Charting Policy Directions for Mining’s Sustainability with Circular Economy
Abstract
:1. Introduction
2. Circular Economy and Its Configurations for Sustainability
3. Life Cycle and Systems Thinking in Circular Economy Configuration for Policy Directions
4. A Proposed Framework for Developing Circular Economy Policy Recommendations for Mining
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mudd, G.M. Australia’s mining legacies. Arena Mag. 2013, 124, 19–24. [Google Scholar]
- Mudd, G.M. The environmental sustainability of mining in Australia: Key mega trends and looming constraints. Resour. Policy 2009, 35, 98–115. [Google Scholar] [CrossRef]
- CIRAIG. Circular Economy: A Critical Literature Review of Concepts; CIRAIG: Montréal, QC, Canada, 2015. [Google Scholar]
- Geng, Y.; Doberstein, B. Developing the circular economy in China: Challenges and opportunities for achieving “leapfrog development”. Int. J. Sustain. Dev. World 2008, 15, 231–239. [Google Scholar] [CrossRef]
- Preston, F. A Global Redesign? Shaping the Circular Economy. Briefing Paper EERG BP2012/02; Energy, Environment and Resource Governance, Chatham House: London, UK, 2012. [Google Scholar]
- Lowe, E.A.; Evans, L.K. Industrial ecology and industrial ecosystems. J. Clean. Prod. 1995, 1–2, 47–53. [Google Scholar] [CrossRef]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; A/Res/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Goodland, R. Responsible mining: The key to profitable resource development. Sustainability 2012, 4, 2099–2126. [Google Scholar] [CrossRef]
- Hilson, G.; Murck, B. Sustainable development in the mining industry: Clarifying the corporate perspective. Resour. Policy 2000, 26, 227–238. [Google Scholar] [CrossRef]
- Reid, C.; Bécaert, V.; Aubertin, M.; Rosenbaum, R.K.; Deschênes, L. Life cycle assessment of mine tailings management in Canada. J. Clean. Prod. 2008, 17, 471–479. [Google Scholar] [CrossRef]
- Zhijun, F.; Nailing, Y. Putting circular economy into practice in China. Sustain. Sci. 2007, 2, 95–101. [Google Scholar] [CrossRef]
- Mathews, J.A.; Tan, H. Progress toward a circular economy in China: The drivers (and inhibitors) of eco-industrial initiative. J. Ind. Ecol. 2011, 15, 435–457. [Google Scholar] [CrossRef]
- Geng, Y.; Fu, J.; Sarkis, J.; Xue, B. Towards a national circular economy indicator system in China: An evaluation and critical analysis. J. Clean. Prod. 2011, 23, 216–224. [Google Scholar] [CrossRef]
- Jian, Z.; Kun, H. Research on early-warning method and its application of complex system of circular economy for oil and gas exploitation. Energy Procedia 2011, 5, 2040–2047. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Delivering the Circular Economy—A Toolkit for Policymakers. Available online: http://www.ellenmacarthurfoundation.org/assets/downloads/publications/EllenMacArthurFoundation_PolicymakerToolkit.pdf (accessed on 26 April 2016).
- Geng, Y.; Zhu, Q.; Doberstein, B.; Fujita, T. Implementing China’s circular economy concept at the regional level: A review of progress in Dalian, China. Waste Manag. 2009, 29, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Xiao, Z.; Zhou, R.; Deng, W.; Wang, M.; Ma, S. Ecological utilization of leather tannery waste with circular economy model. J. Clean. Prod. 2010, 19, 221–228. [Google Scholar] [CrossRef]
- Ying, J.; Li-jun, Z. Study on green supply chain management based on circular economy. Phys. Procedia 2012, 25, 1682–1688. [Google Scholar] [CrossRef]
- Li, X.; Deng, B.; Ye, H. The research based on the 3-R principle of agro-circular economy model-the Erhai lake basin as an example. Energy Procedia 2011, 5, 1399–1404. [Google Scholar]
- Zhu, Q.; Geng, Y.; Lai, K. Environmental supply chain cooperation and its effect on the circular economy practice and performance relationship among Chinese manufacturers. J. Ind. Ecol. 2011, 15, 405–419. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Z.; Li, Z.; Qin, A.J. Discussion on the model of mining circular economy. Energy Procedia 2011, 16, 438–443. [Google Scholar] [CrossRef]
- Zeng, S.; Zhang, H. Promoting low-carbon development of electric power industry in China: A circular economy efficiency perspective. Energy Procedia 2011, 5, 2540–2548. [Google Scholar] [CrossRef]
- Yuan, Z.; Bi, J.; Moriguichi, Y. The circular economy—A new development strategy in China. J. Ind. Ecol. 2006, 10, 4–8. [Google Scholar] [CrossRef]
- Haas, W.; Krausmann, F.; Wiedenhofer, D.; Heinz, M. How circular is the global economy? J. Ind. Ecol. 2015. [Google Scholar] [CrossRef]
- Reh, L. Process engineering in circular economy. Particuology 2012, 11, 119–133. [Google Scholar] [CrossRef]
- Jun, H.; Xiang, H. Development of circular economy is a fundamental way to achieve agriculture sustainable development in China. Energy Procedia 2011, 5, 1530–1534. [Google Scholar] [CrossRef]
- Kun, H.; Jian, Z. Circular economy strategies of oil and gas exploitation in China. Energy Procedia 2011, 5, 2189–2194. [Google Scholar] [CrossRef]
- Li, R.H.; Su, C.H. Evaluation of the circular economy development level of Chinese chemical enterprises. Environ. Sci. Procedia 2011, 13, 1595–1601. [Google Scholar] [CrossRef]
- Ru-yin, L.; Xiao-ting, Z. Negative entropy mechanism of the circular economy development countermeasures in the mining area. Procedia Earth Planet. Sci. 2009, 1, 1678–1685. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H. Development of circular economy and optimization of industrial structure for Shandong province. Energy Procedia 2011, 5, 1603–1610. [Google Scholar]
- Yong, Ren. The circular economy in China. J. Mater. Cycles Waste Manag. 2007, 9, 121–129. [Google Scholar] [CrossRef]
- Zhu, Q.; Geng, Y.; Lai, K. Circular economy practices among Chinese manufacturers varying in environmental-oriented supply chain cooperation and the performance implications. J. Environ. Manag. 2010, 91, 1324–1331. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, R. Circular economy: Materials scarcity, European Union policy and foundations of a circular economy. In Handbook for a Sustainable Economy; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Pauliuk, S.; Wang, T.; Müller, D.B. Moving toward the circular economy: The role of stocks in the Chinese steel cycle. Environ. Sci. Technol. 2012, 46, 148–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Wen, Z.; Chen, J.; Wen, Z. Mode of circular economy in China’s iron and steel industry: A case study in Wu’an city. J. Clean. Prod. 2013, 64, 505–512. [Google Scholar] [CrossRef]
- Bauer, C.; Buchgeister, J.; Hischier, R.; Poganietz, W.R.; Schebek, L.; Warsen, J. Towards a framework for life cycle thinking in the assessment of nanotechnology. J. Clean. Prod. 2007, 16, 910–926. [Google Scholar] [CrossRef]
- Heiskanen, E. The institutional logic of life cycle thinking. J. Clean. Prod. 2002, 10, 427–437. [Google Scholar] [CrossRef]
- Hunkeler, D.; Rebitzer, G. The future of life cycle assessment. Int. J. LCA 2005, 10, 305–308. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Schau, E.M.; Lehmann, A.; Traverso, M. Towards life cycle sustainability assessment. Sustainability 2010, 2, 3309–3322. [Google Scholar] [CrossRef]
- Song, X.; Yang, J.; Lu, B.; Li, B.; Zeng, G. Identification and assessment of environmental burdens of Chinese copper production from a life cycle perspective. Front. Environ. Sci. Eng. 2014, 8, 580–588. [Google Scholar] [CrossRef]
- Suppen, N.; Carranza, M.; Huerta, M.; Hernández, M.A. Environmental management and life cycle approaches in the Mexican mining industry. J. Clean. Prod. 2005, 14, 1101–1115. [Google Scholar] [CrossRef]
- Ditsele, O.; Awuah-Offei, K. Effect of mine characteristics in life cycle impacts of US surface coal mining. Int. J. Life Cycle Assess. 2011, 17, 287–294. [Google Scholar] [CrossRef]
- Mangena, S.J.; Brent, A.C. Application of a life cycle impact assessment framework to evaluate and compare environmental performances with economic values of supplied coal products. J Clean. Prod. 2005, 14, 1071–1084. [Google Scholar] [CrossRef]
- Tan, R.B.H.; Khoo, H.H. An LCA study of a primary aluminum supply chain. J Clean. Prod. 2004, 13, 607–618. [Google Scholar] [CrossRef]
- Wörlen, S.; Kistinger, S.; Deissmann, G. Integration of life cycle assessments in the decision-making process for environmental protection measures and remedial action at active and abandoned mining sites. In Uranium in the Environment; Merkel, B.J., Hasche-Berger, A., Eds.; Springer: Berlin, Germany, 2006. [Google Scholar]
- Peña, C.A.; Huijbregts, M.A.J. The blue water footprint of primary copper production in northern Chile. J. Ind. Ecol. 2013, 18, 49–58. [Google Scholar] [CrossRef]
- Durucan, S.; Korre, A.; Munoz-Melendez, G. Mining life cycle modelling: A cradle-to-gate approach to environmental management in the minerals industry. J. Clean. Prod. 2005, 14, 1057–1070. [Google Scholar] [CrossRef]
- Balanay, R.; Halog, A. Promoting life cycle thinking for sustainability in the mining sector of the Philippines. Int. J. Life Cycle Assess. 2016. [Google Scholar] [CrossRef]
- Arbault, D.; Rivière, M.; Rugani, B.; Benetto, E.; Tiruta-Barna, L. Integrated earth system dynamic modelling for life cycle impact assessment of ecosystem services. Sci. Total Environ. 2013, 472, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Lottermoser, B.G. Mine Wastes-Characterization, Treatment and Environmental Impacts, 3rd ed.; Springer: Berlin, Germany, 2010. [Google Scholar]
- Lottermoser, B.G. Mine Wastes-Characterization, Treatment and Environmental Impacts, 2nd ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Halog, A.; Manik, Y. Advancing integrated systems modelling framework for life cycle sustainability assessment. Sustainability 2011, 3, 469–499. [Google Scholar] [CrossRef]
- Van Beers, D.; Corder, G.; Bossilkov, A.; van Berkel, R. Industrial symbiosis in the Australian minerals industry. J. Ind. Ecol. 2007, 11, 55–72. [Google Scholar] [CrossRef]
- Shadrunova, I.V.; Orekhova, N.N. A process for advanced recycling of water originating from mining operations, with metal recovery. Mine Water Environ. 2015, 34, 478–484. [Google Scholar] [CrossRef]
- Lottermoser, B.G. Recycling, reuse and rehabilitation of mine wastes. Elements 2011, 7, 405–410. [Google Scholar] [CrossRef]
- Côte, C.M.; Moran, C.J.; Hedemann, C.J.; Koch, C. Systems modelling for effective mine water management. Environ. Model. Softw. 2010, 25, 1664–1671. [Google Scholar] [CrossRef]
- Gunson, A.J.; Klein, B.; Veiga, M.; Dunbar, S. Reducing mine water requirements. J. Clean. Prod. 2011, 21, 71–82. [Google Scholar] [CrossRef]
- Salinas-Martínez, A.; de los Santos-Córdova, M.; Soto-Cruz, O.; Delgado, E.; Pérez-Andrade, H.; Háuad-Marroquín, L.A.; Medrano-Roldán, H. Development of a bioremediation process by biostimulation of native microbial consortium through the heap leaching technique. J. Environ. Manag. 2007, 88, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Roh, C.; Kang, C.; Lloyd, J.R. Microbial bioremediation processes for radioactive wastes. Korean J. Chem. Eng. 2015, 32, 1720–1726. [Google Scholar] [CrossRef]
- Mkandawire, M. Biogeochemical behavior and bioremediation of uranium in waters of abandoned mines. Environ. Sci. Pollut. Res. 2013, 20, 7740–7767. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Nongkynrih, J.M. Metal hyperaccumulation and bioremediation. Biol. Plant. 2007, 51, 618–634. [Google Scholar] [CrossRef]
- Doering, C.; Bollhöffer, A. A soil radiological quality guideline value for wildlife-based protection in uranium mine rehabilitation. J. Environ. Radioactiv. 2015, 151, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Kaplunov, D.R.; Ryl’nikova, M.V.; Radchenko, D.N. Utilization of renewable energy sources in hard mineral mining. J. Min. Sci. 2015, 51, 111–117. [Google Scholar] [CrossRef]
- Pontt, J.; Yianatos, J.; Bergh, L.; Valderrama, W.; Rojas, F.; Olivares, M.; Robles, H.; López, M. Impact of Process and Energy Efficiency in Mineral Processing on Abatement of Carbon Emissions; IEEE: New York, NY, USA, 2010. [Google Scholar]
- Dubreuil, A.; Young, S.B.; Atherton, J.; Gloria, T.P. Metals recycling maps and allocation procedures in life cycle assessment. Int. J. Life Cycle Assess. 2010, 15, 621–634. [Google Scholar] [CrossRef]
- Corder, G.D.; Golev, A.; Giurco, D. “Wealth from metal wastes”: Translating global knowledge on industrial ecology to metals recycling in Australia. Miner. Eng. 2014, 76, 2–9. [Google Scholar] [CrossRef]
- Ayres, R.U. Metals recycling: Economic and environmental implications. Resour. Conserv. Recycl. 1997, 21, 145–173. [Google Scholar] [CrossRef]
- Ňancucheo, I.; Hedrich, S.; Johnson, D.B. New microbiological strategies that enable the selective recovery and recycling of metals from acid mine drainage and mine process waters. Miner. Mag. 2012, 76, 2683–2692. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, Y.; Cheng, Z. Removal of heavy metal ions using chitosan and modified chitosan. J. Mol. Liq. 2015, 214, 175–191. [Google Scholar] [CrossRef]
- Garcia, V.; Häyrynen, P.; Landaburu-Aguirre, J.; Pirilä, M.; Keiski, R.L.; Urtiaga, A. Purification techniques for the recovery of valuable compounds from acid mine drainage and cyanide tailings: Application of green engineering principles. J. Chem. Technol. Biotechnol. 2014, 89, 803–813. [Google Scholar] [CrossRef]
- Fangdao, Q.; Lianjun, T.; Huimin, Z.; Na, Z. Decomposition analysis on direct material input and dematerialization of mining cities in northeast China. Chin. Geogr. Sci. 2009, 19, 104–112. [Google Scholar]
- Ruth, M. Dematerialization in five US metals sectors: Implications for energy use and CO2 emissions. Resour. Policy 1998, 24, 1–18. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, M. Management of used and end-of-life mobile phones in Korea: A review. Resour. Conserv. Recycl. 2010, 55, 11–19. [Google Scholar] [CrossRef]
- Tan, Q.; Zeng, X.; Ijomah, W.L.; Zheng, L.; Li, J. Status of end-of-life electronic product remanufacturing in China. J. Ind. Ecol. 2014, 18, 577–587. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, F. End-of-life vehicle recovery in China: Consideration and innovation following the EU ELV directive. JOM 2009, 61, 45–52. [Google Scholar] [CrossRef]
CE Layers | Some Examples of Technologies and Approaches | Sources |
---|---|---|
Enterprise (micro) | Facility and process engineering improvement (e.g., dry quenching and dry-dedusting techniques for blast furnaces and converter flue gas, comprehensive use of water, flue gas and all solid wastes, regenerative combustion technology, gas recycling technology, blast furnace top gas recoveryunit technology, sintering desulfurization, use of retorts, etc.) Red, Rec, O, L | [29,35] |
Mine water recycling Rec, L | [54,55] | |
Mine water management Red, O | [56,57] | |
Bioremediation Red, E | [58,59,60,61] | |
Mine rehabilitation (e.g., progressive type) Red, R | [55,62] | |
Shift to renewable energy and decarbonization Red, R | [63,64] | |
Inter-enterprise (meso) | Mine waste re-utilization Reu, S, E | [29,55] |
Metals recycling Rec, L | [65,66,67] | |
Heavy metals recovery (from tailings and mine water) Reu, E | [68,69,70] | |
Structural adjustment (improvement in industrial layout: regional industrial transfers and relocation) Red, O | [35] | |
Society (macro) | Dematerialization Red, V | [71,72] |
Extension of end of life (EoL) of products from mining Red, V | [73,74,75] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balanay, R.; Halog, A. Charting Policy Directions for Mining’s Sustainability with Circular Economy. Recycling 2016, 1, 219-231. https://doi.org/10.3390/recycling1020219
Balanay R, Halog A. Charting Policy Directions for Mining’s Sustainability with Circular Economy. Recycling. 2016; 1(2):219-231. https://doi.org/10.3390/recycling1020219
Chicago/Turabian StyleBalanay, Raquel, and Anthony Halog. 2016. "Charting Policy Directions for Mining’s Sustainability with Circular Economy" Recycling 1, no. 2: 219-231. https://doi.org/10.3390/recycling1020219
APA StyleBalanay, R., & Halog, A. (2016). Charting Policy Directions for Mining’s Sustainability with Circular Economy. Recycling, 1(2), 219-231. https://doi.org/10.3390/recycling1020219