less than
32 cycles.

This work does not take into account the influence of the different temperature and
the failure thresholds. In future work, we will pay more attention to the temperature and
threshold variations. On the other hand, the digitally controlled power supply embedded
in the RF optimization model will be used to develop an estimator in the charger for online
estimation of battery in-loop capacity under more uncontrolled environmental factors.
Meanwhile, the echelon utilization of the retired EVs needs to be researched.
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Nomenclature

EV Electric vehicle
PHM Prognostics and health management
SOH State of health
RUL Remaining useful life
EM Electrochemical model
ECM Equivalent circuit model
PF Particle filter
SOC State of charge
EKF Extended Kalman filter
AF Aging feature
BO Bayesian optimization
BMS Battery management system
RF Random forest
SVR Support vector regression
EIS Electrochemical impedance spectroscopy
RVM Relevance vector machine
ELM Extreme learning machine
ICC Incremental capacity curve
ICA Incremental capacity analysis
PSO Particle swarm optimization
LOWESS Locally weighted scatterplot smoothing
PICC Peak of the incremental capacity curve
CCEV Charged capacity of equal voltage
BPNN Back propagation neural networks
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