Integrating Pyrolysis or Combustion with Scrubbing to Maximize the Nutrient and Energy Recovery from Municipal Sewage Sludge
Abstract
:1. Introduction
2. Materials and Methods
- S1.0:
- Pyrolysis without N recovery.
- S1.1:
- Pyrolysis with N recovery from thermal drying fumes but not from WWTP reject water.
- S1.2:
- Pyrolysis with N recovery from both thermal drying fumes and WWTP reject water.
- S2.0:
- Combustion without N recovery.
- S2.1:
- Combustion with N recovery from thermal drying fumes but not from WWTP reject water.
- S2.2:
- Combustion with N recovery from both thermal drying fumes and WWTP reject water.
2.1. Wastewater Treatment Plant, Sludge Digestion, and Dewatering
2.2. Pyrolysis Scenario
2.3. Combustion Scenario
2.4. Recovery of Nutrients
2.5. Cost Estimation
3. Results and Discussion
3.1. Recovery of Nitrogen from Drying Fumes
3.2. Recovery of Nitrogen from Reject Water
3.3. Comparison of Mass and Energy Balances
3.4. Comparison of Revenues and Costs
4. Conclusions
Supplementary Materialss
Author Contributions
Funding
Conflicts of Interest
References
- United Nations World Population Prospects 2019: Highlights. Available online: https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html (accessed on 21 July 2020).
- Zhang, L.; Xu, C.; Champagne, P.; Mabee, W. Overview of current biological and thermo-chemical treatment technologies for sustainable sludge management. Waste Manag. Res. 2014, 32, 586–600. [Google Scholar] [CrossRef]
- Mateo-Sagasta, J.; Raschid-Sally, L.; Thebo, A. Global Wastewater and Sludge Production, Treatment and Use. In Wastewater: Economic Asset in an Urbanizing World; Drechsel, P., Qadir, M., Wichelns, D., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 15–38. ISBN 978-94-017-9545-6. [Google Scholar]
- Faria, W.M.; de Figueiredo, C.C.; Coser, T.R.; Vale, A.T.; Schneider, B.G. Is sewage sludge biochar capable of replacing inorganic fertilizers for corn production? Evidence from a two-year field experiment. Arch. Agron. Soil Sci. 2018, 64, 505–519. [Google Scholar] [CrossRef]
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods-A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Mahon, A.M.; O’Connell, B.; Healy, M.G.; O’Connor, I.; Officer, R.; Nash, R.; Morrison, L. Microplastics in sewage sludge: Effects of treatment. Environ. Sci. Technol. 2017, 51, 810–818. [Google Scholar] [CrossRef]
- Havukainen, J.; Nguyen, M.T.; Hermann, L.; Horttanainen, M.; Mikkilä, M.; Deviatkin, I.; Linnanen, L. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. Waste Manag. 2016, 49, 221–229. [Google Scholar] [CrossRef]
- Bolzonella, D.; Fatone, F.; Gottardo, M.; Frison, N. Nutrients recovery from anaerobic digestate of agro-waste: Techno-economic assessment of full scale applications. J. Environ. Manag. 2018, 216, 111–119. [Google Scholar] [CrossRef]
- Karri, R.R.; Sahu, J.N.; Chimmiri, V. Critical review of abatement of ammonia from wastewater. J. Mol. Liq. 2018, 261, 21–31. [Google Scholar] [CrossRef]
- Chrispim, M.C.; Scholz, M.; Nolasco, M.A. Phosphorus recovery from municipal wastewater treatment: Critical review of challenges and opportunities for developing countries. J. Environ. Manag. 2019, 248, 109268. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Ngo, H.H.; Guo, W.; Liu, Y.; Chang, S.W.; Nguyen, D.D.; Liang, H.; Wang, J. A critical review on ammonium recovery from wastewater for sustainable wastewater management. Bioresour. Technol. 2018, 268, 749–758. [Google Scholar] [CrossRef] [PubMed]
- van der Hoek, J.; Duijff, R.; Reinstra, O. Nitrogen Recovery from Wastewater: Possibilities, Competition with Other Resources, and Adaptation Pathways. Sustainability 2018, 10, 4605. [Google Scholar] [CrossRef] [Green Version]
- Beckinghausen, A.; Odlare, M.; Thorin, E.; Schwede, S. From removal to recovery: An evaluation of nitrogen recovery techniques from wastewater. Appl. Energy 2020, 263, 114616. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Paredes, D.; Kuschk, P.; Mbwette, T.S.A.; Stange, F.; Müller, R.A.; Köser, H. New aspects of microbial nitrogen transformations in the context of wastewater treatment-A review. Eng. Life Sci. 2007, 7, 13–25. [Google Scholar] [CrossRef]
- Kahiluoto, H.; Kuisma, M.; Kuokkanen, A.; Mikkilä, M.; Linnanen, L. Taking planetary nutrient boundaries seriously: Can we feed the people? Glob. Food Secur. 2014, 3, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Cottes, M.; Mainardis, M.; Goi, D.; Simeoni, P. Demand-Response Application in Wastewater Treatment Plants Using Compressed Air Storage System: A Modelling Approach. Energies 2020, 13, 4780. [Google Scholar] [CrossRef]
- Cao, Y.; Pawłowski, A. Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renew. Sustain. Energy Rev. 2012, 16, 1657–1665. [Google Scholar] [CrossRef]
- Cano, R.; Pérez-Elvira, S.I.; Fdz-Polanco, F. Energy feasibility study of sludge pretreatments: A review. Appl. Energy 2015, 149, 176–185. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, X. Adsorption properties of activated carbon from sewage sludge to alkaline-black. Mater. Lett. 2008, 62, 1704–1706. [Google Scholar] [CrossRef]
- Leng, L.; Yuan, X.; Huang, H.; Shao, J.; Wang, H.; Chen, X.; Zeng, G. Bio-char derived from sewage sludge by liquefaction: Characterization and application for dye adsorption. Appl. Surf. Sci. 2015, 346, 223–231. [Google Scholar] [CrossRef]
- Kumar, M.; Dutta, S.; You, S.; Luo, G.; Zhang, S.; Show, P.L.; Sawarkar, A.D.; Singh, L.; Tsang, D.C.W. A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. J. Clean. Prod. 2021, 305, 127143. [Google Scholar] [CrossRef]
- Barry, D.; Barbiero, C.; Briens, C.; Berruti, F. Pyrolysis as an economical and ecological treatment option for municipal sewage sludge. Biomass Bioenergy 2019, 122, 472–480. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Syed-Hassan, S.S.A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renew. Sustain. Energy Rev. 2017, 80, 888–913. [Google Scholar] [CrossRef]
- Schnell, M.; Horst, T.; Quicker, P. Thermal treatment of sewage sludge in Germany: A review. J. Environ. Manag. 2020, 263, 110367. [Google Scholar] [CrossRef]
- Oladejo, J.; Shi, K.; Luo, X.; Yang, G.; Wu, T. A review of sludge-to-energy recovery methods. Energies 2019, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, A.; Menéndez, J.A.; Pis, J.J. Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature. J. Anal. Appl. Pyrolysis 2006, 77, 127–132. [Google Scholar] [CrossRef]
- Zhang, B.; Xiong, S.; Xiao, B.; Yu, D.; Jia, X. Mechanism of wet sewage sludge pyrolysis in a tubular furnace. Int. J. Hydrogen Energy 2011, 36, 355–363. [Google Scholar] [CrossRef]
- Deviatkin, I.; Havukainen, J.; Horttanainen, M. Possibilities for enhanced nitrogen recovery from digestate through thermal drying. J. Mater. Cycles Waste Manag. 2018, 20, 1016–1025. [Google Scholar] [CrossRef]
- Saud, A.; Havukainen, J.; Mänttäri, M.; Horttanainen, M. Evaluation and techno-economic analysis of packed bed scrubber for ammonia recovery from drying fumes produced during the thermal drying of sewage sludge. E3S Web Conf. 2020, 191, 03001. [Google Scholar] [CrossRef]
- Wu, B.; Wang, H.; Wang, C.; Dai, X.; Chai, X. Environmentally-friendly dewatering of sewage sludge: A novel strategy based on amphiphilic phase-transfer induced by recoverable organic solvent. Chem. Eng. J. 2021, 409, 128212. [Google Scholar] [CrossRef]
- Kätkä, K.; Laboratory Testing Methods for Centrifugal Sludge Dewatering Processes. Tampere University of Applied Sciences. 2013. Available online: http://urn.fi/URN:NBN:fi:amk-2013060212355 (accessed on 28 July 2021).
- Guo, C.H.; Stabnikov, V.; Ivanov, V. The removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant using ferric and nitrate bioreductions. Bioresour. Technol. 2010, 101, 3992–3999. [Google Scholar] [CrossRef]
- Helsinki Region Environmental Services (HSY). Jätevedenpuhdistus Pääkaupunkiseudulla 2018: Viikinmäen ja Suomenojan Jätevedenpuhdistamo [in Finnish]. 2019. Available online: https://julkaisu.hsy.fi/jatevedenpuhdistus-paakaupunkiseudulla-2018.pdf (accessed on 28 July 2021).
- Durdevic, D.; Blecich, P.; Juric, Z. Energy Recovery from Sewage Sludge: The Case Study of Croatia. Energies 2019, 12, 1927. [Google Scholar] [CrossRef] [Green Version]
- Horttanainen, M.; Deviatkin, I.; Havukainen, J. Nitrogen release from mechanically dewatered sewage sludge during thermal drying and potential for recovery. J. Clean. Prod. 2017, 142, 1819–1826. [Google Scholar] [CrossRef]
- Ghyselbrecht, K.; Monballiu, A.; Somers, M.H.; Sigurnjak, I.; Meers, E.; Appels, L.; Meesschaert, B. Stripping and scrubbing of ammonium using common fractionating columns to prove ammonium inhibition during anaerobic digestion. Int. J. Energy Environ. Eng. 2018, 9, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Vaneeckhaute, C.; Lebuf, V.; Michels, E.; Belia, E.; Vanrolleghem, P.A.; Tack, F.M.G.; Meers, E. Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification. Waste Biomass Valorization 2017, 8, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Khakharia, P.; Huizinga, A.; Jurado Lopez, C.; Sanchez Sanchez, C.; de Miguel Mercader, F.; Vlugt, T.J.H.; Goetheer, E. Acid Wash Scrubbing as a Countermeasure for Ammonia Emissions from a Postcombustion CO2 Capture Plant. Ind. Eng. Chem. Res. 2014, 53, 13195–13204. [Google Scholar] [CrossRef]
- Melse, R.W.; Ogink, N.W.M. Air scrubbing techniques for ammonia and odor reduction at livestock operations: Review of on-farm research in the netherlands. Trans. ASAE 2005, 48, 2303–2313. [Google Scholar] [CrossRef]
- Hadlocon, L.J.S.; Manuzon, R.B.; Zhao, L. Development and evaluation of a full-scale spray scrubber for ammonia recovery and production of nitrogen fertilizer at poultry facilities. Environ. Technol. 2015, 36, 405–416. [Google Scholar] [CrossRef]
- Suutari, M.; (Carbons Oy, Kouvola, Finland). Personal communication, 2021.
- Varpula, V. Biohiilen Mahdollisuudet Kasvihuonekaasupäästöken Kompensoinnissa [In Finnish]. Lappeenranta University of Technology. 2020. Available online: http://urn.fi/URN:NBN:fi-fe2020101383960 (accessed on 28 July 2021).
- Austin, A. Beyond the Hype. Biomassmagazine.com. Available online: http://biomassmagazine.com/articles/4080/beyond--the--hype (accessed on 11 July 2021).
- Hakala, K. District Heating Prices Go Wild in Finland. Natural Resources Insitute of Finland (LUKE). 2016. Available online: https://www.luke.fi/en/blog/district-heating-prices-go-wild-in-finland/ (accessed on 28 July 2021).
- Helen Ltd. District Heat Prices. Available online: https://www.helen.fi/en/heating-and-cooling/district-heat/district-heat-prices (accessed on 11 July 2021).
- Motiva Ltd. District Heat Prices. Available online: https://www.motiva.fi/koti_ja_asuminen/rakentaminen/lammitysjarjestelman_valinta/lammitysmuodot/kaukolampo/kaukolammon_hinta (accessed on 25 March 2021).
- Helsinki Region Environmental Services (HSY). Energy and Material Balances and Greenhouse Gas Emissions of Helsinki Region Environmental Services (HSY). Available online: https://hri.fi/data/dataset/helsingin-seudun-ymparistopalvelujen-hsy-energia-ja-materiaalitaseet-seka-kasvihuonekaasupaastot/resource/538fc945-7b9e-44a7-b899-a22967270ed5 (accessed on 25 March 2021).
- Endev Ltd. Internal report: Air Emissions from Rovaniemi Pilot Plant. 2020. [Google Scholar]
- Havukainen, J.; Uusitalo, V.; Koistinen, K.; Liikanen, M.; Horttanainen, M. Carbon footprint evaluation of biofertilizers. Int. J. Sustain. Dev. Plan. 2018, 13, 1050–1060. [Google Scholar] [CrossRef]
- Donatello, S.; Cheeseman, C.R. Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Manag. 2013, 33, 2328–2340. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P. Evaluation of sewage sludge and slow pyrolyzed sewage sludge-derived biochar for adsorption of phenanthrene and pyrene. Bioresour. Technol. 2015, 192, 618–626. [Google Scholar] [CrossRef]
- Brassard, P.; Godbout, S.; Lévesque, V.; Palacios, J.H.; Raghavan, V.; Ahmed, A.; Hogue, R.; Jeanne, T.; Verma, M. Biochar for soil amendment. In Char and Carbon Materials Derived from Biomass: Production, Characterization and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 109–146. ISBN 9780128148945. [Google Scholar]
- Gopinath, A.; Divyapriya, G.; Srivastava, V.; Laiju, A.R.; Nidheesh, P.V.; Kumar, M.S. Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment. Environ. Res. 2021, 194, 110656. [Google Scholar] [CrossRef]
- Li, B.; Ding, S.; Fan, H.; Ren, Y. Experimental Investigation into the Effect of Pyrolysis on Chemical Forms of Heavy Metals in Sewage Sludge Biochar (SSB), with Brief Ecological Risk Assessment. Materials 2021, 14, 447. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.-J.; Zhu, Z.-R.; Li, W.-H.; Yan, X.; Wei, W.; Xu, Q.; Xia, Z.; Dai, X.; Sun, J. Microplastics Mitigation in Sewage Sludge through Pyrolysis: The Role of Pyrolysis Temperature. Environ. Sci. Technol. Lett. 2020, 7, 961–967. [Google Scholar] [CrossRef]
- Arnold, E.; Böhm, B.; Wilderer, P.A. Application of activated sludge and biofilm sequencing batch reactor technology to treat reject water from sludge dewatering systems: A comparison. Water Sci. Technol. 2000, 41, 115–122. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Chen, M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour. Technol. 2016, 214, 836–851. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Disposal and Recycling Routes for Sewage Sludge Part 4Economic Report. 2002. Available online: https://ec.europa.eu/environment/archives/waste/sludge/pdf/sludge_disposal4.pdf (accessed on 28 July 2021).
- Corporation Ltd. Sulfuric Acid Prices. Available online: https://www.alibaba.com/product-detail/sulfuric-acid-98-_50039194295.html?spm=a2700.galleryofferlist.normal_offer.d_title.115569e017c7zS (accessed on 11 July 2021).
- Shandong New Power Co., Ltd. Biochar Prices. Available online: https://www.alibaba.com/showroom/biochar+.html?fsb=y&IndexArea=product_en&CatId=&SearchText=biochar+&isGalleryList=G (accessed on 25 March 2021).
- Vesilaitosyhdistys. Puhdistamolietteen Termiset Käsittelymenetelmät ja Niiden Soveltuvuus Suomeen. 2019. (In Finnish). Available online: https://www.vvy.fi/site/assets/files/2916/puhdistamolietteen_termiset_kasittelymenetelmat_ja_niiden_soveltuvuus_suomeen.pdf (accessed on 28 July 2021).
WWTP | Value | Unit |
---|---|---|
Wastewater | 250,000 | m3/d |
Nitrogen | 13 | t/d |
Phosphorus | 1.6 | t/d |
TS | 79 | t/d |
Clean water | ||
Mass | 250,000 | t/d |
Nitrogen | 1.2 | t/d |
Phosphorus | 0.041 | t/d |
Mass to digestion | ||
Mass | 2600 | t/d |
TS | 88 | t/d |
Nitrogen | 3.6 | t/d |
Phosphorus | 1.4 | t/d |
Dewatered digestate | ||
Mass | 180 | t/d |
TS | 52 | t/d |
Nitrogen | 1.5 | t/d |
Phosphorus | 1.4 | t/d |
Reject water | ||
Mass | 2400 | t/d |
TS | 1.1 | t/d |
Nitrogen | 2.1 | t/d |
Phosphorus | 0.033 | t/d |
Thermally dried digestate | ||
Mass | 58 | t/d |
TS | 52 | t/d |
Moisture content | 20 | % |
Nitrogen in drying fumes | 0.74 | t/d |
Condensate | ||
Mass | 120 | t/d |
Nitrogen | 0.47 | t/d |
Mass Balance | Pyrolysis | Combustion | Units |
---|---|---|---|
Inputs | |||
Wastewater | 92,000,000 | 92,000,000 | t/a |
Wood waste | 27,000 | 27,000 | t/a |
H2SO4 | 3700 | 3700 | t/a |
NaOH | 3100 | 3100 | t/a |
Intermediate products | |||
Mass to digestion | 950,000 | 950,000 | t/a |
Biogas | 13,000 | 13,000 | t/a |
Reject water from mechanical dewatering | 867,000 | 867,000 | t/a |
Dewatered sludge | 65,000 | 65,000 | t/a |
Thermally dried sludge | 27,000 | 27,000 | t/a |
Outputs | |||
Clean water | 91,500,000 | 91,500,000 | t/a |
Ash | 0 | 9700 | t/a |
Biochar | 12,000 | 0 | t/a |
Energy Balance | Pyrolysis (MWh/a) | Combustion (MWh/a) |
---|---|---|
Without reject water | ||
Consumption | ||
Reactor electricity consumption | −6500 | −9600 |
Stripper and scrubber electricity consumption | −680 | −680 |
Production | ||
District heat sewage sludge | 0 | 56,000 |
District heat wood | 0 | 62,000 |
Net balance of heat | 0 | 120,000 |
Net balance of electricity | −7200 | −10,000 |
With reject water | ||
Consumption | ||
Reactor electricity consumption | −6500 | −9600 |
Stripper and scrubber electricity consumption | −3900 | −3900 |
Stripper heat consumption | −34,000 | −34,000 |
Production | ||
District heat sewage sludge | 0 | 56,000 |
District heat wood | 0 | 62,000 |
Net balance of heat | −34,000 | 84,000 |
Net balance of electricity | −10,000 | −13,000 |
Ammonium Sulfate Production | Pyrolysis | Combustion | Units |
---|---|---|---|
Ammonium sulfate/kg NH3 | 4 | 4 | kgammsulfate/kg NH3 |
Ammonium sulfate from total off-gases | 600 | 600 | tammsulfate/a |
Ammonium sulfate (from reject water) | 2900 | 2900 | tammsulfate/a |
Total ammonium sulfate | 3500 | 3500 | tammsulfate/a |
Pyrolysis | Reference | |||
---|---|---|---|---|
Costs | Mass, t/a | Cost, EUR/t | Total, M EUR/a | |
Chemical used | ||||
H2SO4 | 3700 | 160 | −0.59 | [61] |
NaOH | 3100 | 380 | −1.2 | [62] |
Annual investment | ||||
Sewage sludge | 65,000 | 35–45 | −2.3–(−2.9) | [63] |
Revenues | Mass, t/a | Price (EUR/t) | Total, (M EUR/a) | |
Ammonium sulfate-N | 4000 | 660 | 2.6 | [51] |
Biochar | 12,000 | 400 | 4.8 | [63] |
Total | 2.8–3.4 |
Combustion | Reference | |||
---|---|---|---|---|
Costs | Mass, t/a | Cost, EUR/t | Total, M EUR/a | |
Chemical used | ||||
H2SO4 | 3700 | 160 | −0.59 | [61] |
NaOH | 3100 | 380 | −1.2 | [62] |
Annual investment | ||||
Sewage sludge | 65,000 | 30–60 | −2–(−3.9) | [63] |
Revenues | Mass, t/a | Nitrogen/Phosphorus (EUR/t) | Total, (M EUR/a) | |
Ammonium sulfate | 4000 | 660 | 2.6 | [51] |
Phosphorus | 480 | 1600 | 0.76 | [51] |
MWh/a | Price (EUR/MWh) | Total, (M EUR/a) | ||
District heat | 120,000 | 66 | 7.9 | [46,47,48,49] |
Total | 3.3–5.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saud, A.; Havukainen, J.; Peltola, P.; Horttanainen, M. Integrating Pyrolysis or Combustion with Scrubbing to Maximize the Nutrient and Energy Recovery from Municipal Sewage Sludge. Recycling 2021, 6, 52. https://doi.org/10.3390/recycling6030052
Saud A, Havukainen J, Peltola P, Horttanainen M. Integrating Pyrolysis or Combustion with Scrubbing to Maximize the Nutrient and Energy Recovery from Municipal Sewage Sludge. Recycling. 2021; 6(3):52. https://doi.org/10.3390/recycling6030052
Chicago/Turabian StyleSaud, Ali, Jouni Havukainen, Petteri Peltola, and Mika Horttanainen. 2021. "Integrating Pyrolysis or Combustion with Scrubbing to Maximize the Nutrient and Energy Recovery from Municipal Sewage Sludge" Recycling 6, no. 3: 52. https://doi.org/10.3390/recycling6030052
APA StyleSaud, A., Havukainen, J., Peltola, P., & Horttanainen, M. (2021). Integrating Pyrolysis or Combustion with Scrubbing to Maximize the Nutrient and Energy Recovery from Municipal Sewage Sludge. Recycling, 6(3), 52. https://doi.org/10.3390/recycling6030052