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Abstract: Achieving the New World Sustainability Vision 2030 leads to enacting
environmental restrictions, which aim to partially or totally reduce the negative impacts
of different forms of waste and develop alternative technologies for eco-friendly and cost-
effective utilization. Solid waste is a hazardous waste with many environmental and
economic problems resulting from its storage and disposal. However, at the same time,
these wastes contain many valuable elements. One of these solid wastes is heavy oil fly ash
“HOFA” generated in power stations using heavy oil as fuel. HOFA is produced annually
in massive amounts worldwide, the storage of which leads to the contamination of water
resources by the contained heavy metals, resulting in many cancerogenic diseases. At
the same time, these ashes contain many valuable metals in significant amounts, such as
vanadium “V” and nickel “Ni” that can be extracted effectively compared to their low
content and difficulty processing in their main ores. Hence, recycling these types of wastes
reduces the environmental adverse effects of their storage and the harmful elements in their
composition. This paper critically reviews the world resources of vanadium-bearing waste
and various approaches described in the literature for recovering V, Ni, as well as other
valuable metals from (HOFA) and other wastes, including pyro- and hydro-metallurgical
processes or a combination. Hydro-metallurgical processes include alkaline or acidic
leaching using different reagents followed by chemical precipitation, solvent extraction,
and ion exchange to extract individual elements. The pyro-metallurgical processes involve
the non-salt or salt roasting processes followed by acidic or alkaline leaching processes. The
operational parameters and their impact on the efficiency of recovery are also discussed.
The digestion mixtures of strong mineral acids used to dissolve metal ions in HOFA are
also investigated. Bioleaching is a promising eco-friendly technology for recovering V
and Ni through appropriate bacteria and fungi. Oxidation leaching is also a promising
environmentally friendly approach and more effective. Among all these processes, the
salt roasting treatment showed promising results concerning the cost, technological, and
environmental effectiveness. The possibility of complex processing of HOFA has also been
investigated, proposing innovative technology for completely utilizing this waste without
any remaining residue. Effective zeolite for wastewater treatment has been formulated as a
good alternative for conserving the available water resources.

Keywords: sustainability; solid wastes; heavy oil fly ash “HOFA”; vanadium; nickel;
hydrometallurgy; pyrometallurgy; wastewater treatment; zeolite
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1. Introduction
Vanadium is regarded as a rare metal, and its swift and consistently growing demand is

challenged by its low concentrations in natural minerals. Vanadium extraction depends on
the type of feed materials, efficiency, and technologies applied in processing raw materials.
Therefore, recovering V and other valuable metals from secondary industrial resources like
steel slag and ash containing these metal ions is highly intriguing regarding ecological and
financial aspects. The increased industrial applications of vanadium contribute to the rising
demand for vanadium, which has driven up the price of this metal. Currently, the value
of vanadium ranges between $20,000 and $40,000 per metric ton [1,2]. These industrial
uses encompass vanadium redox flow batteries, viewed as a promising solution to the
global issue of large-scale energy storage production. They also include applications in
the automotive and construction sectors, corrosion inhibitors, fertilizers, petrochemicals,
catalysts for gas processing and sulfuric acid production, ferrovanadium alloys, thermistors,
and more [3–5].

Unlike copper, nickel, or zinc, vanadium does not form concentrated deposits. Vana-
dium is found in many minerals, replacing Fe3+ or Al3+ in the octahedral positions of crystal
lattices. This is possible because the ionic radii of V3+ and Fe3+ are almost the same, which
means that vanadium can be found all over the Earth’s crust, accounting for approximately
0.014% [6]. Vanadium is found in nature in the form of oxides, sulfides, and phosphates,
and it is often associated with other metals such as iron, titanium, aluminum, zinc, lead,
and uranium. These compounds include vanadinite, titanomagnetite, descloizite, patronite,
and carnotite. The concentrations generally have a V2O5 grade between 0.2 and 1%, while
higher-grade deposits may have V2O5 levels exceeding 2% [7–9].

It is estimated that there are 26 million tons of vanadium reserves worldwide. The only
vanadium mine-operating countries with the largest reserves are China with 9.5 million
tons, Russia with 5 million tons, Australia with 6 million tons, and South Africa with
3.5 million tons. In contrast, the world’s resources total over 63 million tons [10]. Nearly
all of the world’s vanadium production in 2022 came from China (68%), Russia (17%),
South Africa (9%), and Brazil (6%). The total global production of vanadium this year
was approximately 120 kilotons/year [8,10]. Over 88% of the total vanadium is primarily
produced as co-products from slag during the smelting of titanomagnetite ores or steel
refining, representing over 69% of the starting raw material and making them an essential
source of vanadium. In contrast, approximately 19% of the vanadium was produced from
primary vanadium ores and 12% from secondary sources (Figure 1) [1,8].

The world’s vanadium consumption reached 102.1 kilotons, representing an increase
of nearly 45% over 2011. By the end of 2023, consumption is predicted to increase by up
to 120~125 kilotons at a 5% annual growth rate, with increased demand for high-strength
steel serving as the primary driver of this growth [8].

Coulsonite, a mineral of FeV2O4, is commonly found alongside magnetite and forms
a series with FeCr2O4, also known as chromite [11]. The mineral ilmenite can also host
vanadium, possessing a minor quantity [12]. Likewise, clay containing vanadium in
weathered mineral deposits is commonly found, with V3+ taking the place of Al3+ in
phyllosilicates and Fe3+ in goethite, FeOOH. A variety of vanadium oxides have been
discovered in weathered zones of vanadium titanomagnetite deposits, including chlorite,
(Fe, Mg, Al)6(Si, Al)4O10(OH)8, and goethite. It is worth noting that a lot of uranium
deposits also contain vanadium in the form of minerals like carnotite (K2(UO2)2V2O8.3H2O)
and tyuyamunite (Ca(UO2)2V2O8.5–8H2O) that have uranyl vanadate [13].

From ores rich in minerals like carnotite (K2(UO2)2V2O8·3H2O), vanadium has been
generated as a by-product of uranium mining at numerous mines in the southwestern
regions of the USA [14]. After a moderate leaching process, a significant portion of the
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uranium deposits was dissolved. The remaining vanadium in the uranium-leaching residue
was then extracted using a more aggressive leaching condition [1]. The processing of South
Korean shale-hosted uranium/vanadium ore has been suggested using a similar strat-
egy [15]. Liu [16] has also been found to have comparable deposits in Western Australia.
Coal and bituminous shale also contain trace levels of vanadium [17]. In northern Queens-
land, an abundant oil shale deposit at Julia Creek has been found to include vanadium and
trace quantities of molybdenum [18].
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Figure 1. World mine production and global annual vanadium production and consumption [1,8]

Trace amounts of Vanadium have also been found in crude oil [19–22], among other
potentially essential sources. Vanadium levels in crude oil are very high, reaching up to
0.05% in certain regions of Venezuelan oil [23,24]. During oil combustion, its vanadium
content is transferred to the ash, which contains up to 10~18% of V2O5, making it an
attractive material for vanadium recovery [25–27].

According to a report by White and Levy [28], the main sources of vanadium released
into the environment are steel co-production, which accounts for 75% of the total, crude
oil processing, which accounts for 10%, and mining, which accounts for less than 10%. In
the Middle East and Africa, fuel oil and crude oil are easily accessible resources for power
plants and desalination plants. For instance, it has been approximated that Saudi Arabia,
with the world’s largest oil reserves, consumes more than 40 million metric tons of crude
oil and heavy fuel oil annually for thermal power plants and seawater desalination [29].
Egypt, Africa’s largest non-OPEC oil producer, produces approximately 11 million metric
tons of heavy fuel oil (HFO) annually, of which approximately 9 million metric tons are
consumed domestically [30–32]. Petroleum and other liquids contribute 36%, and natural
gas 57%; they were considered the most-consumed fuels in Egypt in 2020, according to
BP’s Statistical Review of World Energy 2021, in addition to renewable energy and coal,
which accounted for 6% and 1% of the country’s total energy consumption [33,34]. The
country implemented measures to decrease its natural gas usage in power generation,
which typically accounts for up to 90% of its total generation. As part of this effort, the
country has significantly increased its use of oil-fired generation, resulting in an average
fuel oil burn of over 100 kb/d in the first nine months of 2022, the highest level seen in
four years [29].
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To date, in many developing countries, most of the generated ashes do not have any
industrial application but are only stored in landfills. Compared to other V resources,
which are relatively limited and low-grade, these materials have no mining or operating
costs. The disposal of ash or steel slag is a major environmental problem facing thermal
power plants and iron production industries, and no monitoring is taken to prevent the
contamination of groundwater and soil [30,35]. It is recommended to continuously monitor
the metals of environmental impact, such as nickel, vanadium, and zinc, in ash samples
due to carcinogenic and health hazards. Therefore, it is recommended to consistently
monitor and recover valuable metals from industrial waste, as this is highly beneficial for
both environmental protection and economic considerations. This review aims to offer a
summary of advanced technologies used for vanadium recovery from various types of
vanadium-bearing waste, as well as the comprehensive utilization of their solid residue.

2. Chemical and Mineralogical Composition of Vanadium-Bearing Waste
Table 1 shows the chemical composition of vanadium-bearing waste produced from

different iron and steel production facilities in different locations worldwide. The chemical
structure of vanadium oxides, such as V2O3 or V2O5, varies based on the type of feed
materials introduced into the furnaces, the efficiency of the processing methods, and the
desired final products. Typically, CaO, SiO2, MgO, and Al2O3 contained in the vanadium-
bearing slag are in the ranges 2~45%, 6~25%, 1~16%, and 2~10%, respectively. During
reduction smelting, chromium and titanium oxide are also found in the vanadium-bearing
slag, so obtaining pure vanadium requires critical separation of those metals after extraction.

Table 1. Chemical composition of vanadium-bearing slag generated from various industrial plants in
different locations in the world.

Sources Technology Chemical Composition
Ref.V2O5/V2O3 FeO/Fe2O3 Cr2O3 TiO2 MnO/MnO2

Panzhihua Iron and Steel BF-BOF 8.5–14.3 32.9–42.1 2.1–4.3 11.1–12.9 5.9–9.1 [36]
Kapok Iron and Steel BF-BOF 14.2–16.0 31.9–32.3 - 12.0 7.6–8.7 [37]
Chengde Xinxin Vanadium and
Titanium Chemical BF-BOF 8.5 51.1 3.5 10.5 5.2 [38]

Desheng Iron and Steel Group BF-BOF 15.2–20.8 35.3–64.5 7.7–10.6 6.39–8.5 5.5–7.6 [39]
Chengde Iron and Steel BF-BOF 10.2–13.4 36.7–49.1 1.7–4.2 6.8–11.1 5.2–7.2 [40]
Esfahan Steel BF-BOF 1.5–1.9 17.3–17.6 - 1.0–1.5 4.2–4.5 [41]
Sichuan Weiyuan Iron and Steel BF-BOF 14.3 24.8 4.4 7.4 8.5 [42]
Pan Steel DR-EAF 8.9 24.3–25.2 2.0–8.7 3.3–14.7 1.6–13.8 [43]
CITIC Jinzhou Ferroalloy DR-EAF 15.3 30.5 2.3 13.7 10.9 [44]
British Steel BF-BOF 0.82 32.0 0.2 0.3 4.5 [45]

BF = blast furnace; BOF = basic oxygen furnace; DR = direct reduction; EAF; electric arc furnace.

The chemical structure of HOA reveals that it primarily consists of carbon, along
with several metallic elements. Table 2 presents the chemical composition of ash samples
generated from burning heavy oil in various power and desalination plants across different
global locations. Industrial ashes primarily consist of vanadium (V) and nickel (Ni), along
with toxic elements like chromium, arsenic, cadmium, lead, cobalt, and selenium. The
maximum content of V and Ni in ash is 5 wt.% and 1.8 wt.%, respectively [35]. Heavy oil
ash chemical composition also differs based on the makeup of the heavy fuel oil, parameters
of operation, and chemicals used [35,46]. Two types of ash (boiler ash and fly ash) are
generated by the combustion of HFO in power plants, which is expected to increase as
energy consumption rises in the next few years. Around 3 kg of ash residue is produced
when 1000 L of heavy oil is burned [47]. A higher level of V and Ni was found in heavy
oil ash (HOA) produced by various power plants worldwide [48]. The ash fraction is
too heavy to be introduced into the flue gas and hence deposited outside the boiler tube,
which is known as the boiler ash. It is usually classified as high-grade ash which contains
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(4.4~19.2%) V, (2.7~8.5%) Ni, and burned C [49,50]. The other type of ash is known as
fly ash, which is fine combusted residue usually collected from the stack or electrostatic
precipitators (ESPs). It is usually classified as low-grade ash which contains (0.3~1.5%) V,
(0.2~0.5%) Ni, and unburned (30~80%) C [51]. The refining of crude oil often entails some
kind of thermal cracking to produce a light oil fraction and a heavier residual oil. Most
metals and a small amount of sulfur are still linked to the non-volatile elements and end up
in a residual oil fraction. Several factors influence the elemental composition of heavy fuel
oil, including the source of crude oil, the yield of HFO from crude oil, and the degree of
processing [52].

Table 2. Chemical composition of vanadium-bearing waste reported in different studies.

References

Element (ppm) Ref. [53],
PP

Ref. [53],
DP Ref. [21] Ref. [54] Ref. [55] Ref. [56] Ref. [57] Ref. [58] Ref. [35] Ref. [59] Ref. [25]

Carbon (%) 90.40 56.70 85.56 51.86 - 67.4 - 77.40 - 14.73 18.65
Sulfur (%) 7.77 27.18 - - - 8.6 - 7.10 - 5.83 11.23
Vanadium 9072 31,044 2958 34,487 50,000 38,000 7670 12,900 3540 85,000 49,100
Nickel 2382 13,633 1762 11,852 15,400 16,000 18,000 6800 1055 52,500 24,200
Cadmium 1.65 3.7 3.28 1.59 - - - - 60.4 - 920
Arsenic 2.54 1846 2.24 68.29 - - - - 128.5 - 1.61
Cobalt 2.88 12.33 3.28 247.79 2200 - - - 60.7 - 2140
Chromium 36.79 113.09 4.06 107.60 8000 - - - 70.4 - -
Selenium 1.00 6.81 11.60 13.20 - - - - 7.25 - -
Lead 17.09 13.94 11.00 116.10 - - - - 27.85 7200 1900
Zinc 21.92 118 130 592.10 - - 1110 4000 65.5 38,000 7600
Copper 10.44 50.40 170.4 120.30 - - 17,000 57.12 290 1760
Iron 7210 8771 - - 220,500 8000 59,800 1400 176.5 97,400 59,600
Magnesium 6971 94,608 - - 2000 - 3430 14,100 3615 5920 3.6
Manganese 23.9 149.26 - - - - - 12.8 900 2.4
Calcium 582.3 4121.2 - - - - - 2300 3380 2100 2354
Sodium 1395 7555 - - - 19,000 - - 1310 2045 1524
Aluminum 3541 1041.8 - - - 1040 2870 2500 642.4 7123 4252
Barium 7.42 49.68 - - - - - - 69.0 - 5214

Others (ppm) - - Hg, 0.25 - Mo, 3500 Si, 8000 - Si, 800;
O, 93 200 - Si, 39,000 Si, 36,800

PP = power plant; DP = desalination plant.

Table 3 presents the mineralogical compositions of vanadium-bearing slag pro-
duced by different iron and steel-making facilities and ashes. The spinel phases of
[(Fe, Mn)2(V, Ti) O4] and [(Fe, Mg, Mn) (V, Cr)2 O4] contain vanadium, titanium, and
chromium. The spinels are distributed throughout the olivine matrix (Fe, Mg)2SiO4, augite
(Ca(Fe, Mg)Si2O6), fayalite (Fe2SiO4), and diopside phases (Ca(Fe, Al)2SiO6) [60–62]. Pre-
viously reported data indicated that V-Ti and V-Cr spinels are arranged in a layered core
configuration. Chromium is primarily located in the central core of the grains, vanadium
is prevalent in the outer layer, and titanium is situated along the spinel grain boundary.
This distribution reflects the varying crystallization abilities of each spinel, ranked as
Cr > V > Ti [43]. Other elements, such as manganese, are evenly dispersed within the
spinel grain. Magnesium is concentrated alongside chromium, forming the minor phase
of MgCr2O4 [60]. The Ca2V2O7 phase of vanadium was also documented [41], which
resulted from the substantial amount of limestone utilized in the iron and steel production
process [63].

Additional oxides, originating from the fluxes added to the furnace charge, have also
been identified. Dondi [64] states that X-ray diffraction patterns show that two types of fly
ash (ash B from Apulia and ash F from Sardinia) produced from the combustion of orimul-
sion in Italian thermal power plants have a complex composition. These fly ashes contain
high grades of V, Ni, S, and Mg and exhibit increased reflections, several line interferences,
and overlaps. This complexity makes it difficult to make certain attributes. The inter-
pretation of these patterns indicates that magnesium sulfate monohydrate (MgSO4.H2O)
and hydrogen vanadyl sulfate [(VO)2H2(SO4)3] are predominated, along with magnesium
monoxide (MgO), anhydrous, monohydrate, and pentahydrate vanadyl sulfate (a-VOSO4,
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VOSO4.H2O, VOSO4.5H2O). These phases are associated with minor amounts of calcium
sulfate (CaSO4) and nickel monoxide (NiO), and presumably sodium aluminum silicate
(NaAlSi3O8) and traces of magnesium sulfate hexahydrate (MgSO4.6H2O). Other analy-
ses of the insoluble residues indicated that in addition to magnesium, nickel oxides, and
anhydrous vanadyl sulfate, other vanadium compounds, i.e., VO2, B-V2O5, VOOH, and
VO(OH)2, were present in small amounts of untreated ash, which cannot be detected in the
collective sample due to their low concentration. However, identifying these compounds
suggests the presence of V3+ and V5+, together with the monopolized vanadyl ion valence
of V4+. The existence of these vanadyl ions can vary depending on the oxidation conditions
during the combustion of heavy oil or the cooling techniques used [65,66].

Table 3. Characterization of the minerals in vanadium-containing waste produced from various
industrial plants in different locations in the world.

Source Mineralogical Phases Ref.

Panzhihua Iron and Steel (Fe,Mn)V2O4,(Fe,Mn)2SiO4,CaMn(SiO3)2 [36]
Kapok Iron and Steel (Fe, Mn)O, (V,Ti)2O3, 2(Fe,Mn)O, SiO2, SiO2 [37]

Chengde Xinxin Vanadium and Titanium Chemical (Mn0.84Fe0.16)(Mn0.16Fe1.34Cr0.5)O4,
Fe2.1Ti0.74Mn0.02V0.01Ca0.01Si0.01Al0.05Mg0.06O4,Fe2SiO4, SiO2

[38]

Desheng Iron and Steel Group (Mg,Fe)(V,Cr)2O4, Fe2SiO4, Ca(Fe,Mg)Si2O6,Fe2TiO4 [39]
Chengde Iron and Steel (Mn,Fe)(V,Cr)2O4, Fe2SiO4, SiO2 [40]
Esfahan Steel Ca(OH)2,Ca3SiO5, CaFeO2,Ca2V2O7 [41]
Sichuan Weiyuan Iron and Steel (Mn,Fe)(V,Cr)2O4,Fe2SiO4, (Fe,Mg)Si2O6,Mg2TiO4 [42]
Pan Steel (Mn,Fe)(V,Cr)2O4,Fe2TiO4, (Fe,Mn)2SiO4 [43]
CITIC Jinzhou Ferroalloy (Mn,Fe)(V,Cr)2O4,CaFeAlSiO6,Fe2.5Ti0.5O4 [44]
British Steel MgO, Al2O3, β-Ca2SiO4, Ca2(Al,Fe)2O5, FeO, Mg(OH)2, C [45]
Fiume Santo-Porto Torres MgSO4.H2O, (VO2)2H2(SO4)3, VOSO4.nH2O CaSO4, NiSO4.nH2O [64]
El Kriymat Electric power station (VO2)2, FeV2O4, Mg2SiO4, Ca2V2O7, (Ca(Fe,Al)2SiO6), NiSO4.H2O6 [22,25]

3. Vanadium Processing Technologies
As previously mentioned, steel slag and oil ash are important secondary sources of

valuable elements (V, Ni, Cr, and Zn). However, there are two main ways for processing
industrial solid waste to extract vanadium and other useful metals. The first method,
direct leaching, involves using acid (such as H2SO4, HCl, and HNO3) or alkaline (such
as NaOH and Na2CO3) solutions to dissolve the valuable metal from vanadium-bearing
waste. The dissolved metals are then recovered from the solution using various techniques
such as chemical precipitation, solvent extraction, or ion exchange. The second is the
roasting-assisted leaching process, including salt-free, calcium, or salt roasting, in which
the solid waste is heated to a high temperature to allow the separation of valuable vanadate
materials. Acid, alkaline, and water are frequently employed as leaching agents, as outlined
below [67–74]. A comprehensive flowchart for recovering V from solid waste is shown in
Figure 2 [35]. After extracting vanadium and nickel as their respective chemical compounds
(NH4VO3 and NiC2O4), calcination is conducted to produce V2O5 and NiO.

3.1. Direct Leaching Process

Direct acidic or alkaline leaching is used to dissolve almost all valuable metals into the
solution from various types of solid waste and then extract these metals separately using
adequate techniques [75–82].

3.1.1. Acid Leaching

H2SO4 is a cost-effective option for leaching procedures, which makes it a popular
choice due to its economic benefits. The H2SO4 acid has the ability to dissolve several
metallic cations like V, Ni, Fe, and Mg, among others, creating metal sulfates. The leaching
of significant economic and nuclear elements such as uranium, hafnium, and zirconium, as
well as vanadium and nickel, with or without oxidant agents (NaClO, MnO2, or KClO3), has
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been investigated by Abd El-Hamid [83]. It was noted that vanadium leaching efficiency
of 95% at a concentration of 200 g/L H2SO4, 6% (solid/solid) manganese dioxide, 80 ◦C,
6 h, 1/10 solid/liquid ratio of −200 mesh ore granule size. According to Deng [84],
the direct acid leaching technique could increase the vanadium leaching efficiency from
14 to 73% by adding an oxidant. Barik [85] created a technique for extracting vanadium
(V) and nickel (Ni) from solid industrial wastes abundant in these metals. The procedure
includes leaching with sulfuric acid (H2SO4), followed by solvent extraction, precipitation,
and crystallization. It was noted that using 1.35 M H2SO4 at 40 ◦C for 90 min, both V and
Ni were extracted with a 98% recovery rate. Vanadium is selectively extracted from the
pregnant solution using 40% LIX 84-I at pH 0.5, and then by adding an aqueous solution
of ammonia NH3; it precipitates as ammonium metavanadate (NH4VO3). Ammonium
oxalate (NH4)2C2O4 is used to selectively separate Ni that has been converted into Ni
oxalate in the raffinate (NiC2O4). Finally, NH4VO3 can be heated to produce vanadium
pentoxide (V2O5) [86]. On the other hand, nickel oxide is obtained by heating nickel oxalate
at 450 ◦C for 2 h.
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Nazari [87] optimized the parameters of the H2SO4 leaching process to maximize V
and Ni recovery from fly ash samples. The maximum recovery of 94% V and 81% Ni has
been achieved at the following optimal conditions: 19.5% H2SO4 concentration at 80 ◦C,
9.15% S/L ratio by weight, and for 2 h. Fly ash was subjected to a three-step procedure,
which included leaching with H2SO4, oxidative precipitation, and washing to extract V
as V2O5 from the fly ash, and about 90% of V was successfully recovered. Boiling 1 M
H2SO4 for 30 min. at 3 mL/g L/S ratio is considered to be the operational parameter for
the leaching process. During the oxidative precipitation process, sodium chlorate (NaClO3)
was added as an oxidizing agent of V4+ to V5+. The pH dropped because of this oxidation of
V, which also released H into the environment; hence, the appropriate pH was maintained
by adding Na2CO3. In order to remove Na and other impurities, the V2O5 precipitate was
then washed with an acidic solution [26]. Leaching experiments on HOA were performed
by Navarro [88] in 0.5 M H2SO4 solution at 4 mL/g as L/S ratio at 200 rpm agitation
speed for 24 h and at room temperature. After the leaching procedure, the material was
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washed for 1 h. in water at 4 mL/g L/S ratio. Ni recovery was only about 12% under these
conditions, but V reached 98%.

Aburizaiza [89] detailed a multi-step approach for leaching and extracting V, Ni,
and Fe from HOA, which involves the following steps: (i) Acidic leaching of fly ash in a
solution containing mineral acids like perchloric acid (HClO4), hydrochloric acid (HCl), and
hydrogen peroxide (H2O2); (ii) Ammonium pyrrollidine dithiocarbamate (C5H9NS2.NH3)
in chloroform (CHCl3) is combined and agitated with the leachate during the organic
extraction of the metals. Once equilibrium is reached, a layer of organic phase that contains
the metal cations is formed. The findings demonstrate that the organic phase successfully
extracts the targeted metal ions (V, Ni, and Fe); (iii) the V, Ni, and Fe metal ions are
removed from the organic phase by combining them with 1 M HNO3 that contains Hg2+

ions. Therefore, metallic cations (V3+, Ni2+, and Fe2+) are present in the final aqueous nitric
acid solution; (iv) The addition of dimethylglyoxime (C4H8N2O2) in chloroform allows the
extraction of the total Ni from the stripped nitric acid solution while leaving the V3+ and
Fe2+ ions dissolved in the aqueous nitric acid solution phase. In order to recover nickel
in the form of NiO, the Ni-containing organic phase is separated and evaporated till it is
dried; (v) Total Fe is extracted from the aqueous nitric acid solution phase produced in
step (iv) by 4-pypyridyl treatment. The organic phase that contained Fe was separated,
evaporated, and ignited to produce Fe in the form of FeO; (vi) vanadium as V3+ and other
trace elements can be found in the aqueous solution that was left over. The study does not
present an efficient technique for extracting V from the final aqueous solution. Additionally,
this approach demands significant amounts of chemicals to handle a small quantity of
fly ash.

Tokuyama [58] studied the dissolving of HOA in two steps. In the first step, Ni, Zn,
Mg, Al, and Fe are dissolved in water, and in the second stage, V is dissolved in H2SO4,
as shown in Figure 3. Moreover, it was found that HCl and H2SO4 have similar leaching
efficacy. In the same study, leaching with concentrated NaOH might result in the selective
leaching of V.

Tsygankova [48] concluded that the HOA leaching process depends on both its phase
change and chemical composition. The outcomes of acidic leaching for three distinct types
of fly ash, each with different chemical and phase compositions, have been examined. Each
type of fly ash requires specific leaching conditions, involving 5 to 9% H2SO4 concentration,
with temperatures set between 20 and 80 ◦C, and durations spanning from 30 to 60 min.
Vanadium is precipitated as V2O5 by oxidizing the leaching solution with H2O2 at 20 ◦C
for 30 min. After further heating to 95 ◦C and at a pH range from 1.8 to 2, precipitation
is accomplished.

Khalafalla [90] examined the extraction of V, Ni, and Zn by leaching the heavy oil ash
(HOA) in H2SO4 solution, as shown in Figure 4. High-tension Magnetic Separation was
used to physically concentrate the fly ash, increasing the amounts of V2O5, ZnO, and NiO,
to 18.1%, 8.11%, and 11.18%, respectively. Following that, leaching was performed using a
180 g/L H2SO4 solution with 4% MnO2 as an oxidant for 10 h at 80 ◦C which resulted in the
recovery of 96.5% of vanadium, 94.8% of nickel, and 99.1% of zinc. Ultimately, vanadium
was extracted from the leach solution using 3% Alamine 336 in kerosene as the solvent,
while nickel and zinc remain dissolved in the raffinate. After vanadium was extracted
from the organic phase, V2O5.H2O was precipitated by adding H2SO4. In contrast, when
Na2S was added to the raffinate solution, Ni and Zn co-precipitated, forming a (Zn-Ni)
sulfide cake. This cake could be suggested for hydro-metallurgical techniques to recover
and separate Zn and Ni [91].
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Rahimi [92] developed a distinctive technique for extracting vanadium from HOA
utilizing lemon juice and organic acids. The citric acid (90 mg/g), malic acid (0.86 mg/g),
and ascorbic acid (1.24 mg/g) are all present in lemon juice. The idea was to obtain
organic acids by an ecologically acceptable method as an alternative to bioleaching, which
produces such acids through extremely sluggish microbial development. The recommended
conditions for the maximum recovery of 88.7% V were 2 h. ultrasonic leaching of HOA in
a 27.9% lemon juice solution with 10% hydrogen peroxide at 35 ◦C and 0.01% S/L ratio.
Sodium carbonate (Na2CO3) was added to the liquid to raise the pH level to 9 or 10, and
the addition of CaCl2 precipitates Al and Fe. Next, ammonium chloride (NH4Cl) was
added, leading to the precipitation of V as pure NH4VO3, then calcined at 500 ◦C to obtain
vanadium pentoxide (V2O5). Eventually, the results revealed that assisting leaching agents,
such as H2O2 and ultrasonic, is essential in accelerating V dissolution’s kinetics.

High-pressure and high-temperature leaching demonstrates significant improvements
compared to traditional acid leaching. For instance, according to Mu [93], 97.9% vanadium
and 94.5% iron were leached out at a temperature of 140 ◦C, a concentration of 200 g/L
H2SO4, a partial pressure of 0.5 MPa of oxygen, a period of 120 min, and an L/S ratio of 20:1.
These are in completely agree with the findings published by Zhang [94–96]. Zhou [97]
studied the dissolution kinetics of vanadium trioxide in sulfuric acid-oxygen medium.
The highest dissolution rate was obtained with increased stirring speed before 800 rpm,
oxygen partial pressure in the range of 0.6~1.4 MPa, and particle size decreased. Still,
it was nearly independent of the sulphuric acid concentration from 0.4~2.0 mol/L and
stirring speed over 800 rpm. Amer [98] recovered V2(SO4)3 and NiSO4 from Egyptian boiler
ash by direct leaching using H2SO4 under oxygen pressure. The recommended leaching
conditions have been determined to be 200 ◦C, 15 min, 15 bar of oxygen pressure, 60 g/L of
H2SO4 concentration, and 1 S/L ratio. Adding an aqueous solution of ammonia NH3 and
neutralizing the acidic sulfate solution, V is precipitated as vanadium hydroxide (V(OH)3).
On the other hand, metallic Ni can be electrodeposited from the NiSO4 electrolyte. The
results of comprehensive studies employing acidic leaching methods on various vanadium
resources are shown in Table 4.

Table 4. Results of different studies on direct acidic leaching of vanadium from various
V-bearing waste.

Ref.
Acid Leaching Leaching EfficiencyLixiviant Conditions Temp. °C Time S/L Ratio

[98] H2SO4
−250 µm, 60 g/l H2SO4, 15
bar of O2 pressure 200 ◦C 15 min 1:1 • V = 95%

[85] H2SO4
1.35 M H2SO4,
300 rpm stirring 40 ◦C 90 min 1:5

• V = 98%
• Ni = 98%

[87] H2SO4 −75 µm, 19.5% H2SO4 Conc. 80 ◦C 120 min 1:9
• V = 94%
• Ni = 90%

[26] H2SO4
1 M H2SO4,
300 rpm stirring 100 ◦C 30 min 1:3 • V = 90%

[88] H2SO4
−500 µm, 110 ◦C drying,
0.5 M H2SO4

Room Temp. 24 h 1:4
• V = 98%
• Ni = 12%

[89] H2SO4 + HCl + HNO3
1.0 M Conc.,
300 rpm stirring RT 6 h 1:5

• V = 98%
• Ni = 95%
• Fe = 86%

[48] H2SO4 −75 µm, 5~9% H2SO4 Conc. 20~80 ◦C 30~60 min 1:4 • V = 96%
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Table 4. Cont.

Ref.
Acid Leaching Leaching EfficiencyLixiviant Conditions Temp. oC Time S/L Ratio

[90] H2SO4
180 g/L H2SO4,
4% MnO2, 500 rpm stirring 80 ◦C 600 min 1:10

• V = 96.5%
• Ni = 94.8%

[92] Ultrasound, H2SO4
−75 µm, 27.9% lemon juice,
10% H2O2

35 ◦C 120 min 0.01% • V = 88.7%

[99] H2SO4
−100 µm, 0.5 N H2SO4,
400 rpm stirring 30 ◦C 120 min 1:5

• V = 65%
• Ni = 60%
• Fe = 42%

3.1.2. Alkaline Leaching

Several investigations on direct alkaline leaching of V-bearing waste have been carried
out, indicating that Ni is insoluble in alkali solutions, which are more suitable for selective
leaching of V to increase recovery. A two-stage leaching approach for HOA was proposed
by Tsai [99]. The fly ash is leached in ammonia water containing ammonium sulfate
(NH4)2SO4, and the Ni is extracted from the solution in the first stage. The second step
involves recovering V by leaching the ash residue in an alkaline (NaOH) solution. However,
the method was not used in more recent research because of the decreased recovery of Ni
(60%) in the ammonia/(NH4)2SO4 solution, which also dissolves 8% of V in the first step.
Furthermore, the study did not propose or conduct a method to recover V and Ni from
the leaching solution. In a power plant, alkaline leaching and sodium hydroxide “NaOH”
solution were used by Al-Zuhairi [100] to extract V with a high recovery yield (98%) from
red crude oil residues. According to their discussion, 2 M NaOH concentration at 100 ◦C
for 2 h is the ideal extraction environment for V. The effluent is then acidified to lower the
pH and treated with aqueous solution of ammonia (NH3), to precipitate V as NH4VO3.

According to Navarro [88], alkaline leaching of HOA by NaOH is favored over acidic
leaching because it is more selective for V, which is less efficient than acidic leaching
by H2SO4. Alkaline leaching with NaOH is carried out using a 2 M NaOH solution at
1/4 g/mL S/L ratio for 24 h at room temperature and stirring at 200 rpm. Leaching is
followed by three times for 1 h water rinses. At these conditions, vanadium recovery
achieves 90%, but repeated leaching and washing 6 times, each for 1 h, enhances V recovery
to 98%. When the contact time approaches 12 h, it is observed that the temperature has
a minimal impact on the effectiveness and kinetics of V leaching. In order to improve
selectivity for V recovery while preventing Si leaching, sodium carbonate (Na2CO3) is
used for leaching HOA. However, by employing 0.66 M Na2CO3 solution in the leaching
procedure under the same conditions as for NaOH leaching, 80% of V is recovered. Leaching
with Na2CO3 exhibits more excellent vanadium selectivity while having a lower leaching
efficiency than leaching with NaOH.

Hakimi [101] established a flowsheet for extracting V with a high percent recovery
from V-rich HOA using NaOH solution at 95 ◦C for 4 h. as shown in Figure 5. Leaching is
followed by adding 4.5 M H2SO4 solution to neutralize the alkaline leachate. Al and Si are
deposited once the pH is raised to 8, leaving V dissolved as sodium vanadate in the filtrate.
After being treated with an ammonium compound, the latter precipitates V as NH4VO3,
which is then heated at 450 ◦C for 1 h to form V2O5.

Akita [102] studied the recovery of nickel and vanadium from fly ash using a two-step
leaching process. The first stage involves leaching Ni with NH4Cl solution, while the
second step involves leaching the remaining ash with Na2CO3 to dissolve the vanadium.
Subsequently, vanadium is extracted using a solvent mixture of TOA and toluene, and then
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precipitated as NH4VO3 using NH4Cl. However, nickel can be extracted as NiS from its
leach solution by precipitating it with Na2S, as illustrated in Figure 6.
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Vanadium, nickel, and molybdenum recovery from HOA was accomplished by
Stas [55], using a two-stage leaching procedure, as shown in Figure 7. The first step
is the alkaline leaching using NaOH solution to extract V and Mo. In the subsequent
second step, acid leaching using H2SO4 leaches the residual fly ash to recover Ni. The
maximum V recovery of 90% is obtained at 5 mL/g L/S ratio, at 100 ◦C, and for 3 h. The
alkaline leaching solution containing V and Mo is gently agitated and cooled to 5 ◦C for one
hour, which causes V to precipitate as sodium vanadate. This precipitate is then removed
through filtration, leaving behind a filtrate that contains sodium molybdate. The later fil-
trate is heated to 90 ◦C and acidified with HNO3 to precipitate Mo as H2MoO4. Conversely,
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sodium vanadate is dissolved again in a 5% HNO3 solution (pH = 8), and (NH4)2SO4 is
introduced to the solution to precipitate vanadium as N4HVO3. The latter is converted
to V2O5 after being calcined at 500 ◦C for 24 h. The remaining ash is leached using a 5 M
H2SO4 solution for 3 h at 100 ◦C and a 4 mL/g L/S ratio, which leads to extraction of 80%
in the second acidic leaching stage. The pH is subsequently increased by adding a NaOH
solution to the acidic leachate in two stages, which results in the precipitation of Fe and
the residual V. Finally, sodium carbonate is introduced to precipitate nickel in the form of
nickel carbonate (NiCO3).
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Al-Ghouti [103] studied the recovery of vanadium and nickel from HOA by two
leaching processes. Using NH4Cl/NH3 solution made up of 2 M NH4CL and 2 M NH3

at 50 ◦C, at 19 mL/g 1 L/S ratio, and for 6 h, Ni is selectively extracted in the first stage.
After treating the leachate with sodium sulfide (Na2S), nickel is precipitated as NiS with
56% recovery. In the following step, vanadium is extracted from the nickel-free remaining
ash using agitation leaching in a 2 M Na2CO3 aqueous solution at 70 ◦C and a pH of
5.5 for a duration of 6 h. However, along with V, Fe, Mg, and Ca are also removed by
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Na2CO3 solution. Triethylamine/toluene solution [0.1 M of (CH3CH2)3N in toluene] is
added to the Na2CO3 solution to perform selective extraction of V. The organic layer is
removed and then blended once again for 3 h with a fresh 2 M Na2CO3 solution to extract
V from the aqueous layer. Finally, the resultant aqueous layer is mixed with 1.3 M NH4Cl
for 20 h to achieve maximum recovery of 45% by precipitating the extracted V. Alkaline
pressure leaching was carried out by Shahnazi [104] with a maximum vanadium leaching
of 90% under the concentration of 40 to 50% NaOH and a temperature range of 110 to
160 ◦C. In the same way, Qiu [105] examined how pure vanadium trioxide dissolves in an
oxygen system under alkaline conditions. The findings indicated that higher temperatures
(130 ◦C) and oxygen pressure (700 kPa) resulted in a faster rate of vanadium dissolution.
Additionally, stirring speeds above 800 rpm, and sodium hydroxide concentrations at 1.0
M were found to maximize the dissolution rate of vanadium (90%). A novel approach
utilizing NaOH-NaNO3 binary melts has been suggested for treating vanadium slag [106].
This method enables the extraction of both vanadium and chromium during the leaching
process. When the reaction conditions are optimized (1:1 NaOH-NaNO3 solid ratio, 400 ◦C,
0.5 L/min atmospheric pressure for 2 h), vanadium and chromium recovery rates can reach
93.7% and 88.2%, respectively, within 6 h. The results indicate that the reaction temperature
and KOH-to-ore mass ratio are more influential factors for the extraction of vanadium and
chromium. Table 5 summarizes the results of in-depth investigations on different vanadium
resources using the alkaline leaching technique.

Table 5. Results of different studies on the alkaline leaching of vanadium from various V-bearing
wastes.

Ref.
Alkaline Leaching Leaching EfficiencyLixiviant Condition Temp. ◦C Time S/L Ratio

[99] NaOH −250 µm, 2 N NaOH, pH 14, 400 rpm
agitation speed 30 ◦C 120 min 1:5 • V = 80%

[99]
NH4OH −250 µm, 4 N NH4OH, pH 10 30 ◦C 120 min 1:5

• V = 50%
• Ni = 60%

NH4OH +
(NH4)2SO4 + NaOH

0.25 N NH4OH, 4 N (NH4)2SO4, pH 8.5,
2 M NaOH 30 ◦C 120 min 1:5

• V = 80%
• Ni = 60%

[100] NaOH 2 M H2SO4,
300 rpm stirring 100 ◦C 120 min 1:3 • V = 98%

[88] NaOH 2 M NaOH+ H2O, 200 rpm
agitation speed RT 24 h 1:4 • V = 98%

Na2CO3 0.66 M Na2CO3, 200 rpm stirring RT 24 h 1:4 • V = 80%

[101] NaOH −500 µm, 110 ◦C drying, 0.5 M H2SO4 100 ◦C 240 min 1:2.7 • V = 99.6%

[102]
HN4Cl +
NH4OH

2 M HN4Cl +
NH4OH 50 ◦C 300 min 1:5 • Ni = 59%

Na2CO3 2 M Na2CO3 70 ◦C 240 min 1:4 • V = 63%

[103]
NH4Cl +

NH3
2 M NH4Cl+ 2M NH3 50 ◦C 300 min 1:19 • Ni = 56%

Na2CO3 2 M Na2CO3, 200 rpm stirring 70 ◦C 300 min 1:20 • V = 45%

[55] NaOH
+ H2SO4

8 M NaOH
5 M H2SO4,

100 ◦C
100 ◦C 180 min 1:5

1:4
• V = 90%
• Ni = 80%

Even though direct acid (H2SO4, HCl, and HNO3) [107–109] and alkaline (NaOH,
NH4OH, NaCO3, and NH4Cl) [110–112] leaching methods are the cheapest operational



Recycling 2025, 10, 6 15 of 53

and energy-efficient ways to extract valuable metal ions from heavy oil ash. They have
several drawbacks, including a lack of selectivity in leaching the target metals, requiring
large amounts of high acid concentration, using an oxidizing agent, polluting metals in
solid ash residue, and producing leachate with hazardous elements that can complicate
the precipitation and purification processes [4,113–115]. Due to the lack of an economically
feasible alternative for processing vanadium-bearing waste, roasting is utilized to enhance
the leaching process.

3.1.3. Bioleaching Process

Choosing the right bioleaching conditions is crucial for the microorganisms to grow
ideally. The process has the advantage of being low in production cost and having a
minimal environmental impact [116–120]. Bacteria like Acidithiobacillus, A. ferrooxidans,
and Acidithiobacillus thiooxidans are well suited for chemolithoautotrophic applications
in acidic conditions [121,122]. A study using A. ferrooxidans discovered that after 14 days,
the roasted slag could leach out 83% of the chromium while only 20% of the vanadium
was leached out [117]. Gomes’s [123] results align with those obtained from a modified
acidophilic culture of A. thiooxidans and A. ferrooxidans. Under alkaline conditions, high
pH-tolerant organisms are being assessed [116,117]. These include Pseudomonas putida, a
heterotrophic bacterium, and Aspergillus niger, a heterotrophic fungus. A study involving
P. putida revealed that after 15 days, 75% of vanadium was leached from a roasted slag
sample. Using the bacterium on the calcine increased dissolution to 90% [107,117].

3.1.4. Electro-Oxidation Leaching

In the leaching reactor, electrodes are inserted, and an electric field is used to convert
low-valent vanadium to a higher oxidation state. Outstanding outcomes were obtained,
with high recoveries of 95% for vanadium and 90% for chromium. The alkaline leaching
system was applied with current densities ranging from 750 to 1000 A/m2, NaOH con-
centration of 40~50 wt.%, and 90~120 ◦C temperature [124–126]. Both macro and micro
perspectives allow for an understanding of the electrooxidation system’s assistance in
leaching. The schematic of both mechanisms is explained in more detail by Lee et al. [127].
Diffusion of reaction products is the focal point of the micro-viewpoints [124]. During
leaching, metallic ions escape from the iron phase more readily in an electrical field, facil-
itating their directional movement. Macro-perspectives were correlated with direct and
indirect oxidation processes [126]. During indirect oxidation, slag particles collide with
cathodes and anodes, indirectly oxidizing vanadium and chromium as Fe3+ and H2O2

are generated.

3.2. Roasting-Leaching Processes

The roasting process of ash aims at the disintegration of the more stable and less soluble
spinel phases, like Fe2VO4, as shown in Figure 8, and transforms them into more oxidized
phases, enhancing the fact that they are more easily attacked by water/acid/alkaline
solutions during the subsequent recovering process [128]. The roasting process is conducted
with or without additives at temperatures ranging from 400 to 1000 ◦C, and advanced
technologies have been utilized on fly ash to improve vanadium recovery [129,130]. To
recover vanadium, the process involves oxidizing V3+ into acid-soluble V4+ and/or water-
soluble V5+ compounds, which can then be dissolved using an appropriate reagent.
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3.2.1. Non-Salt Roasting Assisted Leaching

This method results in the breakdown of the iron phases encasing the vanadium
and chromium spinels, as explained in Equations (1) and (2) [62,108,132], allowing the
formation of highly acidic leachable phases, including CaV2O6, Ca3V2O8, MgV2O6, and
Mg3V2O8. As a result, the procedure involves the treatment of slags that have high levels
of CaO/MgO.

4/5FeV2O4 + O2 → 2/5Fe2O3 + 4/5V2O5 ∆G(T) = −293.45 + 0.15 T (kJ/mol O2) (1)

4/5FeCr2O4 + O2 → 2/5Fe2O3 + 4/5Cr2O5 ∆G(T) = −47.01 + 0.04 T (kJ/mol O2) (2)

The olivine phase breaks down at 500 ◦C, whereas the spinels decompose at 800 ◦C,
based on the results obtained earlier [36,110]. Wang [110] developed a method for direct ex-
traction of low valence vanadium (LVV) from vanadium slag without producing poisonous
waste, as shown in Figure 9. Application of roasting and leaching technique leads to the
extraction of LVV from vanadium slag with a recovery rate of 69.37% at 800 ◦C roasting
temperature for 1 h in an atmosphere of N2/O2 equals 10. Above this temperature or with
longer roasting durations, V5+ was leached in the leaching solution. Smaller vanadium slag
particles resulted in a higher vanadium recovery rate but lowered the amount of LVV.
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In the same context, Vitolo [56] created their three-step technique by first burning the
ash under controlled conditions to lower the amount of carbon in the ash (Figure 10). The
recovery of vanadium increased to 97% in the subsequent leaching process because of the
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reducing the carbon component in the fly ash. The best-recommended temperature for the
burning carbon phase was found to be 850 ◦C and resulted in a higher total recovery of
V (83%) as V2O5 with fewer impurities. Lower V recovery resulted from higher burning
temperatures (over 950 ◦C), which caused V to fuse and volatilize as well as produce
complex V-Ni refractory compounds.

According to Li [109,133,134], the oxidation process of vanadium spinel can be de-
scribed as follows: (i) conversion of vanadium spinel into a solid solution of Fe2O3.V2O3 at
the early stages of roasting, (ii) oxidation of this solid solution to Fe2O3.V2O4, followed by
an incomplete reaction of V4+ with MgO to produce Mg2VO4, and (iii) extended roasting
time leads to the further oxidation of vanadium, resulting in the formation of the highest-
valence vanadates. In the non-salt roasting process, the chromium spinel could not convert
to carcinogenic chromate salts to avoid the cost and disposal of chromium waste. Also, the
vanadium may be directly leached out as NH4VO3, which can be separated after cooling
and crystallization (Figure 11). The leaching efficiency of vanadium could be up to 90%.
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To perform the thermodynamic analysis of this process, we attempted to create a
diagram, illustrating the relationship between standard Gibbs free energy change and
temperature (∆G0-T), and the data required for each reaction were obtained from HSC
Chemistry 9.3.0/Fact-Sage software [127]. The ∆G0 values for all reactions are negative
throughout the temperature range of 400 to 1000 ◦C.

This indicates that direct oxidation of the spinels (FeV2O4/FeCr2O4) is thermody-
namically feasible. The Gibbs free energy change for reaction (1.1) is much more negative
than that of reaction (1.2), exhibiting that V-spinels can be preferentially oxidized and
hence decomposed before that of Cr-spinels. Zhang [135] compared the different effects of
microwave and conventional blank roasting on high-chromium vanadium slag’s oxidation
conduct, microstructure, and surface structure. The normal spinel was oxidized to inverse
spinel at 400 ◦C which then decomposed at 600 ◦C. Carrying out the roasting process at high
temperatures resulted in the minority of Cr3+ ions in the spinel phase being incorporated
into VO2 to form the Cr0.07V1.93O4 or CrVO4. Wang [136] found that the roasting process
depends on the original state of vanadium in the coal stone. In the case of existing vana-
dium in amorphous phase form, the non-salt-roasting technology is excellent for leaching
out vanadium. While the occurrence of vanadium in the vanadium-bearing waste is in a
crystalline phase, the addition of a fluxing agent is necessary to achieve high vanadium
leaching efficiency. Table 6 presents a summary of the extensive research conducted on
vanadium resources through non-salt roasting and leaching procedures.

Table 6. Various studies on vanadium’s non-salt roasting and leaching from various V sources.

Ref. Non-Salt Roasting Leaching
ResultsConditions Lixiviant Conditions

[56] 850 ◦C, −250 µm for 60 min. H2SO4 2.0 M of H2SO4 Conc., at 100 ◦C; for 60 min. • V = 97%

[36] 850 ◦C for 60 min. Na2CO3
160.0 (g/L) of Na2CO3 Conc., and
10 (mL/g) L/S ratio at 95 ◦C for 150 min

• V = 90%
• Cr remains in the residue

[109] 900 ◦C for 150 min. (NH4)2CO3
25% of Na2CO3 Conc., and 4 L/S ratio at
50 ◦C for 150 min.

• V = 92.8%

[110] 10 N2/O2, at 800 ◦C for 60 min. H2SO4 2 M of H2SO4 Conc., at 90 ◦C; for 150 min. • V = 69.37%

[133] 900 ◦C for 150 min. (NH4)2C2O4
13% of (NH4)2C2O4 Conc., and 4 L/S ratio at
70 ◦C for 60 min.

• V = 90%

However, non-salt technology offers several advantages, such as reducing the carbon
content of HOA, lowering its volume, and increasing the levels of V and Ni in the ash. There
are some limitations, including the release of gas emissions, treating only waste with a high
content of CaO or MgO, the chance of V compounds becoming volatile, the possibility of
fusion and the creation of V-Ni refractory compounds at temperatures exceeding 900 ◦C,
and alterations in the ash pH that might negatively impact the recovery of V and Ni during
the leaching process.

3.2.2. Calcification Roasting Assisted Leaching

As an alternative to non-salt roasting, the clean technique of calcification roasting was
used. The calcium roasting process involves combining limestone, lime, or other calcium
compounds with vanadium wastes, grinding the mixture to an acceptable size, and then
roasting the mixture in a vertical kiln [137,138], as illustrated in Figure 12. According to the
chemical reactions listed in Table 7 and the previous studies of thermodynamic assessment,
the oxidation processes involving CaO and V-spinels (Equations (3) and (4)) begin around
600 ◦C, whereas those using Cr-spinels (Equations (5) and (6)) start at 800 ◦C [139,140]. It
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is noted that the vanadium and calcium reaction during the roasting process leads to the
formation of calcium vanadates (CaV2O6 and Ca3V2O8); the compounds mentioned are not
soluble in water (Equations (7)–(13)); therefore, they must be leached out through H2SO4

acid (Figure 13) [137,141,142] or alkaline leaching with ammonium carbonate solution
(Figure 14) [139,143,144].
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Table 7. Reactions during calcium-roasting and leaching of vanadium-bearing waste.

Calcium Oxide (CaO) ∆G (kJ/mol O2) Eqs.

4/5FeV2O4 + 4/5CaO + O2→4/5CaV2O6 + 2/5Fe2O3 ∆G(T) = −439.86 + 0.21T (kJ/mol O2) (3)
4/5FeV2O4 + 12/5CaO + O2→4/5Ca3V2O8 + 2/5Fe2O3 ∆G(T) = −655.92 + 0.44T (kJ/mol O2) (4)
4/7FeCr2O4 + 8/7CaO + O2→8/7CaCrO4 + 2/7Fe2O3 ∆G(T) = −255.77 + 0.15T (kJ/mol O2) (5)
2/3MgCr2O4 + 4/3CaO + O2→4/3CaCrO4 + 2/3MgO ∆G(T) = −468.37 + 0.32T (kJ/mol O2) (6)
Acid-leaching of calcified roasted product
CaV2O6 + 2H2SO4→(VO2)2SO4 + CaSO4 + 2H2O (7)
Ca3V2O8 + 4H2SO4→(VO2)2SO4 + 3CaSO4 + 4H2O (8)
CaCrO4 + H2SO4→H2CrO4 + CaSO4 (9)
Alkali-leaching of calcified roasted product
CaV2O6 + Na2CO3→ 2NaVO3 + CaCO3 (10)
Ca3V2O8 + 3Na2CO3→2Na3VO4 + 3CaCO3 (11)
Ca3V2O8 + 3(NH4)2CO3→2(NH4)3VO4 + 3CaCO3 (12)
CaCrO4 + (NH4)2CO3→(NH4)2CrO4 + CaCO3 (13)

Roasting and leaching behaviors of vanadium and chromium using calcification
roasting-acid leaching from high-chromium vanadium slag were investigated [145]. The
results indicated that more CaO combined with vanadium and reacted to form calcium
vanadate (Ca3V2O8), resulting in a high leaching efficiency of vanadium, approximately
91.14%, while the chromium remained in the leaching residue, and only 8.48% was leached.
Gao [130] studied the roasting process of high chromium vanadium slag using CaO and mi-
crowave heating techniques. The effect of CaO dosage on vanadium-roasted products was
investigated. At low m(CaO)/m(V2O5), CaV2O6 was formed, which was then converted
to Ca2V2O7 and CaVO3 with increasing m(CaO)/m(V2O5) ratio. Results indicated that
microwave radiation can reduce particle size and shorten roasting time, achieving 98.29%
vanadium leaching efficiency under optimal conditions. Zhang [42] investigated the use of
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lime in roasting vanadium-bearing waste. Vanadium recovery was significantly influenced
by the heating rate. Hence, reducing the heating rate resulted in high vanadium recovery.
The formation of Ca2V2O7 was more favorable for leaching vanadium with sulfuric acid.
Xiang [146] applied mechanical activation treatment to enhance the extraction of vanadium
from converter slag at a 1:1 mole ratio of vanadium to calcium. Then, the roasted slag was
leached in a 15% sulfuric acid solution for 60 min at a temperature of 50 ◦C, stirring speed
of 150 rpm, and S/L ratio of 1:20. The results demonstrated that the mechanical activation
significantly decreased the optimum roasting temperature from 900 to 800 ◦C and increased
the leaching efficiency of vanadium from 86.0 to 90.9%, respectively.
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Table 8 summarizes extensive research on different vanadium resources utilizing
calcium roasting and leaching techniques. Utilizing this technology makes it possible to
obtain high-purity vanadium leach solutions with minimal interference from elements
such as silicon and phosphorus. The other advantage is that the leaching may proceed
at a lower temperature when a particular ammonia salt is used. However, the leaching
efficiency is much lower when using ammonium salts compared to the maximum 90%
filtration of vanadium with sodium salts due to the precipitation of vanadium as NH4VO3.
So, problems linked to ammonia volatilization must also be considered. Additionally, there
are several drawbacks associated with this technology, such as the production of a large
quantity of leaching residues containing sulfate compounds, equipment corrosion, and the
emission of harmful gasses, which can cause environmental contamination.
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Table 8. Results of different studies on vanadium’s calcium roasting and leaching from various
V sources.

Ref.
Roasting Leaching

ResultsSalt Conditions Lixiviant Conditions

[143] CaO 1:1.1 V/Ca molar ratio,
900 ◦C for 120 min. (NH4)2CO3

600 g/L of (NH4)2CO3 Conc.,
20 (mL/g) L/S, 80 ◦C, 70 min.

• V = 96%
• P = 9.2%

[144] CaO 900 ◦C for 180 min. NH4HCO3 15% NH4HCO3, 75 ◦C, 180 min. • V = 69.2%

[147] CaO 1:16 CaO/solid ratio, 850 ◦C
for 120 min. H2SO4

15% H2SO4 Conc., 10 (mL/g) L/S
ratio, 55 ◦C, 70 min.

• V = 93%

[42] CaO 0.42 CaO/solid ratio, 850 ◦C
for 150 min. H2SO4 pH 2.5, 4 L/S ratio, 65 ◦C, 60 min. • V = 91.5%

[148] CaO 0.5 CaO/V2O3 molar ratio,
900 ◦C for 60 min. H2SO4

20% H2SO4 Conc., 5 (mL/g) L/S
ratio, 50 ◦C, 60 min.

• V = 99.4%

[149] CaO 1 CaO/V2O5 molar ratio,
900 ◦C for 120 min. (NH4)2SO4 + H2SO4

250.0 g/L (NH4)2SO4 Conc., 3.75 M
H2SO4 conc., 10 (mL/g) L/S ratio,
20 ◦C, 60 min.

• V = 93.5%
• Cr = 0.2%

[139] CaO 0.5 CaO/V2O5 molar ratio,
900 ◦C for 60 min. Na2CO3

160 (g/L) Na2CO3 Conc., 10 L/S,
80 ◦C, 60 min.

• V = 93.2%
• Cr = 0.04%

[150] CaCO3
1 Ca/V molar ratio, 850 ◦C
for 120 min. H2SO4

15% H2SO4 Conc., 10 (mL/g) L/S,
10 (mL/g), 50 ◦C, 60 min.

• V = 83%

[151]
(1st)
CaO

(2nd) Na2CO3

1st stage:
5 CaO/V2O3 molar ratio,
780 ◦C for 60 min
2nd stage:
3.3 Na2CO3/Cr2O3 at 950 ◦C

1st stage:
H2SO4

2nd stage:
Water

1st stage:
3.75 M H2SO4 Conc., 5 L/S ratio,
70 ◦C, 60 min.
2nd stage:
3 L/S ratio, 3 (mL/g), 25 ◦C, 20 min.

1st stage:

• V = 90%
• Cr = 1%

2nd stage:

• Cr = 87%
• V = 99%

3.2.3. Sodium Salt Roasting Assisted Leaching Process

Traditional roasting technologies include sodium roasting, which can be traced
back to Bleecker’s first salt-roasting technology in 1912 [128]. Basically, a mixture of
sodium salts (Na2CO3, Na2SO4, NaCl, and NaOH) as a source for alkalis was roasted
with vanadium-bearing waste in a furnace at high temperatures, depending on the melt-
ing points of the sodium sources as follows: 1200~1250 ◦C for Na2SO4, 750~850 ◦C for
NaCl, 800~1000 ◦C for Na2CO3, and 400~800 ◦C for NaOH [43,152,153]. A maximum
amount of oxygen was used during roasting to oxidize the V3+ and convert it into soluble
sodium vanadates (NaVO3, Na4V2O7) through the chemical reactions listed in Table 9 [127].
The vanadium conversion degree in these sodium sources follows the following order:
NaOH > Na2SO4 > Na2CO3 > NaCl [154]. This order can be attributed to several reasons,
including the diffusivity of the different sodium sources into the interior layers of the
wastes, where they react with the V-spinels [155–157]. Despite all the limitations of this
technology, which include the formation of harmful gaseous products, such as SO2, Cl2,
or CO2, fusion of NaCl at high temperatures, and high energy consumption while using
sodium salts as the alkali source, it remains the best method in terms of selective vanadium
extraction with low operating cost. The above serious environmental pollution greatly
hinders the sustainable development of V extraction from V-bearing materials [158,159].
Consequently, efforts are still needed to develop an eco-friendly and effective method for
extracting V from V-bearing materials. Attention has also been paid to recycling the Na+

from the leach solution, using a membrane-assisted electrochemical cell to separate the
cation from vanadium ions [160].



Recycling 2025, 10, 6 22 of 53

Table 9. Reactions during salt roasting and leaching of vanadium-bearing waste.

Sodium Sulfate (Na2SO4) ∆G (kJ/mol O2) Eqs.

4/3FeV2O4 + 4/3Na2SO4 + O2→8/3NaVO3 + 2/3Fe2O3 + 4/3SO2 ∆G(T) = −155.62 − 0.08T (14)
4FeV2O4 + 8Na2SO4+ O2→4Na4V2O7 + 2Fe2O3 + 8SO2 ∆G(T) = 985.43 − 1.19T (15)
FeCr2O4 + 2Na2SO4 + O2→2Na2CrO4 + 1/2Fe2O3 + 2SO2 ∆G(T) = 936.43 − 0.59T (16)
2MgCr2O4 + 4Na2SO4 + O2→4Na2CrO4 + 2MgO +4SO2 ∆G(T) = 1195.64 − 0.78T (17)
Sodium chloride (NaCl)
4/5FeV2O4 + 8/5NaCl + 4/5H2O + O2→8/5NaVO3 + 2/5Fe2O3 + 8/5HCl ∆G(T) = −245.36 + 0.04T (18)
4/9FeV2O4 + 16/9NaCl + 4/9H2O + O2→4/9Na4V2O7 + 2/9Fe2O3 + 8/9HCl ∆G(T) = −113.65 − 0.05T (19)
4/7FeCr2O4 +16/7NaCl + 8/7H2O + O2→8/7Na2CrO4 + 8/7Fe2O3 + 16/7HCl ∆G(T) = 79.07 − 0.01T (20)
2/3MgCr2O4 + 8/3NaCl + 4/3H2O + O2→4/3Na2CrO4 + 4/3MgO + 8/3HCl ∆G(T) = 148.14 − 0.12T (21)
4/7FeV2O4 + 8/7NaCl + O2→8/7NaVO3 + 2/7Fe2O3 + 4/7Cl2 ∆G(T) = −186.26 + 0.09T (22)
4/9FeV2O4 + 16/9NaCl + O2→4/9Na4V2O7 + 2/9Fe2O3 + 8/9Cl2 ∆G(T) = −80.26 + 0.06T (23)
4/7FeCr2O4 + 16/7NaCl + O2→8/7Na2CrO4 + 2/7Fe2O3 + 8/7Cl2 ∆G(T) = 55.83 + 0.02T (24)
2/5MgCr2O4 + 8/5NaCl + O2→4/5Na2CrO4 + 2/5MgO + 4/5Cl2 ∆G(T) = 36.74 + 0.005T (25)
Sodium carbonate (Na2CO3)
4/5FeV2O4 + 4/5Na2CO3 + O2→8/5NaVO3 + 2/5Fe2O3 + 4/5CO2 ∆G(T) = −345.3 + 0.04T (26)
4/5FeV2O4 + 8/5Na2CO3 + O2→4/5Na4V2O7 + 2/5Fe2O3 + 8/5CO2 ∆G(T) = −306.70 + 0.07T (27)
4/7FeCr2O4 + 8/7Na2CO3 + O2→8/7Na2CrO4 + 2/7Fe2O3 + 8/7CO2 ∆G(T) = −94.64 − 0.04T (28)
2/3MgCr2O4 + 4/3Na2CO3 + O2→4/3Na2CrO4 + 2/3MgO + 4/3CO2 ∆G(T) = −92.39 + 0.14T (29)
Sodium hydroxide (NaOH)
4/5FeV2O4 + 8/5NaOH + O2→8/5NaVO3+ 2/5Fe2O3 + 4/5H2O ∆G(T) = −458.66 + 0.11T (30)
4/5FeV2O4 + 16/5NaOH + O2→4/5Na4V2O7 + 2/5Fe2O3 + 8/5H2O ∆G(T) = −533.41 + 0.08T (31)
4FeCr2O4 + 8NaOH→4Na2CrO4 + 2Fe2O3 +4H2O ∆G(T) = −273.10 − 0.02T (32)
2/3MgCr2O4 + 8/3NaOH + O2→4/3Na2CrO4 + 2/3MgO + 4/3H2O ∆G(T) = −210.17 + 0.01T (33)
Water leaching of sodium roasted product
NaVO3 + H2O → H2VO(−4 ) + Na+ (34)
Na4V2O7 + H2O → 2HVO(2−

4 ) + Na+ (35)
Acid-leaching of sodium roasted product
2NaVO3 + 2H2SO4→(VO2)2SO4 + Na2SO4 + 2H2O (36)
Na4V2O7 + 3H2SO4→(VO2)2SO4 + 2Na2SO4 + 3H2O (37)
Na2CrO4 + H2SO4→H2CrO4 + Na2SO4 (38)
Alkaline-leaching of sodium roasted product
Na2O.V2O5 + 4NaOH→2Na3VO4 + 2H2O (39)
2NaVO3 + (NH4)2CO3→2NH4VO3 + Na2CO3 (40)
Na4V2O7 + 2(NH4)2CO3→(NH4)4V2O7 +2Na2CO3 (41)
Na2CrO4 + 2(NH4)2CO3→(NH4)4V2O7 + 2Na2CO3 (42)

Anyway, the water-leaching process mostly applies to products undergoing sodium
roasting, which takes place through Equations (34) and (35). Metal sulfates are formed by
dissolving sodium vanadate compounds by H2SO4, according to Equations (36)–(38), and
ammonium carbonate leaching is accomplished through Equations (39)–(42). However, the
leaching effectiveness depends on the degree of metal converted during roasting, where
sodium vanadate can be leached out. With regard to this case, there are certain common
features for the processes that are used in the commercial plants of vanadium production
from industrial wastes, such as the sodium salt roasting-water leaching-ammonia precipita-
tion process utilized at Highveld Steel and Vanadium Corp. (South Africa), Chengde Iron
and Steel Group (China), Nizhniy Tagil Iron and Steel Works (NTMK, Russia), etc. [127].
Li [43] reported that only 87.9% of V and 6.3% of Cr were recovered from calcined waste at
Na/V molar ratio of 3.3 at 800 ◦C using water leaching, as shown in Figure 15. When the
leaching residue was subjected to second sodium calcination at (Na/(V, Cr) molar ratio of
2.86 and 950 ◦C), about 90.7% of vanadium and 96.4% of chromium were leached, giving
an overall recovery of vanadium and chromium of 98.9% and 96.4%, respectively.
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Wen [161] evaluated the leaching of the vanadium and chromium using sodium salts
roasting (Na2CO3) and then leaching them with (NH4)2SO4, showing that 94.6% vanadium
and 96.5% chromium were leached. According to Zhao [162], vanadium can be leached
from stone coal with the addition of 6 wt.% sodium chloride and 10 wt.% sodium sulfates
during the roasting process. It was noted that the vanadium-bearing muscovite with
quartz was converted to feldspar group minerals (albite, orthoclase, and anorthite). These
results could produce some potential methods for vanadium recovery from stone coal.
Puhong [129] roasted red cake obtained from multi-processing of stone coal with 22.5 g
NaOH/25 g red cake at 170 ◦C for 1 h, then used water leaching at 98 ◦C for 60 min. with a
solid/liquid ratio of 1:3.3 g/mL. It was noted that the V leaching efficiency was up to 97%
after purification and calcination as V2O5, with a purity of 99.3%.

A three-step process was performed on HOA containing 85 wt.% unburned C and
2.2 wt.% V, beginning with carbon burning, followed by salt roasting and water leaching.
It was noted that the 4 h. calcining step at 650 ◦C removes most of the carbon and thus
increases the V content to 19 wt.%. Then, the burned enriched-V ash was roasted with
sodium carbonate Na2CO3 at 650 ◦C for 4 h to convert V oxides into sodium metavanadate
(NaVO3), which is a water-soluble compound [163]. The calcined ash was leached with
water for 4 h at 60 ◦C with an S/L ratio of 1:50 g/mL. Water leaching leads to the selective
dissolving of V with about 92% recovery, leaving Fe and Ni compounds undissolved in the
residue of the ash. By adding (NH4)2SO4, V is precipitated as NH4VO3 from the leaching
solution to separate V from the solution [101].

In the same context, Ibrahim et al. [59] discussed a recent technique for converting V
compounds into water-soluble vanadates (NaVO3) through roasting with NaCl, as shown
in Figure 16. They found that over 95.5% of the vanadium leached out after the HOA was
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roasted with 20% NaCl for 2.5 h. Then, the vanadium was leached using distilled water
with an L/S ratio of 10 mL.g−1. The purity of the obtained NH4VO3 powder was estimated
to be about 92% using direct precipitation from vanadium-pregnant solution by NH4Cl
addition, and the precipitation efficiency of NH4VO3 powder was estimated to be around
91.5%, and the total recovery rate of vanadium reached up to 87.60%. Then, the ammonium
meta-vanadate was calcined at 550 ◦C for 3 h to produce V2O5 powder with an estimated
83% purity (Figure 17).
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The authors [59] comprehensively investigated the solid-state and phase transfor-
mation mechanisms that govern the selective extraction of vanadium from HOA. The



Recycling 2025, 10, 6 25 of 53

SEM images are displayed in Figure 18 for the roasted sample produced at 700 ◦C, and
the corresponding EDS analysis for different points on the burnt ash is listed in Table 10.
The results (Figure 18a) showed that the roasted particles are presented in an irregular
shape with different sizes, and a few areas of spinel surface structure have been destroyed.
According to the elemental mapping analyses shown in points S1 and S4, the decomposi-
tion of the spinel started to release the vanadium molecules, which indicates that sodium
and vanadium are partially compatible (Figure 18b). The main information shown in this
figure includes the following: (1) the particles are loose and dispersed, indicating that the
interaction between particles is not significant under this temperature; (2) the distribution
of sodium is relatively extensive and uniform, indicating that NaCl has not entirely reacted
and formed a new sodium phase; and (3) the relative enrichment of vanadium appeared in
some particles with high sodium content, indicating that some phases containing sodium
and vanadium were formed.

Recycling 2025, 10, 6 27 of 57 
 

vanadium are partially compatible (Figure 18b). The main information shown in this fig-
ure includes the following: (1) the particles are loose and dispersed, indicating that the 
interaction between particles is not significant under this temperature; (2) the distribution 
of sodium is relatively extensive and uniform, indicating that NaCl has not entirely re-
acted and formed a new sodium phase; and (3) the relative enrichment of vanadium ap-
peared in some particles with high sodium content, indicating that some phases contain-
ing sodium and vanadium were formed. 

 

Figure 18. SEM images of roasted boiler ash sample: (a) at 700 °C for 2 h, and (b) elemental mapping 
images of burned surface. 

Based on the EDS analysis (Table 10) of the specific locations (S1 and S4), it was clear 
that the chemical composition showed a moderate correlation between the levels of vana-
dium and sodium due to the limited reaction range of O2 with vanadium spinel to release 
their oxides. So, not all quadruple vanadium (V4+) was oxidized to the highest V5+ valency 
[64,164]. As a result, the reaction temperature at 700 °C was not sufficient to convert more 
of the V found in the vanadium compound into water-soluble sodium vanadates because 
almost all of V still exists inside the spinel, with less outer distribution than the central 
region and not enough opportunity to react with NaCl, resulting in decreasing the vana-
dium leachability [111]. To further explore, a line scan analysis was performed, as shown 
in Figure 19. Clearly, it was noted that the V and Na lines are aligned to some extent, 
suggesting an inconsiderable liberation of the vanadium element from the spinel surface. 
Furthermore, a large amount of free sodium remains along the line, meaning it did not 
enter into the chemical reaction. 

  

Figure 18. SEM images of roasted boiler ash sample: (a) at 700 ◦C for 2 h, and (b) elemental mapping
images of burned surface.

Table 10. Spots EDS analysis of roasted boiler ash at 700 ◦C for 2 h and 20 wt.% of NaCl.

Spots Composition (wt., %)
V Ni Fe O Na Mg Al Si

S1 18.57 2.93 5.88 28.07 25.39 15.12 3.03 1.01
S2 2.24 7.72 4.47 26.34 23.21 31.59 3.15 1.28
S3 1.2 10.39 17.58 20.56 18.05 22.88 5.61 3.73
S4 10.08 4.61 6.01 30.5 28.24 13.5 6.02 1.04
S5 3.94 3.14 25.2 24.6 19.83 11.42 9.34 2.53
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Based on the EDS analysis (Table 10) of the specific locations (S1 and S4), it was
clear that the chemical composition showed a moderate correlation between the levels of
vanadium and sodium due to the limited reaction range of O2 with vanadium spinel to
release their oxides. So, not all quadruple vanadium (V4+) was oxidized to the highest V5+

valency [64,164]. As a result, the reaction temperature at 700 ◦C was not sufficient to convert
more of the V found in the vanadium compound into water-soluble sodium vanadates
because almost all of V still exists inside the spinel, with less outer distribution than the
central region and not enough opportunity to react with NaCl, resulting in decreasing the
vanadium leachability [111]. To further explore, a line scan analysis was performed, as
shown in Figure 19. Clearly, it was noted that the V and Na lines are aligned to some extent,
suggesting an inconsiderable liberation of the vanadium element from the spinel surface.
Furthermore, a large amount of free sodium remains along the line, meaning it did not
enter into the chemical reaction.
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Their findings indicate that a roasting temperature of 850 ◦C (Figure 20) appears
optimal for facilitating the O2 reaction with vanadium-bearing minerals. This temperature
provides an excellent opportunity for vanadium molecules to react with sodium chloride,
forming the sodium metavanadate phase (NaVO3). However, this phase can be easily ex-
tracted through a water-leaching process, resulting in the liberation of vanadium molecules,
as shown in. Elemental scan lines demonstrated that the Na and V lines align, indicating
that a considerable amount of the V element has been released from the spinel surface.

Elemental scan lines demonstrated the distribution of elements in the roasted ash at
850 ◦C is shown in Figure 21. Also, it was noted that there is an abroad alignment of the
Na and V lines, suggesting that there is a significant liberation of the V element from the
spinel surface. Also, along the line, there are no remains of free sodium, which means that
all of it was entirely consumed in the process of forming a water-soluble sodium vanadate
compound. This result confirms the hypothesis explained in the TGA data of the same
study, which has been attributable to the complete thermal decomposition of vanadium
spinel (FeV2O4) and vanadyl sulfates at 850 ◦C.
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Furthermore, there are no signs of unbound sodium present in the mixture, suggesting
that it was entirely consumed in the process of forming a water-soluble sodium vanadate
compound. The results of the point-scan analysis of three different surface products
are listed in Table 11. Meanwhile, the excessive roasting temperature of up to 1000 ◦C
(Figure 22) would allow for the formation of refractory compounds (i.e., sintered from V,
Ni, Fe). In addition, the formation of the aluminum silicate (NaAlSi2O6) phase increases
due to the melting of NaCl salt, which leads to the formation of agglomerate that could
hinder oxygen transfer during the roasting process and hence decrease the vanadium
percent recovery.

Generally, the direct leaching process is poorly selective and has varying leaching
efficiencies among different vanadium-containing phases. Consequently, subsequent sepa-
ration and purification processes for vanadium and other metals in the leaching solution
are more complex, with a wide range of reagent types and high consumption rates. On
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the other hand, the roasting-leaching process enables control over the occurrence form of
vanadium through roasting, thereby ensuring efficient vanadium leaching. Specifically, the
sodium salt roasting process can be employed to selectively separate vanadium using the
water leaching method, which offers advantages such as high leaching efficiency, excellent
selectivity, reduced consumption of leaching reagents, and suitability for treating materials
with complex forms of vanadium occurrence. Based on the characteristics of V-bearing
waste of high vanadium content and complex vanadium occurrence forms, NaCl has been
used, a low-cost and abundantly available salt compared to other salts in the roasting-water
leaching process, to study the extraction process of vanadium and focus on the transition
law and mechanism of the vanadium-containing phase during sodium salt roasting so as
to provide the theoretical basis for efficient extraction of vanadium. A summary of the
comprehensive research carried out on various vanadium resources using sodium-salt
roasting and leaching processes is presented in Table 12.

Table 11. Spots EDS analysis of roasted boiler ash at 850 ◦C and 1000 ◦C for 2 h and 20 wt.% of NaCl.

Spots Composition (wt., %)
V Ni Fe O Na Mg Ca Al Si

85
0
◦ C

S1 17.86 1.45 5.29 38.23 20.45 7.19 1.02 3.96 4.55
S2 12.62 1.74 4.83 35.01 25.11 7.05 0.98 7.58 5.08
S3 10.06 1.41 3.27 37.54 27.04 6.89 1.08 7.26 5.45
S4 14.08 1.97 2.46 33.93 25.06 8.87 1.5 5.97 6.16
M1 0.92 22.11 38.77 27.87 1.15 5.45 1.01 1.63 1.09
M2 0.81 4.28 7.24 35.3 15.42 3.95 1.92 14.57 16.51
M3 1.07 19.95 36.81 25.76 2.08 9.03 1.02 1.45 2.83

10
00

◦ C

S1 19.35 16.76 23.21 25.61 1.03 9.5 2.02 1.51 1.01
S2 18.87 15.98 21.28 27.84 1.31 10.46 1.98 1.36 0.92
S3 19.06 19.19 20.14 26.75 1.56 9.69 1.04 1.47 1.1
M - - - 47.18 3.14 32.21 1.5 - 15.97
N1 - - - 30.65 46.04 - 3.51 9.7 10.1
N2 - - - 28.71 39.45 - 2.08 19.84 9.92
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Table 12. Results of different studies on vanadium’s sodium-salt roasting and leaching from various V sources.

Ref.
Roasting Leaching

ResultsSodium-Salt Roasting Conditions Lixiviant Conditions

[59,165] NaCl

1st stage
Roasting at 850 ◦C for 150 min.
2nd stage
Water leaching solid residue
(WLSR)

Water
H2SO4

10 (mL/g) L/S ratio at 25 ◦C
for 90 min.

−63 µm, 8% H2SO4 Conc., in 15 (mL/g) L/S
ratio at 85 ◦C;
for 240 min.

1st stage:

• V = 95.5%

2nd stage:

• Ni = 95.02%
• Zn = 90.13%

[43] Na2CO3 + O2

1st stage (V-roasting)
3.3 Na/V molar ratio at 800 ◦C
for 120 min.
2nd stage (Cr-roasting)
2.86 Na/(V,Cr) molar ratio at
950 ◦C for 120 min.

Water

1st stage:
3 (mL/g) L/S ratio at 25 ◦C;
for 20 min.
2nd stage:
3 (mL/g) L/S ratio at 25 ◦C;
for 20 min.

1st stage:

• V = 87.9%
• Cr = 6.3%

2nd stage:

• Cr = 96.4%
• V = 90.7%

[166] Na2CO3
41/9 Na2CO3/solid ratio at
700 ◦C for 150 min. Water 5 (mL/g) L/S ratio at 90 ◦C

for 30 min.
• V = 90%

[167] Na2CO3
0.1 Na2CO3/solid ratio at
0.2 1000 ◦C for 45 min. Na2CO3 + NaOH

45 + 10 (g/L) of Na2CO3 +
NaOH Conc., in 20 L/S at
80 ◦C for 60 min.

• V = 80%

[41] Na2CO3
1.0 Na2CO3/solid ratio, at
2.0 1000 ◦C for 120 min. H2SO4

3.0 M H2SO4 Conc., in 15 (mL/g) L/S ratio at
70 ◦C;
for 150 min.

• V = 95%

[161] Na2CO3
2.5 Na2CO3/solid ratio at
850 ◦C for 60 min. (NH4)2SO4

30.0 (g/L) (NH4)2SO4 Conc.,
in 3 (mL/g) L/S ratio at 20 ◦C for 60 min.

• V = 94.6%
• Cr = 96.5%

[153] NaOH + O2
7.67 Na/V molar ratio at
700 ◦C for 120 min. Water 70 (mL/g) L/S ratio at 25 ◦C

for 60 min.
• V = 99%

[168] NaOH 0.3 NaOH/solid ratio at 800 ◦C for 180 min. Water 10 (mL/g) L/S ratio at 30 ◦C for 60 min.
• V = 94.9%
• Cr = 80.5%

[169] Na2CO3 + NaCl 3:2:5 Na2CO3/NaCl/solid ratio at 700 ◦C for
120 min. Water 4 (mL/g) L/S ratio at 95 ◦C for 180 min.

• V = 96%
• Cr = 91%

[170] NaOH 0.3 NaOH/solid ratio at 850 ◦C for 120 min. NaOH pressure leaching 5 (mL/g) L/S ratio; 0–5 MPa O2 partial pressure
at 210 ◦C for 120 min.

• V = 98%
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Likewise, Ibrahim [165] studied the cost-effective extraction of precious metals, such
as Ni and Zn, by hydro-metallurgical processing of the water-leaching solid residue (as
shown in Figure 23) after vanadium extraction from salt-roasting Egyptian boiler ash [59].
Under the most favorable leaching conditions of 8% (vol%) H2SO4 concentration, 85 ◦C
leaching temperature, and 1/15 S/L ratio, a maximum extraction of 95.02% Ni and 90.13%
Zn was achieved after 240 min of leaching, while the iron impurity was removed by Fe2O3

as a nucleating agent and the magnesium impurity was effectively removed by oxalic
acid precipitant. After the removal of Fe and Mg, Ni and Zn in the purified solution
were precipitated at a pH of 10 as Ni-Zn hydroxide (Ni(OH)2 and Zn(OH)2), which was
subsequently transformed into NiO-ZnO by its calcining at 450 ◦C for 2 h. The precipitation
efficiency of Ni and Zn was 95.25% and 89.51%, respectively, and the final calcined product
was composed mainly of 37% Ni and 23% Zn. Based on a kinetic analysis, it was discovered
that the process of leaching nickel is primarily controlled by diffusion through the solid
product layer and chemical reactions. The diffusion process through the solid product
layer is the main contributor, with an activation energy of 20.26 kJ/mol. The kinetic of zinc
dissolving is governed by the diffusion that occurs through a layer of a solid product, and
this diffusion has an activation energy of 11.67 kJ/mol.
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3.2.4. Promising Modification Methods

Continuous efforts have been made to develop alternative processes, including sub-
molten salts and supercritical fluid for recovering vanadium from various sources. Sub-
molten salt and novel leaching methods can extract vanadium from various sources
(vanadium-bearing slag, stone coal, spent catalysts, etc.) and should be discussed in this
review. The method of sub-molten salts (NaOH/KOH/NaOH-NaNO3 = 75% (w/w) at high
pressure) can decrease the cost of energy due to the lower reaction temperature [171,172].
According to a report by Liu [171], a new study has discovered a unique approach to
breaking down vanadium slag using KOH as a sub-molten salt under regular pressure.
When the reaction conditions are optimal, including a temperature of 180 ◦C, an initial
ratio of 4:1 potassium hydroxide to ore mass, a stirring speed of 700 rpm, a gas flow
rate of 1 L/min, and a reaction time of 300 min, the extraction rates of vanadium and
chromium can attain up to 95% and 90%, respectively. Still, the requirement of reactors
with high corrosion resistance, the large consumption of alkaline, and the high dissolu-
tion rate of silica phases limit its wide application. The problems of inefficient vanadium
separation and serious environmental pollution greatly hinder the application of these V
extraction processes [158,159]. Recently, novel leaching methods have been reported for
vanadium recovery using urea, specific chelating agents, or supercritical fluid, resulting in
low environmental impact [173–176].

A leaching method has also been reported by adjusting the vanadium particles’ surface
wettability to intensify the solid–liquid contact using certain surfactants [177]. Though
tested in a few cases, as shown in Table 13, such conditions have resulted in considerably
lower vanadium recovery yields (60~70%); however, they can still be considered a “green
option” to the traditional processes. Accordingly, the broadly available theoretical under-
pinnings and technological background of such approaches make them worth investigating
in the future. Once proven promising, they may eventually be considered for exploitation
and optimization.
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Table 13. Details of some novel leaching methods for vanadium recovery from various sources.

Source Method Conditions Results Principle Highlight Ref.

Vanadium spent catalyst Urea leaching
Time, 1 h; temperature,
20 ◦C; urea conc., 20%;
pH = 14

V = 80%
• Considering the mutual solubility

effect of urea to vanadium
solubility in water

• High kinetic leaching of vanadium
even at low temperatures is
an advantage

[175]

Vanadium-bearing shale,
vanadium-bearing coal Chelating leaching

Time, 4 h; temperature,
95 ◦C; chelator conc., 6.0 M;
additive (CaF2), 5% (wt.)

87% V

• The principle is similar to that of
bioleaching, which is to obtain a
product of a complex
metal-chelator.

• Chelators used are citric acid,
oxalic acid, and
ethylenediaminetetraacetic
acid (EDTA).

• The process offers the advantage
of an eco-friendly approach
compared to conventional leaching
using mineral acids.

• Even so, slower kinetic leaching
becomes the main problem of this
approach, being the limitation for
its wider application.

[3,173]

Vanadium-bearing slag Surface wettability control

Leaching conditions:
not specified
Surfactant added:
0.25–1.0% (wt.)

69% V (with
surfactant), 51% V
(without surfactant)

• To intensify the interaction
between the solid particle and
leaching solution by adding
surfactants like
polydimethylsiloxane/PDMS and
sodium dodecyl sulfate/SDS.

• The surfactants play roles in
reducing the surface tension of the
solution and changing the surface
properties of the solid particles

• The pioneered study showed the
capacity of this approach to
enhance vanadium extraction.

• Further studies in this area are
worth encouraging while assessing
the economic and environmental
impact of the added surfactants.

[177]

Vanadium spent catalyst Supercritical leaching
Fluid, acetylacetone;
temperature, 190 ◦C;
time, 7 h

V = 60%

• Characterized by the use of fluids
where they are in their critical
point; for instance, CO2 (critical
pressure/Pc, 7.38 MPa; critical
temperature/Tc, 31.1 ◦C), ethanol
(Pc, 6.3 MPa; Tc, 241 ◦C), methanol
(Pc, 7.85 MPa; Tc, 240 ◦C),
acetylacetone (Pc, 4.05 MPa; Tc,
339 ◦C) and other alcohol groups.

• Research on this area is still green.
• The advantages in the

environment, energy, and chemical
aspects are worth considering
while preliminary studies show an
unsatisfactory result.

• The development of novel
supercritical solvents and
co-solvents is believed to be the
main factor attributing to the
greater interest in applying this
technology in the extractive
metallurgy field, including
extracting vanadium.

[178]
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4. Utilizing By-Products for Industrial Applications
The world is dealing with water scarcity issues due to the discharge of partially treated

or untreated wastewater from industries and groundwater pollution. The demand for clean
water has increased to meet the needs of a sustainable society. The need for cost-effective
and efficient water treatment methods has become a growing concern as we look towards
the future. This has led to an increased focus on recycling industrial waste to produce low-
cost adsorbents and reduce environmental pollution [179]. Thus, developing an affordable,
accessible, and highly effective adsorbent for removing hazardous metal ions presented
in wastewater has become necessary. The utilization of solid industrial wastes by reusing
them in the manufacturing of useful materials used for environmental purposes has been
the subject of several recent studies, and it is one of the most crucial issues for maintaining
sustainable development [180,181].

The solid wastes containing silica (SiO2) and alumina (Al2O3), including industrial
waste forms, i.e., fly ash, steel slag, waste perlite, waste porcelain, lithium slag, waste
metallic residues, paper sludge, cupola slag, kaolin waste, windshield waste, asbestos
wastes, etc., could be converted into ecological zeolite-based adsorbents [182–191]. To date,
several physicochemical and solvothermal techniques, including the hydrothermal ap-
proach [192–194], alkali-fusion processes [195–197], sol–gel processes [198–200], microwave
processes [201–204], and alkali-leaching method [205–208] have been adopted and devel-
oped to produce synthetic adsorbents. Figure 24 shows the major preparation processes
and methods for synthesizing zeolite from industrial solid waste. So, in this review, we
focused on the synthesis of low-cost adsorbent from industrial waste.

However, many researchers have studied the synthesis of zeolites from solid wastes
to be used as an adsorbent for removing heavy metal ions from wastewater. Zeolites are
crystal formations built on stiff anionic alumino-silicate structures with distinct pores or
channels that link at cavities or cages [209]. These materials are favorable for adsorption
processes due to their high cation exchange capacity (CEC), large surface area, good thermal
stability, porosity, surface active functional groups, and nontoxicity [210–212]. New zeolite
materials have been processed from fly ash, successfully eliminating heavy metal ions
from aqueous solutions [213]. Chen [214] synthesized zeolite X by an alkaline fusion-
hydrothermal reaction using industrial lithium slag containing SiO2:Al2O3 in a weight ratio
of 71.73:25.16 (wt. %). The results highlight the performance similarity between Zeolite
NaX-1 and commercial Zeolite X.
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R. Anuwattana [216] has reported successfully synthesizing Na-A type zeolite using
industrial waste materials such as the solid by-product of cupola slag, which contains
SiO2/Al2O3 in a weight ratio of 47:12 (wt.%), and aluminum sludge from an aluminum
plating plant. In their investigation, two preparation methods were carried out using
the same starting material compositions. To begin the process, alkaline fusion was uti-
lized, and then the material was subjected to hydrothermal treatment to produce sodium
aluminosilicate. This substance was subsequently crystallized in a NaOH solution at a
temperature of 90 ◦C for 1~9 h with varying H2O/SiO2 ratios. The results indicated that a
more excellent ratio of H2O/SiO2 resulted in an increased crystallization rate. The highest
level of crystallization was observed for Na-A after 3 h. The second method involved
alkaline hydrothermal treatment without fusion, using the same conditions as the first
procedure. However, this approach did not yield any Na-A zeolite. It is worth considering
blast furnace slag (BFS) as a possible source of raw materials for zeolite synthesis. This
material primarily comprises CaO, SiO2, Al2O3, and MgO, with minor Fe, Ti, and Mn
quantities. Several groups have reported that zeolite can be made from industrial waste.

However, prior attempts to use BFS as a chemical source of zeolite were unsuccessful
due to its complex composition, specifically its high Ca content [192]. Hence, further
study is needed to produce a variety of zeolites for possible uses. In the same context,
Kuwahara [217,218] discovered a new way to synthesize a hydroxyapatite-zeolite micro
composite from BFS in a recent study. The process involves using affordable chemical
reagents such as H3PO4 and NaOH and suitable preparation techniques. This innovative
approach provides practical solutions for waste management. Furthermore, using the alkali
fusion process, Takaaki Wajima [197] demonstrated how to create zeolite-A, zeolite-X, and
hydroxysodalite from the BFS. A more recent approach (Figure 25) for synthesizing a high-
crystallin and affordable zeolite from a combination of SASR-kaolin as a readily accessible
and low-cost raw material using an alkaline fusion hydrothermal process [219]. The weight
ratio of the SASR- kaolin mixture of 1:1.5 gives the best composition and properties of
the synthesized zeolite. The optimal conditions for the synthesized zeolite are a fusion
temperature of 600 ◦C, a 1:3 wt. ratio (SASR-kaolin)-NaOH, a 1:4 solid–liquid ratio, an
80 ◦C crystallization temperature, and a 24 h crystallization time.
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Figure 26 illustrates the mineralogical structure of the produced synthesized zeolite
by mixing pretreated SASR and kaolin mixtures at different weight ratios in the presence of
NaOH (Mixture-NaOH mass ratio of 1:1.3). As shown in Figure 26A, the Faujasite zeolite
(Na2 Al2Si3.8O11.63·8H2O) has been formed as the major mineral phase from SASR-Kaolin
weight ratios of 1:0, 1:2, 1:1.5, 1:1, and 2:1.

Recycling 2025, 10, 6 37 of 57 
 

 

Figure 26. XRD Patterns of synthesized zeolite produced from mixture of SASR-Kaolin at weight 
ratios of (a) 1:0, (b) 1:2, (c) 1:1.5, (d) 1:1, (e) 2:1, and (f) 0:1. (A) XRD Patterns of synthesized products 
with different mass ratio of mixture-NaOH of 1:1.3 and 1:2. (B) where ●: Faujasite, and ∆: Sodalite 
zeolite [219]. 

Table 14. Synthetic zeolites from different industrial wastes and their advantages and limitations. 

Raw Material 
Chemical 

Composition % Advantages Limitations 
Synthesis 

Route 
Zeolite 
Type Ref. 

BFS 
CaO (40.1), SiO2 

(34.58), A12O3 (14.78), 
MgO (5.29)  

Availability, low cost, 
convenient preparation 
steps. 

• Higher CaO 
content. 

Hydrotherma
l A [217,218] 

Natural 
obsidian 

80.04% SiO2, 12.27% 
Al2O3, 0.16% TiO2, 
0.84% FeO, 0.18% 
MgO, 1.10% CaO, 

3.14% Na2O and 3.04% 
K2O 

Higher silica content, 
availability. 

• Still, limited 
studies did not 
mention any 
specific 
application.  
• Due to the 
wide range of 
behavior changes 
concerning 
synthetic 
conditions. 

Hydrotherma
l 

Organic 
template-
free EMT-

type, 
natrolite, 

Za-
gmelinite 

[222,223] 

RHA 
(Residue is 

rich in 
amorphous 

silica) 

80% silica, Al2O3, iron 
oxide, CaO, MgO, 

sodium and potassium 
oxides, and others 

Low cost, ultrafine size, 
highly porous, and 
chemically reactive.  

• Pre-
treatment of RHA 
and waste glasses 
increase the cost. 

Hydrotherma
l 

ZSM5, T, 
Na-Y 

[224,225] 

Waste glass 
materials 

SiO2 (63%), Al2O3 
(18%), B2O3 (10%), and 
alkaline earth oxides  

Excellent mechanical 
and thermal properties, 

• Problem in 
handling, need a 
substrate or base 

Hydrotherma
l A 

[198,199,22
6] 

10 20 30 40 50 60 70

     (a) 
(80.17%)

In
te

ns
ity

 (c
ou

nt
)

2θ/deg

      (b) 
(84.73 %)

••••••••
•

•

••

•
•

••••
•

      (c)  
(85.21%)

     (d)
(83.45%)Δ Δ

     (e)
(79.23%)

• Faujasite (Na2.06Al2Si3.8O11.63·8H2O)  
Δ Sodalite (Na8(AlSiO4)6(OH)2·4H2O)  Q SiO2      

Δ
ΔΔ

ΔΔ
Δ

Δ

Δ

Δ Δ

Δ
Δ

Q

      (f)
(65.12%)

[A]

10 20 30 40 50 60 70

Δ

Δ
Δ

Δ
Δ

Δ Δ

 2θ/deg

•
•
•

••
•••

1:2 (Mixture/NaOH)
         (69.76 %)

•
•

•

••

•
••

••

• 
••

Δ

In
te

ns
ity

 (c
ou

nt
)

• Faujasite (Na2.06Al2Si3.8O11.63·8H2O)
Δ  Sodalite (Na8(AlSiO4)6(OH)2·4H2O)

•

Δ

•
• •

•
•

•

••
••

•

••
•• •

••••

•

 

 

1:1.3 (Mixture/NaOH)
           (85.21 %)

[B]

Figure 26. XRD Patterns of synthesized zeolite produced from mixture of SASR-Kaolin at weight
ratios of (a) 1:0, (b) 1:2, (c) 1:1.5, (d) 1:1, (e) 2:1, and (f) 0:1. (A) XRD Patterns of synthesized products
with different mass ratio of mixture-NaOH of 1:1.3 and 1:2. (B) where •: Faujasite, and ∆: Sodalite
zeolite [219].

However, the intensity of its peaks increased with increases in the mass of kaolin,
and a high rate of crystallinity (85.21%) can be obtained when the ratio of SASR to kaolin
is 1:1.5, due to the stability of the zeolite composition. A percentage of sodalite zeolite
(Na8(AlSiO4)6(OH)2.4H2O) groups have also existed at an SASR-Kaolin weight ratio of 0:1.
Figure 26B shows that the crystallinity of the synthesized zeolite decreased from 85.21%
to 69.76% at 1:2 mixture-NaOH weight ratio. However, when the system’s alkalinity is
too high, a decline in crystalline is caused. This can be attributed to one of the following
two reasons: either the created zeolite spontaneously transforms into hydroxyl sodalite,
which has more excellent thermodynamic stability [220], or the zeolite will dissolve in the
hot alkali solution because of its metastable state and exposure to disturbances [180,221].
Table 14 illustrates how various industrial wastes can be used to create synthetic zeolites,
each with its own advantages and disadvantages.

Additionally, in the same context of research [219], synthesized zeolite was an effective
adsorbent for removing Zn2+, Pb2+, Cu2+, and Cd2+ heavy metal ions from industrial
wastewater based on readily accessible and low-cost raw materials. It was noted that the
adsorption process was exothermic, pH-dependent, and spontaneous in nature. Significant
adsorption occurs when the pH is 7.0 for Zn and Cd ions and 6.0 for Pb and Cu ions.
The adsorption process was found to follow the pseudo second-order kinetic model and
Langmuir isotherm model.
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Table 14. Synthetic zeolites from different industrial wastes and their advantages and limitations.

Raw Material Chemical Composition % Advantages Limitations Synthesis Route Zeolite Type Ref.

BFS CaO (40.1), SiO2 (34.58),
A12O3 (14.78), MgO (5.29)

Availability, low
cost, convenient
preparation steps.

• Higher CaO content. Hydrothermal A [217,218]

Natural obsidian

80.04% SiO2, 12.27% Al2O3,
0.16% TiO2, 0.84% FeO,
0.18% MgO, 1.10% CaO,

3.14% Na2O and 3.04% K2O

Higher silica
content, availability.

• Still, limited studies did not
mention any
specific application.

• Due to the wide range of
behavior changes concerning
synthetic conditions.

Hydrothermal
Organic template-free
EMT-type, natrolite,

Za-gmelinite
[222,223]

RHA
(Residue is rich in
amorphous silica)

80% silica, Al2O3, iron
oxide, CaO, MgO, sodium

and potassium oxides,
and others

Low cost, ultrafine size,
highly porous, and
chemically reactive.

• Pre-treatment of RHA and
waste glasses increase the cost. Hydrothermal ZSM5, T, Na-Y [224,225]

Waste glass materials
SiO2 (63%), Al2O3 (18%),
B2O3 (10%), and alkaline

earth oxides

Excellent mechanical and
thermal properties, free of
harmful elements.

• Problem in handling, need a
substrate or base material for
commercial use.

Hydrothermal A [198,199,226]

SASR

SiO2 26.57%, Al2O3 5.81%,
Fe2O3 18.93%, TiO2 0.13%,

MgO 0.04%, K2O 0.13%,
Na2O 0.18%, P2O5 3.61%,

LOI 17.88%

Availability, low cost,
ultrafine size, convenient
preparation steps.

• Pre-treatment (Physical and
Chemical) needs to be a source
of Al.

Hydrothermal, Alkali fusion Faujasite [219]

Paper sludge ash

SiO2 35.9%, Al2O3 22.8%,
CaO 33.2%, Na2O 0.6%,
MgO 4.5%, Fe2O3 0.9%,

TiO2 2.2%

Amorphous and crystalline
phases formed by
incineration; low
temperature required.

• Low abundance of Si and
significant Ca content. Hydrothermal Na-P1 [227,228]

Waste stone cake

SiO2 38.9%, Al2O3 12.2%,
CaO 6.9%, Na2O 1.4%, K2O

1.8%, MgO 2.7%, Fe2O3
3.1%, CO2 32.6%, SO3 0.1%,

P2O5 0.1%

Specific pore sizes and large
surface areas, high
silica content.

• Most SiO2 and Al2O3 are in
crystalline phases; it is difficult
to dissolve into an alkali
solution, contains impurities.

Hydrothermal, Alkali fusion zeolite-A, P, X and ZSM-5 [195]

Clay materials
(kaolin, smectite)

SiO2 46.5%, Al2O3 41.18%,
Fe2O3 0.19%, TiO2 0.13%,
MgO 0.04%, K2O 0.13%,

Na2O 0.18%, ZrO2 0.01%,
SO3 0.15%, P2O5 0.03%,

LOI 16.25%

Availability, convenient
source for producing low
silica zeolites like Y, and use
of kaolin waste for zeolite
synthesis reduces the cost
of reagents.

• High energy consumption
processes like grinding,
calcination, and fusion
are required.

• Raw materials mining
destroys the
natural landscape.

Hydrothermal, Alkali fusion
NaA, mordenite,

Faujasite, and,
NaP

[229]
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Table 14. Cont.

Raw Material Chemical Composition % Advantages Limitations Synthesis Route Zeolite Type Ref.

Coal fly ash
SiO2 38.3%, Al2O3 34.8%,
CaO 11.0%, Fe2O3 8.1%,

Others 7.8%

The main constituents are
silica and alumina, which
offer the potential to
convert it to zeolite,
producing low-price zeolite
with high purity; and no
harmful effect.

• Effect of the impeller type and
agitation during the
hydrothermal treatment stage
of the process.

Hydrothermal,
microwave-assisted

hydrothermal method, and
fusion methods.

X, Na-P1, A, Y [183,206,230]

Lithium slag

SiO2 70.67%, Al2O3 27.24%,
Fe2O3 0.52%, SO3 0.45%,
CaO 0.29%, K2O 0.22%,

MgO 0.16%, Na2O 0.13%,
P2O5 0.12%, Others < 0.1%

High silicon
aluminum ratio.

• Very few experiments have
been conducted in this field. Hydrothermal X, FAU/LTA [214,231]

Waste of iron mine
tailings/iron ore tailing

SiO2 67.58%, Al2O3 8.70%,
Fe2O3 7.42%, CaO 5.78%,
MgO 4.37%, K2O 2.32%,
Na2O 2.15%, Cl 0.69%,

TiO2 0.33%, P2O5 0.26%,
SO3 0.23%, MnO 0.10%,

SrO 0.06%

Have economic and
environmental aspects.

• Very few experiments have
been conducted in this field,
which contains hazardous
impurities that decrease the
quality of zeolites.

Hydrothermal A, ZSM-5 [232]
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The maximum monolayer adsorption capacities of Zn2+, Pb2+, Cu2+, and Cd2+ ions
onto zeolite at 20 ◦C were 12.025, 15.96, 12.247, and 16.17 mg.g−1, respectively, showing a
significantly greater removal efficiency, which agrees with the previously obtained results.
Ion exchange was the principal mechanism controlling the removal of Zn2+ and Cd2+ from
aqueous solution by synthesized zeolite. In contrast, the main mechanism controlling the
process of the removal of Pb2+ and Cu2+ ions is proposed to be either surface adsorption or
precipitation. The proposed adsorption mechanism in Figure 27 shows that the adsorption
of Zn2+, Pb2+, Cu2+, and Cd2+ on zeolite likely can be divided into three major phenomena:
precipitation, ion exchange, and surface adsorption [233,234]. The cations exchange is the
crucial mechanism for absorbing Zn2+ and Cd2+ from an aqueous solution. The following
equation can represent this process:

(Zeolite-SASR) Na2+ + Me2+→(Zeolite-SASR) Me2+ + Na2+ (43)
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As a result of industrially applying a synthetic zeolite derived from the SASR be-
product, it was demonstrated that the synthesized zeolite effectively removed heavy metal
ions from the wastewater sample collected from the Egyptian General Petroleum Corpora-
tion (EGPC) (Eastern Desert, Egypt). The targeted levels of heavy metal ion concentrations
before and during adsorption using synthesized zeolite are shown in Table 15. However,
in the fourth adsorption cycle, the residual heavy metal ion concentrations follow WHO
guidelines for wastewater disposal in the marine environment with high removal effi-
ciency [235]. When the number of circulations increases (5th and 6th cycles), the amount of
heavy metal ions in the effluent also goes up. As a result, when the pollutants are enriched
to a specific level, the adsorbent needs to be cleaned to achieve closed recycling. Finally, the
synthesized zeolite can be utilized to safeguard industrial wastewater drainage systems.

Table 15. Applying the synthetic zeolites based on SASR-kaolin mixture for removing heavy metal
ions from EGPC industrial wastewater sample.

Metals Cd Cr Cu Mn Pb Fe Ni Zn V

C0(mg.L−1) 6.127 7.016 10.294 8.152 11.493 8.219 0.002 17.051 0.01

MLDWHO 0.01 0.01 1 0.1 0.01 1.5 0.1 1 0.002

N
um

be
r

of
C

yc
le

s

1 U. D U. D U. D 2.1 U. D 3.1 U. D U. D U. D
2 U. D U. D U. D 0.6 U. D 1.1 U. D U. D U. D
3 U. D U. D U. D 0.05 U. D U. D U. D U. D U. D
4 U. D U. D U. D U. D U. D U. D U. D U. D U. D
5 0.08 0.05 1.3 2.12 0.51 2.5 0.054 1.66 0.027
6 0.45 2.01 1.7 7.12 1.07 4.5 0.098 3.87 0.089

U. D: Under detection limit; MLDWHO: Maximum limits for wastewater disposal according to WHO.
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It was noted that zeolites synthesized based on oil shale ash by an alkaline hydrother-
mal process were effectively used to extract Pb2+ and Cd2+ metal ions [236]. Synthesized
Na-A zeolite from class F fly ash (FA) and modified oil shale ash (MOSA) by alkaline fusion
followed by refluxing was used as an adsorbent for lead, zinc, and chrome [237]. Fly ash
hydrothermally modified with NaOH solution was utilized to synthesize zeolites for Cd2+

adsorption, which showed effective removal of Cd2+ from the wastewater source [238]. Ap-
plying a low-temperature roasting process, the novel adsorbent was prepared from fly ash
and solid alkali (NaOH). This adsorbent was manufactured under the following conditions:
the pristine fly ash and NaOH mass ratio was 5:8, the calcination temperature was from
300 to 350 ◦C, and the reaction time was 3 h. The obtained results showed a better adsorp-
tion capacity of Cd2+ on modified fly ash (MFA) [239]. A zeolitic material that was prepared
from coal fly ash (CFA) through NaOH fusion treatment, followed by hydrothermal pro-
cessing, was applied to remove heavy metal ions such as Ni2+, Cu2+, Cd2+, and Pb2+ from
the wastewater source [240]. The adsorption capacity of the synthesized Na-A zeolite based
on the fusion and hydrothermal treatment of oil shale was evaluated by measuring the
maximum removal efficiency of Cu2+, Ni2+, Pb2+, and Cd2+ from aqueous solutions [241].
A new composite material was formulated based on fly ash (FA), meta-kaolin (MK), and
TiO2 to form a micro-porous zeolitic material with enhanced photocatalytic properties for
the adsorption of methylene blue (MB) dye [242]. A modified geopolymer based on fly
ash was used to study the effectiveness of adsorbing Cd2+ ions from aqueous solutions, as
previously described by Javadian [243]. The alkaline fusion-hydrothermal process was used
to synthesize zeolites from Brazil oil shale ash. It was noted that the synthesized zeolites
are composed of likewise mixed phases (Na-A zeolite, Na-X zeolite, hydroxy sodalite, and
quartz) [244].

Yu [245] investigated the efficiency of zeolite-based fly ash to adsorb and remove Ni2+

ions from aqueous solutions. This study examined the adsorption capacities of synthetic
and commercial zeolite (4A), indicating that zeolite 4A had a lower adsorption capacity than
fly ash-based zeolite (75.6 mg/g). Chen [246] developed four different fly ash-based zeolites
to adsorb Ni2+ ions from aqueous solutions and achieved removal efficiencies ranging from
92.5% to 96.2%. A specific kind of geopolymer made from fly ash showed a significant
effect in removing Pb2+ ions from aqueous solutions. The maximum removal efficiency
of 90.66% has been achieved at 5 pH and a contact time of 2 h [247]. In order to remove
Pb2+ ions from aqueous solutions, fly ash was employed to create the hydroxysodalite
zeolite. The maximum adsorption efficiency of synthetic zeolite was 98.1%, demonstrating
the adsorbent’s excellent efficiency [181].

Multi-cation wastewater containing Pb2+, Zn2+, and Cd2+ was treated using a type
of zeolite synthesized from fly ash. Pb2+ and Zn2+ ions were efficiently and selectively
removed with 100% and 70% adsorption efficiencies, respectively, compared to Cd2+ ions
with a 60% adsorption efficiency [248]. Shyam [249] used fly ash adsorbent modified with
CaCO3 to minimize the concentration of Pb2+, Ni2+, and Cr6+ ions from aqueous solutions.
This study found that 1:10 CaCO3/FA eliminated Pb2+ up to 90%, Ni2+ 50%, and Cr6+ 30%
under ideal conditions. In the same way, the adsorption of several heavy metal ions from
aqueous solutions was also studied using FA coated with chitosan. It was noted that within
3 h, the produced adsorbent exhibited satisfactory performance. The adsorption capacities
of different metal ions have been reported as follows: 36.22, 28.65, 55.52, and 19.10 mg/g
for Cr3+, 6+, Cu2+, Zn2+, and As5+ ions, respectively [250]. The highest Cd2+ ions removal
efficiency of 84% was obtained under the best-recommended conditions. The isotherm and
kinetic studies indicated that the Langmuir and pseudo second-order models were in good
agreement with the adsorption data. Also, they employed FA to synthesize zeolite through
the fusion process and showed effective adsorbent to remove Cr6+ ions from aqueous
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solutions. More than 80% of the Cr6+ ions were eliminated, and both the Freundlich
and Langmuir isotherm models provided an excellent fit to the equilibrium data. The
thermodynamic studies revealed that the process was spontaneous and endothermic, and
the adsorption kinetics exhibited pseudo second-order behavior [251]. In conclusion, fly
ash has been converted into various ceramic products, zeolite materials, and geopolymers,
which in turn are used for wastewater treatment [252]. Table 16 summarizes the adsorbents
synthesized and their metal ion removal efficiency using various preparation methods.

Table 16. Adsorption conditions of various heavy metals by zeolite-based adsorbents [252].

Heavy Metals and Nutrients Adsorbent Removal Efficiency Ref.

Cd2+

ZFA-600
Zeolite X
TiO2/FA)

FA-Z
MG-Z and MT-Z

84%
100%
80%
60%

~98% and 75%

[243]

[253]

[254]

[248]

[255]

Co2+

MCM-41
~90%

[256]
Cr3+ ~90%

Cr6+

ZFA >80% [257]

CFA-FeOOH 84.9% [258]

MSFA/PPy [259]

ZFA-Na-A [260]

Zeolite X [261]

Chitosan/CFA [262]

Cu2+

FA-MS 98% [263]

FA-IOT-Geo 98.3% [264]

CFA-Geo 93.9% [265]

MPF [266]

TiO2/FA 90% [254]

MG-Z and MT-Z 100% [255]

Ag-Fe3O4/FA [267]

Fe3+ Zeolite NaeP1 100% [268]

Hg2+
Zeolite LTA

ZFA
HMAS zeolite

94%
91.27%
~95%

[269]

[270]

[271]

Mn2+
CFA Zeolite 100% [272]

Zeolite 100% [273]

Ni2+

Zeolite [245]

FA-Na-P/TEA
FA-Na-X

FA-Na-P/Na-Br
FA-Na-P

96.2%
95.5%
95%

92.5%

[246]

Zeolite X 95% [253]

MG-Z and MT-Z ~50% and 52% [255]

PB/FA—SA-FA 100% [274]

Pb2+

ZCFA
Geopolymer

FA-Z
1:10 FA

MG-Z and MT-Z
PB/FA—SA-FA

98.1% [181]

90.66% [247]

100% [248]

>90% [249]

100% [255]

100% [274]
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Table 16. Cont.

Heavy Metals and Nutrients Adsorbent Removal Efficiency Ref.

Zn2+

FA-Z 70% [248]

FAICS [250]

FA [275]

FA [276]

NH4
+

PB/FA—SA-FA 100% [274]

Zeolite NaeP1 ~61% [277]

Z-P1 65.2% [278]

PO4
3+

ZHLO 60% [279]

ZFA 91% [280]

Z-P1 92.3% [278]

5. Future Recommendations
The synthesizing and application of zeolite from useless by-product waste need

further investigation.
To enhance the sustainability and efficiency of salt-roasting processes, alternative

methods must be explored for recycling released gasses and barren solutions, along with
extracting valuable metals from a secondary vanadium source. Additionally, producing
chemical compounds for further use in the relevant process needs further studies.

Other synthetic pathways for producing zeolite materials with high surface area,
adjustable molecular dimensions, and adsorption capacities are needed for industrial by-
product application. Further research is needed to identify low-cost raw materials for the
synthesis of zeolites.

In addition, to reduce the production costs, it is necessary to develop accessible
synthetic routes. Kinetic studies and energy calculations are needed to investigate how
nucleation occurs during zeolite synthesis. Further studies on the regeneration of synthetic
zeolite are required to increase the cost-effectiveness of the process.

6. Conclusions
The shortage of vanadium primary resources from high-grade ores makes it necessary

to find a suitable alternative that covers this shortage. Also, the world vision concerning the
solution to climate change and environmental pollution problems is based on decreasing
or completely getting rid of the amounts of the produced waste. One of these promising
alternatives is the utilization of different wastes containing vanadium to decrease their
environmental adverse effects and, at the same time, enhance their economic value by
converting them into valuable products.

The current study aims to present and analyze the worldwide available alternative
vanadium-bearing waste resources, proprieties, reserves, and processing technologies.
The heavy oil fly ash “HOFA” and vanadium slag showed a promising alternative for
the production of vanadium metal due to their high content of vanadium and the cost-
effectiveness of their processing to extract vanadium metal compared to processing their
corresponding low-grade ores.

Vanadium can be extracted from these wastes using pyro- or hydro-metallurgical
methods or a combination. The hydro-metallurgical extraction can be carried out using
one of the vital mineral acids such as HCl, H2SO4, or HNO3, and previous studies reported
that HCl and H2SO4 have comparable leaching efficiencies. H2SO4 is preferred due to
its significantly lower cost and its wide application in the leaching of many metals. In
addition to V and Ni, H2SO4 effectively dissolves almost all metals in HOFA and other



Recycling 2025, 10, 6 42 of 53

vanadium-bearing wastes, such as Mo, Mg, Mn, and others. In addition to acidic leach-
ing reagents, alkaline leaching reagents like NaOH, Na2CO3, and NH4OH can be used
for leaching vanadium from their containing wastes. The previous study showed that
NaOH has the highest selectivity and leaching efficiency for V compared to other alkaline
leaching reagents.

Two-stage leaching can be used for more selectivity and productivity of vanadium from
their containing wastes. The first stage includes the alkaline leaching of high-contented and
alkaline leachable vanadium using NaOH, followed by the second acidic leaching of acidic
leachable elements using H2SO4. A combination of pyro- and hydro-metallurgical processes
is carried out for more effective extraction of vanadium from their containing wastes.
Firstly, pyro-metallurgical processes like roasting are carried out to convert low-leachable
vanadium to high-leachable phase. Alkaline salt roasting using NaCl and Na2CO3 converts
contained vanadium into water-leachable phase NaVO3. Previous studies showed that
the roasting temperature is the main controlling parameter on the efficiency of vanadium
extraction. The hydro-metallurgical processes include leaching the modified (roasted)
wastes using water or a very low-concentration acidic leaching process. Recent studies
confirm the cost-effectiveness of the salt roasting process followed by the water leaching
process for treating vanadium-bearing wastes, which showed high percent recovery and
purity of the extracted vanadium. After leaching, V can recover from the leaching solution
by chemical precipitation, solvent extraction, or ion exchange processes.

Complex processing of vanadium-bearing wastes, including firstly the extraction
of valuable metals followed by the complete utilization of the resulting residue in the
production of adsorbent, i.e., zeolite with different composition and properties to be used
in wastewater treatment, is very promising and applied alternative for complex processing
of these wastes.
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