
Academic Editor: Huijuan Dong

Received: 24 October 2024

Revised: 11 January 2025

Accepted: 17 January 2025

Published: 1 February 2025

Citation: Shin, S.; Kim, G.; Kim, J.;

Kim, H.; Park, S. Assessment of the

Applicability of Waste Concrete Fine

Powder as a Raw Material for Cement

Clinker. Recycling 2025, 10, 17.

https://doi.org/10.3390/

recycling10010017

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Assessment of the Applicability of Waste Concrete Fine Powder
as a Raw Material for Cement Clinker
Sangchul Shin 1 , Geonwoo Kim 2,*, Jinman Kim 2,* , Haseog Kim 3 and Sungyu Park 4

1 Environment-Friendly Concrete Research Institute, Kongju National University,
Cheonan 31080, Republic of Korea

2 Department of Architectural Engineering, Kongju National University, Cheonan 31080, Republic of Korea
3 Institute of Technology, Dodam E&C Ltd., Cheonan 31080, Republic of Korea
4 Department of Architectural Engineering, Mokwon University, Daejeon 35349, Republic of Korea
* Correspondence: wooowoo98@naver.com (G.K.); jmkim@kongju.ac.kr (J.K.)

Abstract: The cement industry is responsible for a significant portion of global CO2 emis-
sions, primarily due to the decarbonatization of limestone during clinker production. To
mitigate this environmental impact, this study investigated the feasibility of using waste
concrete fine powder, produced during the recycling of waste concrete, as a decarbonized
raw material in cement clinker production. As a decarbonized material, waste concrete fine
powder presents a valuable opportunity to reduce CO2 emissions typically produced dur-
ing the decarbonatization of limestone in clinker production. In addition, its use supports
the recycling of construction waste, contributing to both emissions reduction and resource
sustainability. In this study, samples were collected from 20 intermediate treatment plants
in South Korea, where the chemical composition, particle size distribution, and carbonation
rate of the fine powders were analyzed. The experimental results show that the properties
of waste concrete fine powder vary significantly depending on the recycling process. Road
construction aggregate production plants, which typically involve two to three crushing
stages, produce fine powders with higher CaO content (28–31%) and consistent particle
size distributions. In contrast, plants producing aggregates for concrete, which involve four
to six crushing stages, produce powders with lower CaO content (around 20%) and greater
variability in particle size. The average carbonation rate of 7.44% suggests that these fine
powders can replace limestone in clinker production. It is estimated that substituting 5% of
limestone with waste concrete fine powder could reduce CO2 emissions from limestone
decarbonatization by approximately 952,560 tons in 2023, representing a 3.34% decrease
in total emissions from clinker production. However, it is important to note that the CO2

emissions reduction calculation is not from a lifecycle perspective, without considering the
energy-related emissions from recycling waste concrete fine powder. Nevertheless, this
study highlights the potential for waste concrete fine powder to serve as a sustainable raw
material for the cement industry, contributing to both CO2 reduction and efficient recycling
of construction waste.

Keywords: cement clinker production; waste concrete fines; CO2 emissions reduction;
recycled aggregate; carbonation rate

1. Introduction
In South Korea, the cement industry is a representative high-greenhouse gas (GHG)-

emitting industry, releasing approximately 39 million tons of GHGs annually as of
2019 [1–3]. Limestone, which accounts for approximately 90% of the raw materials used to

Recycling 2025, 10, 17 https://doi.org/10.3390/recycling10010017

https://doi.org/10.3390/recycling10010017
https://doi.org/10.3390/recycling10010017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/recycling
https://www.mdpi.com
https://orcid.org/0000-0003-4017-6636
https://orcid.org/0000-0003-3129-3355
https://doi.org/10.3390/recycling10010017
https://www.mdpi.com/article/10.3390/recycling10010017?type=check_update&version=1


Recycling 2025, 10, 17 2 of 17

produce clinker—the semi-finished product of cement—is a major source of CO2 emissions
in cement manufacturing. Because limestone is composed of calcium carbonate, containing
about 44% CO2 by weight, it releases CO2 into the atmosphere during the decarbonatization
process in the kiln as part of the chemical reaction required for clinker production [4–6]. As
shown in Figure 1, the decarbonatization process, which precedes calcination in cement
manufacturing, emits substantial amounts of CO2 due to the decomposition of limestone. It
is estimated that CO2 emissions from this process account for approximately 60–65% of the
total emissions in the cement production process [7–9]. In South Korea, clinker production
has remained at an average of 43.2 million tons/year for the past five years, requiring
the consumption of approximately 71.3 million tons of raw materials annually [10]. As
shown in Table 1, the use of limestone in the cement manufacturing process in South Korea
averages 64.2 million tons/year, resulting in annual CO2 emissions of 24.2 million tons. If
current trends continue, cumulative CO2 emissions are projected to reach 630 million tons
by 2050.
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Table 1. Annual clinker production and limestone-related CO2 emissions in South Korea (2019–2023).

Category 2019 2020 2021 2022 2023 Average

Clinker Production (Mt) 45.9 41.8 43.4 42.8 41.9 43.2

Mixed Raw Materials Usage (Mt) 75.8 69.1 71.7 70.8 69.3 71.3

Limestone Usage (Mt) 68.2 62.2 64.6 63.7 62.3 64.2

Limestone-origin CO2 generation (Mt) 25.7 23.4 24.3 24.0 23.5 24.2

One of the most effective methods to reduce carbon emissions in cement production is
to lower the clinker factor by reducing clinker production and usage, thereby increasing
the use of blended cement with lower clinker content. Numerous studies on low-carbon
blended cement, such as Portland limestone cement, calcined clay-based blended cement,
multi-component blended cement, and calcareous fly ash-based cement with pozzolanic ad-
ditives (e.g., fumed silica, Na2SiO3), have been globally published [11–13]. Research related
to so-called supplementary cementitious materials (SCMs) can be considered highly ad-
vanced [14,15]. However, to significantly reduce the cement industry’s total CO2 emissions,
it is necessary to conduct further research focused on reducing emissions from the decar-
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bonatization process, which constitutes a major portion of the industry’s carbon footprint.
The high carbon emissions from decarbonatization are attributed to the carbon content
in the raw materials. Therefore, developing technologies that use already decarbonized
materials as clinker raw materials is crucial. In this study, we focused on domestically
generated waste concrete fine powder.

At the end of its service life, concrete becomes construction waste, with waste concrete
accounting for the largest portion (62%) of construction waste, generating over 47.5 million
tons in 2022 [16]. Waste concrete consists of cement paste and aggregates. Numerous
studies have examined waste concrete to address the domestic shortage of aggregates in
South Korea [17,18]. The process of producing recycled aggregate from waste concrete
is multi-step, typically involving various crushing and grinding stages and the use of
debris removal equipment. Most production processes employ high-impact forces on
waste concrete to separate aggregates from cement paste, though this method does not
efficiently remove all cement paste attached to the aggregate surface and may damage the
aggregate [19–21]. As a result, recycled aggregates produced by this method are of lower
quality and have limited applications due to the significant hardened cement paste adhering
to them. To address this technical limitation, several studies have focused on peeling and
crushing technologies that leverage the differences in strength between cement paste and
aggregates to achieve efficient separation [22–24]. These technologies aim to improve the
final quality of recycled aggregates by separating cement paste without damaging the
aggregates [25,26].

The process of separating aggregates from cement paste inevitably produces waste
concrete fine powder, primarily composed of cement paste. Waste concrete fine powder
consists of unhydrated cement and hydration products, such as calcium hydroxide and
calcium silicate hydrate [27–29]. Although waste concrete powder exhibits some pozzolanic
activity due to unreacted clinker and reactive silica from fine aggregates, it is primarily
regarded as a filler [30–32]. However, because its chemical composition is similar to that of
cement, using it as a clinker raw material rather than as an SCM may be more appropriate.
Gastaldi et al. demonstrated the potential of using waste concrete powder as a clinker raw
material based on laboratory-scale experiments in which they synthesized pure cement
paste without impurities [33]. Zhutovsky et al. analyzed the phase changes in hydrated
cement paste heat-treated at temperatures between 600 and 1450 ◦C, confirming the po-
tential for its complete recovery as new clinker [34]. Additionally, Schoon et al. reviewed
various classification and separation technologies for aggregates and fines from actual
waste concrete, concluding that waste concrete powder could be used as a limestone substi-
tute in clinker production [35]. Waste concrete fine powder comprises unhydrated cement
and cement hydration products, as described above. Although certain hydration products
may undergo recarbonation, most exist in a decarbonized state, making them suitable raw
materials for clinker production, significantly reducing CO2 emissions. However, the use
of waste concrete powder as a limestone substitute in cement plants remains untested, and
research is still limited.

In this study, we investigated the feasibility of utilizing waste concrete fine powder, a
byproduct of recycled aggregate production, as an alternative raw material to limestone
in clinker manufacturing. The distinct physical and chemical properties of waste concrete
fine powder, including its decarbonized state and carbonation rate, are hypothesized
to enable its effective substitution for limestone, which could potentially reduce CO2

emissions and promote the recycling of construction waste. In South Korea, variations in
recycled aggregate production systems, particularly in the type and frequency of crushers
used, result in differing qualities of waste concrete fine powder. Accordingly, to evaluate
its suitability as a clinker raw material, this study analyzed the physical and chemical
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properties of fine powders obtained from various recycling processes and quantified
their carbonation rates. Furthermore, based on the carbonation rate, the potential CO2

reduction achieved by replacing limestone with waste concrete fine powder was estimated,
highlighting its significant environmental benefits. As a result, the findings contribute to
advancing decarbonization strategies in the cement industry while also enhancing resource
efficiency and mitigating environmental impacts.

2. Materials and Methods
2.1. Sample Collection

The waste concrete fine powder used in this experiment was collected from 20 in-
termediate treatment companies across South Korea. Based on the intended use of the
aggregates, 12 samples were obtained from recycled aggregate production processes for
road construction, and 8 samples were obtained from recycled aggregate production pro-
cesses for concrete. The regional distribution of the recycled aggregates produced from
waste concrete, categorized based on their intended use, is shown in Figure 2.
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2.2. Experimental Plan and Method

Table 2 shows the experimental plan for this study. To collect the fine powder gen-
erated from waste concrete, recycled aggregates produced in various regions across the
country were sieved to collect powder particles smaller than 300 µm, using the vibrating
sieve classifier shown in Figure 3. The collected fine powder was analyzed for chemical
composition, particle size distribution, and carbonation rate. The chemical composition
was measured according to KS L 5222, Chemical Analysis Method of Cement by X-ray Fluores-
cence [36]. Additionally, the particle size distribution was analyzed using laser diffraction
technology, following ISO 13320, Particle Size Analysis—Laser Diffraction Methods [37]. This
method, which measures the angle change of scattered light based on the intensity of light
passing through dispersed fine particle samples, was applied to measure particle sizes
within a range of 10 nm to 3.5 mm. The carbonation rate was measured according to
ASTM E1131, Standard Test Method for Compositional Analysis by Thermogravimetry [38], and
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determined by quantifying the conversion of calcium-based hydrates to calcium carbonate
through the measurement of mass changes in the 600–900 ◦C range.

Table 2. Experimental plan.

Analytical Samples Target Sample Test Items

20 samples Less than 300 µm waste
concrete fine powder

• Chemical composition
• Particle size distribution
• Carbonation rate
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2.3. CO2 Reduction Calculation

In this study, we evaluated the environmental benefits of replacing limestone with
waste concrete fine powder in clinker production. The CO2 reduction potential achieved
by replacing limestone with waste concrete fine powder was calculated using Equation (1).
The parameters used in the calculation are defined as follows:

∆CO2 =
(
Ec × Ecc ×

(
1 − Cwcp

)
× Rsub

)
× Qc (1)

where
∆CO2: Total CO2 reduction (tons)
Ec: CO2 emission factor per ton of clinker
Ecc: Proportion of CO2 emissions from CaCO3 decarbonatization
Cwcp: Carbonation rate of waste concrete fine powder
Rsub: Substitution rate of waste concrete fine powder for limestone
Qc: Total domestic clinker production

3. Results and Discussion
3.1. Process Analysis

Table 3 presents the characteristics of typical crushers used by intermediate processing
companies, i.e., construction waste recycling plants, in South Korea. The density and
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absorption rate of recycled aggregates produced from waste concrete vary depending on
the amount of hardened cement paste attached to the aggregate surface. As the cement
paste content increases, the density decreases while the absorption rate increases, leading to
a deterioration in concrete quality. Recycled aggregates produced from waste concrete are
generally classified by use into three categories: aggregates for concrete, road construction,
and embankment soil. Specifically, aggregates crushed in the first and second stages are
typically used for embankment or soil covering; those crushed in the third and fourth
stages are used for road construction, while aggregates crushed in the fourth stage and
beyond are utilized for concrete production.

Table 3. Types and functions of crushers used in concrete recycling plants.

Principle Kind Feature Shape

Compressive
force

Jaw crusher and
cone crusher

Crushes concrete blocks
to a specific size; cone

crusher uses spiral
grooves for secondary
and tertiary crushing
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Table 4 presents the types of crushers, grinders, and the number of crushing stages at
20 concrete recycling plants in South Korea where waste concrete samples were collected.
These plants were categorized based on the final product’s intended use. An analysis
of the crushers, grinders, and crushing stages for each product type revealed that plants
producing aggregates for road construction generally employed two or three stages of
crushing, using jaw and cone crushers. In this process, large chunks of waste concrete are
first crushed by a jaw crusher, followed by a cone crusher to remove cement paste from the
aggregate surface.

Plants producing aggregates for concrete typically operate four to six crushing/grinding
stages. Initially, they use jaw and cone crushers to reduce the size of the waste concrete,
followed by multi-stage crushing and grinding to achieve proper particle size and quality.
For concrete aggregates, the crushing and grinding process is applied four or more times to
remove the cement paste attached to the aggregate, ensuring that the recycled aggregate
meets density and absorption rate standards. Abrasion crushing machines are used to
effectively separate the cement paste. Traditional crushing and grinding equipment applies
high compression and impact forces, which are inefficient for selectively removing cement
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paste from the aggregate surface and can lead to issues such as destruction, cracking,
and wear of the original aggregate. To address these challenges and efficiently separate
the cement paste, various abrasion crushing machines are employed at plants producing
recycled aggregates for concrete.

Table 4. Crushing times and processes of the 20 domestic concrete recycling plants.

Final Production Company Name Crushing Times Process *

Recycled aggregate
for road

construction

1 HyundaiENP 3 J-C-C

2 ENF 2 J-C

3 Dongyoung 3 J-J-C

4 Asan 3 J-C-C

5 Yeil 3 J-C-I

6 Muhan 2 J-I

7 Jungdo 2 J-C

8 Samsung 3 J-J-C

9 Kaeam 3 J-J-C

10 Dooseung 3 J-J-C

11 Uchang 3 J-J-C

12 Hankyul 3 J-J-C

Recycled aggregate
for concrete

13 Younghung 5 J-J-C-C-I

14 Bangtae 6 J-J-C-I-I-A

15 Samsam 5 J-J-C-C-A

16 SeoulENP 3 J-C-A

17 HankangEMP 6 J-J-C-C-I-A

18 Supero 6 J-J-C-R-R-I

19 Jungang 5 J-J-C-S-S

20 Kunhung 4 J-J-C-A
* J—Jaw crusher; C—Cone crusher; I—Impact crusher; R—Roll crusher; S—Sand crusher; A—Abrasion crusher.

The number of crushing processes significantly impacts the final quality of the recy-
cled aggregates. Recycled aggregate production plants in South Korea typically perform
between two and six crushing stages, with the majority employing an average of three to
four stages. Aggregates for road construction generally undergo fewer crushing processes
(mainly two to three stages), while aggregates for concrete production require more com-
plex processes, involving four or more crushing stages. This difference is attributed to the
higher quality requirements for concrete aggregates.

Recycled aggregate production plants in South Korea predominantly utilize high-
strength crushing equipment, e.g., double jaw crushers, ensuring that the initial strength
of the material is maintained while enabling efficient recycling. Furthermore, specialized
equipment like abrasion crushers is employed to produce high-quality recycled aggre-
gates for concrete, enhancing the durability and overall quality of the end product. These
processing characteristics illustrate that Korea’s recycled aggregate industry not only prior-
itizes resource conservation and environmental protection but also focuses on producing
high-quality recycled materials.
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3.2. Chemical Composition

The chemical composition of waste concrete fine powder collected from 20 domestic
intermediate treatment plants for construction waste was analyzed using X-ray fluorescence
(XRF), with the results presented in Table 5. The analysis revealed that SiO2 constitutes
the largest proportion, ranging from 40% to 60%, while CaO constitutes 15% to 30%. All
measured components correspond to the typical chemical composition of cement paste.

Table 5. Chemical composition of waste concrete fine powder.

Sample CaO SiO2 Al2O3 MgO K2O Na2O F Cl Others

Recycled
aggregate for

road
construction

1 31.28 43.31 12.81 2.01 2.31 0.89 0.49 0.05 6.85

2 31.67 42.45 11.57 3.17 2.28 1.19 0.63 0.24 6.80

3 27.59 46.50 13.39 2.38 2.34 1.09 0.49 0.03 6.20

4 27.39 44.47 12.76 2.59 2.45 0.93 0.63 0.04 8.74

5 29.86 46.84 11.41 1.70 2.84 0.56 0.25 0.06 6.48

6 30.98 44.28 11.38 2.10 2.80 0.83 0.52 0.09 7.02

7 33.98 42.42 10.52 1.92 2.57 1.12 0.34 0.03 7.10

8 33.06 41.60 12.12 1.93 2.94 1.07 0.65 0.07 6.55

9 30.15 45.25 11.65 2.06 2.91 1.04 0.35 0.06 6.54

10 29.43 43.22 12.87 2.11 2.35 1.43 0.56 0.07 7.95

11 28.11 43.37 13.93 2.26 2.89 1.21 0.36 0.07 7.80

12 26.91 47.29 12.66 2.16 2.90 1.18 0.50 0.03 6.35

standard deviation 2.17 1.79 0.94 0.37 0.26 0.21 0.12 0.05 0.73

Recycled
aggregate for

concrete

13 20.24 50.44 13.85 1.91 3.80 1.95 0.46 0.46 6.90

14 31.43 41.59 12.60 2.12 2.70 0.87 0.54 0.10 8.07

15 16.74 51.26 14.64 3.24 2.50 2.27 0.44 0.05 8.87

16 11.07 58.05 17.57 1.64 4.11 2.36 0.46 0.05 4.68

17 13.67 53.86 16.28 1.52 5.05 1.02 0.61 0.15 7.83

18 26.98 50.28 11.59 1.37 3.49 1.48 0.47 0.02 4.32

19 20.68 56.05 11.55 1.45 3.47 1.11 0.78 0.05 4.85

20 6.45 58.76 14.29 2.41 6.25 1.78 0.61 0.04 9.41

standard deviation 7.69 5.17 2.01 0.59 1.15 0.54 0.11 0.14 1.88

Figure 4 illustrates the chemical composition of waste concrete fine powder collected
from final products at domestic intermediate treatment plants. The fine powder obtained
from plants producing recycled aggregate for road construction exhibited the highest CaO
content, approximately 28% to 31%. Conversely, the fine powder from plants producing
concrete aggregate showed a lower CaO content, averaging 20%. This distinct difference in
chemical composition indicates that the intended use of the aggregate significantly affects
the composition of the fine powder. The relatively higher CaO content and lower SiO2

content in the fine powder from road construction aggregates suggest a higher cement
paste residue, which remains during the recycling process. On the other hand, the more
intense crushing and separation processes for concrete aggregate result in the removal of
cement components, leaving behind primarily aggregate material.



Recycling 2025, 10, 17 9 of 17

Recycling 2025, 10, x FOR PEER REVIEW 9 of 17 
 

The chemical composition of waste concrete fine powder exhibits distinct variability 
between the two groups. Fine powder derived from road construction aggregates demon-
strates relatively consistent chemical properties, with a standard deviation of 2.17% for 
CaO and 1.79% for SiO2. This low variability indicates that fine powders from road aggre-
gates are more predictable in their performance, making them a stable alternative material 
for partial limestone substitution in clinker production. In contrast, fine powder obtained 
from concrete aggregates exhibits significantly higher variability, with a CaO standard 
deviation of 7.69% and a SiO2 standard deviation of 5.17%. This increased variability, pri-
marily attributed to more complex processing methods, presents challenges in achieving 
consistent clinker properties and underscores the necessity of implementing strict quality 
control measures to ensure uniform chemical composition and reliable performance. 

Numerous studies [39–40] have indicated a proportional relationship between the 
amount of attached cement paste and the absorption rate in recycled aggregate. Therefore, 
the degree of cement paste adhesion plays a critical role in determining the quality of 
recycled aggregate. To meet the absorption and density requirements for recycled con-
crete aggregate, the aggregate typically undergoes additional processing to reduce its den-
sity and increase its absorption, aimed at maximizing the removal of cement paste. As a 
result, recycled concrete aggregate with minimal cement paste tends to demonstrate su-
perior aggregate quality. This also explains the relatively lower CaO content in the waste 
concrete fine powder collected from concrete aggregate, where much of the cement paste 
has been removed. Additionally, during multi-stage crushing and separation processes to 
remove adhered cement paste, the original aggregate undergoes further fragmentation 
and abrasion, leading to an increase in SiO2 content in the fine powder. 

 

Figure 4. CaO and SiO2 content of waste concrete fine powder. 

Figure 5 depicts the variation in CaO and SiO2 content in waste concrete fine powder 
as a function of the number of crushing stages. As the number of crushing stages increases, 
the CaO content decreases, while the SiO2 content increases. This trend clearly suggests 
that the chemical properties of waste concrete fine powder can be controlled by selecting 
appropriate crushing processes. Fine powder generated from fewer crushing stages—
such as that from road construction aggregate production—tends to have a higher CaO 
content due to more effective separation of cement paste. Therefore, to effectively utilize 
waste concrete fine powder as a clinker raw material, it would be ideal to use fine powder 
from road construction aggregate production, where fewer crushing stages are applied. 
This powder, with its higher CaO content, can provide the necessary components for 

Figure 4. CaO and SiO2 content of waste concrete fine powder.

The chemical composition of waste concrete fine powder exhibits distinct variability
between the two groups. Fine powder derived from road construction aggregates demon-
strates relatively consistent chemical properties, with a standard deviation of 2.17% for CaO
and 1.79% for SiO2. This low variability indicates that fine powders from road aggregates
are more predictable in their performance, making them a stable alternative material for
partial limestone substitution in clinker production. In contrast, fine powder obtained
from concrete aggregates exhibits significantly higher variability, with a CaO standard
deviation of 7.69% and a SiO2 standard deviation of 5.17%. This increased variability,
primarily attributed to more complex processing methods, presents challenges in achieving
consistent clinker properties and underscores the necessity of implementing strict quality
control measures to ensure uniform chemical composition and reliable performance.

Numerous studies [39,40] have indicated a proportional relationship between the
amount of attached cement paste and the absorption rate in recycled aggregate. Therefore,
the degree of cement paste adhesion plays a critical role in determining the quality of
recycled aggregate. To meet the absorption and density requirements for recycled concrete
aggregate, the aggregate typically undergoes additional processing to reduce its density
and increase its absorption, aimed at maximizing the removal of cement paste. As a result,
recycled concrete aggregate with minimal cement paste tends to demonstrate superior
aggregate quality. This also explains the relatively lower CaO content in the waste concrete
fine powder collected from concrete aggregate, where much of the cement paste has been
removed. Additionally, during multi-stage crushing and separation processes to remove
adhered cement paste, the original aggregate undergoes further fragmentation and abrasion,
leading to an increase in SiO2 content in the fine powder.

Figure 5 depicts the variation in CaO and SiO2 content in waste concrete fine powder
as a function of the number of crushing stages. As the number of crushing stages increases,
the CaO content decreases, while the SiO2 content increases. This trend clearly suggests
that the chemical properties of waste concrete fine powder can be controlled by selecting
appropriate crushing processes. Fine powder generated from fewer crushing stages—such
as that from road construction aggregate production—tends to have a higher CaO content
due to more effective separation of cement paste. Therefore, to effectively utilize waste
concrete fine powder as a clinker raw material, it would be ideal to use fine powder from
road construction aggregate production, where fewer crushing stages are applied. This
powder, with its higher CaO content, can provide the necessary components for clinker
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production while contributing to resource conservation and reducing carbon emissions in
the cement industry.
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Figure 6 illustrates the relationship between the contents of CaO and SiO2, which
vary significantly depending on the degree of cement paste separation in the recycled
aggregate. When the cement mortar is efficiently separated from the recycled aggregate,
the CaO content in the fine powder increases. Conversely, when the separation of the
cement mortar is insufficient, residual SiO2 is introduced into the fine powder, resulting
in a relative increase in SiO2 content and a decrease in CaO content. This phenomenon
shows that changes in CaO and SiO2 content are inversely related, with the coefficient of
determination (R2) calculated to be 0.8685, indicating a strong negative correlation.
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Additionally, the sum of CaO and SiO2 in waste concrete fine powder tends to re-
main constant at 70–75%, demonstrating that the chemical composition of waste concrete
fine powder is predominantly influenced by these two components. This analysis pro-
vides important insights into understanding the characteristics of recycled aggregates and
waste concrete fine powder, contributing to the prediction and optimization of the fine
powder’s performance.



Recycling 2025, 10, 17 11 of 17

3.3. Particle Size Distribution

Figure 7 illustrates the median particle size (D50) of the collected waste concrete fine
powders. The D50 values of fine powders generated during the production of recycled
aggregates for road construction generally range between 70 and 90 µm, with most samples
displaying similar values, except for HyundaiENP (9.2 µm) and Dongyoung (108.26 µm).
This trend suggests that the fine powders produced during the recycled aggregate produc-
tion process for road construction exhibit a relatively consistent particle size distribution.
In contrast, the D50 values of fine powders generated during the production of recycled
concrete aggregates show significant variation between samples. For instance, Samsam
(281.11 µm) and SeoulENP (259.02 µm) exhibited larger particle sizes, while Bangtae
(18.48 µm) and Supero (14.27 µm) displayed much smaller particles. This result indicates
that the particle size distribution of fine powders from recycled concrete aggregate produc-
tion is more variable compared to those from road construction aggregate production.
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Figure 8 shows the relationship between the number of crushing stages and the median
particle size of the waste concrete fine powders. The results indicate that the particle size
characteristics of waste concrete fine powders vary depending on the recycled aggregate
production process. In the production of recycled aggregates for road construction, which
typically involves two to three crushing stages, the particle size distribution was relatively
consistent across samples. However, in the production of recycled concrete aggregates,
which involves three to six crushing stages, no clear relationship between the number of
crushing stages and particle size was observed. This suggests that the physical properties
of the fine powders can differ significantly depending on the treatment methods used in
each process.

Since we intended to examine the application of waste concrete fine powders as a
substitute for limestone in clinker raw materials, the fine powders were mixed with other
raw materials such as limestone, clay, and silica, and subjected to a grinding process.
Typically, cement plants in Korea control the particle size of raw materials fed into the
calciner for clinker production to ensure that no more than 12% of the material is retained
in a 90 µm sieve. Considering this standard, the waste concrete fine powder collected
from road construction aggregate production, which exhibits relatively stable particle size
characteristics, shows slightly higher potential for use as a raw material in clinker.
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3.4. Carbonation Rate

To evaluate the feasibility of using waste concrete fine powder as a clinker raw material,
recent studies [41–43] from the past few years utilizing real construction waste were
reviewed. The physicochemical properties of the material analyzed in this study were
found to align with those reported in these studies, confirming its potential for use as
a raw material in clinker production. Nevertheless, as these studies did not investigate
the carbonation rate—a key factor influencing CO2 reduction—further evaluation of the
carbonation rate is necessary.

The carbonation of concrete is generally described as the phenomenon in which carbon
dioxide from the atmospheric environment penetrates the concrete, lowering the pH of
the pore water and initiating rebar corrosion. While carbonation itself is not considered
a significant issue for concrete as a structural material, it becomes problematic when the
passive film protecting the rebar in the concrete is disrupted, leading to the activation
of the rebar and its progression toward general corrosion. In general, concrete primarily
produces hydration products such as calcium silicate hydrate (C-S-H) and calcium hy-
droxide through the hydration of cement, which contributes to its strength. In concrete,
carbonation primarily affects calcium hydroxide and calcium silicate hydrate, leading to
the formation of carbonation products such as calcium carbonate and silica gel, as shown
in Equations (2) and (3) [44].

Ca(OH)2 + CO2 → CaCO3 + H2O (2)

xCaO·ySiO2·zH2O + xCO2 → xCaCO3 + y(SiO2·tH2O) + (z − yt)H2O (3)

Figure 9 represents the lime cycle, a fundamental process in the production and
transformation of calcium-based materials, showing the cyclical transformation between
limestone (CaCO3), quicklime (CaO), and hydrated lime (Ca(OH)2) [45]. Calcium carbonate
is known to decompose in the temperature range of 600–900 ◦C, a process that can be accu-
rately measured using thermogravimetric analysis. Therefore, to evaluate the carbonation
rate in waste concrete fine powder, the amount of calcium carbonate formed in the powder
was quantified using DT-TGA.
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Figure 9. The lime cycle [45].

Figure 10 shows the carbonation rates of waste concrete fine powders produced in
different recycled aggregate production processes. The carbonation rate of waste concrete
fine powder is influenced by factors such as the materials, mix proportions, design strength,
type of structure, location, and environmental conditions of the original concrete. For
example, interior structures, well-waterproofed exterior structures, or concrete with high
design strength tends to exhibit lower carbonation rates, whereas bridges, dams, or concrete
exposed directly to the outdoors generally shows higher carbonation rates.
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Figure 10. Carbonation rate of waste concrete fine powder.

In this study, the carbonation rates of the collected waste concrete fine powders were
mostly below 10%, with an overall average of approximately 7.44%. This suggests that the
carbonation rate in the waste concrete fine powders produced from various processes is
generally within a similar range, indicating that they may have high potential for use as
decarbonatization materials in clinker production. However, the Supero sample exhibited
an exceptionally high carbonation rate of approximately 20.9%, which is likely due to
prolonged exposure to moisture and the atmosphere before the concrete was demolished,
leading to more extensive carbonation than in other samples.
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Figure 11 compares the thermogravimetric analysis data for the HyundaiENP and
Supero samples. The carbonation rate for each sample was calculated based on the mass
loss of calcium carbonate in the 600–900 ◦C range. The HyundaiENP sample showed a
relatively gradual mass loss in this temperature range, resulting in a carbonation rate of
7.7%, which is close to the overall average carbonation rate (7.4%) observed in this study.
In contrast, the Supero sample exhibited a much steeper mass loss in the same temperature
range, leading to a carbonation rate of 20.9%. This significant difference in carbonation
rates highlights the influence of environmental exposure and the characteristics of the
demolished concrete structures. The results emphasize the importance of considering these
factors when evaluating the carbonation potential of recycled waste concrete fine powder.
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Figure 11. Comparison of carbonation rates for HyundaiENP and Supero samples.

3.5. Estimation of CO2 Reduction

Using the methodology described in Section 2.3, the CO2 reduction was calculated to
be approximately 952,560 tons, achieved through the following process. In the domestic
cement industry, CO2 emissions for producing 1 ton of clinker are approximately 0.84
tons, with 60% of these emissions resulting from limestone decarbonatization. This study
analyzed the CO2 reduction effect by replacing 5% of the limestone used in clinker pro-
duction with waste concrete fine powder, assuming a carbonation rate of 7.44%. Based
on the total clinker production of 42 million tons in 2023, this substitution results in an
estimated reduction of 952,560 tons of CO2 emissions, which represents a 3.34% decrease in
total emissions from clinker production.

Looking ahead, further reductions in CO2 emissions could be achieved by increasing
the substitution rate of waste concrete fine powder or integrating this approach with other
eco-friendly technologies to enhance its effectiveness. However, future studies should
evaluate how the replacement of limestone with waste concrete fine powder influences
fuel consumption and the temperature required for clinker burning. Additionally, a com-
prehensive life cycle assessment comparing the emissions associated with processing and
transporting waste concrete to those from quarrying and crushing limestone is essential.
Such research would provide a clearer understanding of the overall CO2 reduction po-
tential and the environmental advantages of incorporating waste concrete fine powder in
clinker production.
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4. Conclusions
The results of this study partially confirmed the hypothesis that waste concrete fine

powder, with its distinct physical and chemical properties, can serve as a viable substitute
for limestone in clinker production, reducing CO2 emissions. The following conclusions
were obtained.

(1) In South Korea, recycled aggregate production plants vary in the number of crushing
stages and equipment used. It was found that road construction aggregate production
plants typically involve two to three stages with the use of jaw and cone crushers,
while concrete aggregate production plants involve four to six stages including addi-
tional grinding.

(2) Fine powders generated from recycled road aggregates showed higher CaO content
(28–31%), indicating higher cement paste residue. In contrast, fine powders from
recycled concrete aggregates contained lower CaO levels (around 20%) and higher
SiO2 content, reflecting the more intensive crushing process required to remove
cement paste and produce high-quality aggregates.

(3) Fine powders from road construction aggregates had more consistent particle size
distributions, while those from recycled concrete aggregates exhibited greater vari-
ability. This difference suggests that fine powders from road construction aggre-
gates, with their stable particle size characteristics, may be more suitable for use in
clinker production.

(4) The average carbonation rate of approximately 7.44% highlights the potential of
replacing virgin limestone with calcium carbonate in the clinker production process,
contributing to reduction in CO2 emissions.

(5) Replacing 5% of limestone with waste concrete fine powder in clinker production led
to an estimated CO2 reduction of 952,560 tons, representing a 3.34% decrease in total
CO2 emissions from clinker production in 2023. This result underscores the potential
of waste concrete fine powder to significantly contribute to the cement industry’s
decarbonization efforts.

In conclusion, the use of waste concrete fine powder offers a practical and effective
strategy to address two critical challenges in the cement industry: reducing carbon emis-
sions and managing construction waste. This approach enhances resource efficiency by
repurposing a byproduct of recycled aggregate production, reducing reliance on quarried
limestone, and optimizing material utilization. It also presents economic advantages by
lowering raw material costs and minimizing waste management expenses. From an en-
vironmental perspective, the substitution decreases decarbonatization-related emissions,
aligns with global sustainability goals, and promotes circular economy practices. Together,
these benefits underscore the potential of integrating waste concrete fine powder into
clinker production, contributing to a more sustainable and efficient construction industry.
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