Best Available Technology for P-Recycling from Sewage Sludge—An Overview of Sewage Sludge Composting in Austria
Abstract
:1. Introduction
2. Current Sewage Sludge Quantity and Utilization in Austria
2.1. Direct Use in Agriculture
2.2. Sewage Sludge Composting
3. Environmental Impacts of Sewage Sludge
3.1. Heavy Metals
3.2. Plastics
3.3. Pharmaceutical Residues
3.4. Hormonally Active Agents
4. Alternative Incineration?
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- COM(2013)517 Opinion of the European Economic and Social Committee on the ‘Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—Consultative Communication on the Sustainable Use of Phosphorus’. Available online: https://ec.europa.eu/transparency/documents-register/detail?ref=COM(2013)517&lang=en (accessed on 8 December 2021).
- Eurostat Sales of Fertilisers by Type of Nutrient (Phosphorus, TAI01). Available online: https://ec.europa.eu/eurostat/databrowser/view/tai01/default/table?lang=en (accessed on 15 October 2021).
- Cordell, D.; Rosemarin, A.; Schröder, J.; Smit, A. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere 2011, 84, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Mayer, B.K.; Baker, L.A.; Boyer, T.H.; Drechsel, P.; Gifford, J.; Hanjra, M.A.; Parameswaran, P.; Stoltzfus, J.; Westerhoff, P.; Rittmann, B.E. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 2016, 50, 6606–6620. [Google Scholar] [CrossRef] [PubMed]
- COM(2020)474 Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability. Available online: https://ec.europa.eu/transparency/documents-register/detail?ref=COM(2020)474&lang=en (accessed on 8 December 2021).
- Cordell, D.; White, S. Sustainable Phosphorus Measures: Strategies and Technologies for Achieving Phosphorus Security. Agronomy 2013, 3, 86–116. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M. Langjähriger Einfluss von Bio-und Klärschlammkompost auf Boden, Pflanze und Lebensmittel im Hinblick auf Schwermetalle und Spurenelemente. Master’s Thesis, University of Natural Resources and Life Sciences Vienna, Vienna, Austria, 2011. [Google Scholar]
- COM(2017)490 Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 List of Critical Raw Materials for the EU. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017DC0490&from=DE (accessed on 8 December 2021).
- Wilfert, P.; Kumar, P.S.; Korving, L.; Witkamp, G.-J.; van Loosdrecht, M. The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus from Wastewater: A Review. Environ. Sci. Technol. 2015, 49, 9400–9414. [Google Scholar] [CrossRef] [PubMed]
- Federal Ministry for Climate Action StraPhos—Zukunftsfähige Strategien für ein österreichisches Phosphormanagement. Available online: https://iwr.tuwien.ac.at/fileadmin/mediapool-wasserguete/Projekte/StraPhos/Endbericht_StraPhos_Barrierefrei.pdf (accessed on 8 December 2021).
- ÖWAV. Klärschlamm als Ressource; Druckerei Fischer KG: Vienna, Austria, 2014; p. 16. [Google Scholar]
- Sewage Sludge Directive (86/278/EEC). Council Directive 86/278/EEC of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31986L0278 (accessed on 8 December 2021).
- Clara, M.; Hartmann, C.; Scheffknecht, C. Klärschlamm Und Boden. Eintrag Von Spurenstoffen Auf Landwirtschaftlich Genützte Böden; Amt der Vorarlberger Landesregierung: Bregenz, Germany; Vienna, Austria, 2016; p. 103. [Google Scholar]
- Kelessidis, A.; Stasinakis, A.S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag. 2012, 32, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste-Water Treatment. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0271:EN:HTML (accessed on 8 December 2021).
- Oftner, M.; Lenz, K.; Zieritz, I. Kommunales Abwasser. In Österreichischer Bericht 2020; Federal Ministry for Agriculture, Regions and Tourism: Vienna, Austria, 2020; p. 144. [Google Scholar]
- Federal Ministry for Climate Action Die Bestandsaufnahme der Abfallwirtschaft in Österreich. Statusbericht 2020; Federal Ministry for Climate Action: Vienna, Austria, 2020; p. 150. [Google Scholar]
- LGBl. 6160-0 as Amended by LGBl. No. 40/2019 Lower Austrian Soil Protection Act. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=LrNO&Gesetzesnummer=20000603 (accessed on 8 December 2021).
- LGBl. 6160/2-0 as Amended by LGBl. 6160/2-5 Lower Austrian Sewage Sludge Directive. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=LrNO&Gesetzesnummer=20001009 (accessed on 8 December 2021).
- Wei, H.; Gao, B.; Ren, J.; Li, A.; Yang, H. Coagulation/flocculation in dewatering of sludge: A review. Water Res. 2018, 143, 608–631. [Google Scholar] [CrossRef] [PubMed]
- Ameri, B.; Hanini, S.; Boumahdi, M. Influence of drying methods on the thermodynamic parameters, effective moisture diffusion and drying rate of wastewater sewage sludge. Renew. Energy 2020, 147, 1107–1119. [Google Scholar] [CrossRef]
- Schaum, C.; Lux, J. Sewage Sludge Dewatering and Drying. In Waste Management. 2: Waste Management, Recycling, Composting, Fermentation, Mechanical-Biological Treatment, Energy Recovery from Waste, Sewage Sludge Treatment; TK Verlag Karl Thomé-Kozmiensky: Neuruppin, Germany, 2011; pp. 727–737. ISBN 978-3-935317-69-6. [Google Scholar]
- Nielsen, S. Sludge drying reed beds. Water Sci. Technol. 2003, 48, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Obarska-Pempkowiak, H.; Tuszynska, A.; Sobociński, Z. Polish experience with sewage sludge dewatering in reed systems. Water Sci. Technol. 2003, 48, 111–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amlinger, F.; Götz, B. Zu den Mobilitätsproblemen des Kompoststickstoffs; ALVA-Jahrestagung 2000: Gmunden, Austria, 2000; pp. 25–27. [Google Scholar]
- Stürmer, B.; Pfundtner, E.; Kirchmeyr, F.; Uschnig, S. Legal requirements for digestate as fertilizer in Austria and the European Union compared to actual technical parameters. J. Environ. Manag. 2020, 253, 109756. [Google Scholar] [CrossRef] [PubMed]
- Federal Ministry for Climate Action EDM Portal. Available online: https://secure.umweltbundesamt.at/edm_portal (accessed on 8 December 2021).
- BGBl. II No 409/2020 Abfallverzeichnisverordnung. Available online: https://www.ris.bka.gv.at/eli/bgbl/II/2020/409 (accessed on 8 December 2021).
- BGBl. II No. 292/2001 Kompostverordnung. Available online: https://www.ris.bka.gv.at/Dokumente/BgblPdf/2001_292_2/2001_292_2.pdf (accessed on 8 December 2021).
- Amlinger, F.; Peyr, S.; Hildebrandt, U.; Müsken, J.; Cuhls, C.; Clemens, J. Stand der Technik der Kompostierung; BMLFUW: Vienna, Austria, 2005; p. 112. [Google Scholar]
- Kintl, A.; Elbl, J.; Varga, L.; Tomáš, L.; Vaverková, M.D. Water Resources. Forest, Marine and Ocean Ecosystems. In Proceedings of the 19th International Multidisciplinary Scientific GeoConference SGEM2019, Albena, Bulgaria, 14–22 August 2021; Volume 19, pp. 209–215. [Google Scholar]
- Federal Ministry of Sustainability and Tourism Federal Waste Management Plan 2017, Part 1; BMNT: Vienna, Austria, 2017; p. 304.
- ÖWAV Landwirtschaftliche Verwertung von Klärschlamm; ÖWAV: Vienna, Austria, 2003; p. 56.
- BGBl. II No. 222/1998 Indirekteinleiterverordnung-IEV. Available online: https://www.ris.bka.gv.at/Dokumente/BgblPdf/1998_222_2/1998_222_2.pdf (accessed on 8 December 2021).
- Land Oberösterreich. Klärschlammqualität in Oberösterreich 2020; Amt der OÖ. Landesregierung: Linz, Austria, 2020; p. 3. [Google Scholar]
- Waltner, M. Beurteilung von Maßnahmen zur Steigerung der Kompostqualität an Hand der Entwicklung in Österreich. Master’s Thesis, University of Natural Resources and Life Sciences Vienna, Vienna, Austria, 2020. [Google Scholar]
- Bertling, J.; Hamann, L.; Hiebel, M. Mikroplastik und Synthetische Polymere in Kosmetikprodukten Sowie Wasch-, Putz- und Reinigungsmitteln; Fraunhofer Umsicht: Oberhausen, Germany, 2018; p. 104. [Google Scholar]
- Huter, D.; Pomberger, R. Der Beitrag der Steiermark zum Marine Littering. Österreichische Wasser und Abfallwirtschaft 2020, 72, 378–387. [Google Scholar] [CrossRef]
- Sexlinger, K.; Liebmann, B.; Lomako, I.; Köppel, S. Mikroplastik in Klärschlämmen; Umweltbundesamt: Vienna, Austria, 2021; p. 26. [Google Scholar]
- Danish Environmental Protection Agency. Microplastic in Danish Wastewater Sources, Occurrences and Fate; DEPA: København, Denmark, 2017; ISBN 978-87-93529-44-1. [Google Scholar]
- Umweltbundesamt Arzneimittel und Umwelt. Available online: https://www.umweltbundesamt.de/themen/chemikalien/arzneimittel/humanarzneimittel/arzneimittel-umwelt (accessed on 8 December 2021).
- Scharf, S.; Gans, O.; Sattelberger, R. Arzneimittelwirkstoffe im Zu-und Ablauf von Kläranlagen; Umweltbundesamt: Vienna, Austria, 2002; ISBN 978-3-85457-624-2. [Google Scholar]
- Federal Ministry of Health. Monitoringprogramm von Pharmazeutika und Abwasserindikatoren in Grund- und Trinkwasser; Federal Ministry of Health: Vienna, Austria, 2015; ISBN 978-3-902611-97-0. [Google Scholar]
- Land Vorarlberg Eintrag von Arzneimittelwirkstoffen in die Umwelt; Amt der Vorarlberger Landesregierung: Bregenz, Austria, 2013; p. 48.
- Umweltbundesamt. Maßnahmen zur Verminderung des Eintrages von Mikroschadstoffen in Die Gewässer; Umweltbundesamt: Dessau-Roßlau, Germany, 2014; Texte 85/2014. [Google Scholar]
- Albero, B.; Sánchez-Brunete, C.; Miguel, E.; Pérez, R.A.; Tadeo, J.L. Analysis of natural-occurring and synthetic sexual hormones in sludge-amended soils by matrix solid-phase dispersion and isotope dilution gas chromatography–tandem mass spectrometry. J. Chromatogr. A 2013, 1283, 39–45. [Google Scholar] [CrossRef]
- Gangl, M.; Sattelberger, R.; Scharf, S.; Kreuzinger, N. Hormonell wirksame Substanzen in Klärschlämmen; Umweltbundesamt: Vienna, Austria, 2001; p. 75. [Google Scholar]
- Penckert, P. Rekultivierung von Deponien unter Betrachtung des Einsatzes von Klärschlammkompost; Beiträge zu Abfallwirtschaft/Altlasten; Forum für Abfallwirtschaft und Altlasten e.V: Pirna, Germany, 2021; ISBN 978-3-947923-03-8. [Google Scholar]
- Amann, A.; Zoboli, O.; Krampe, J.; Rechberger, H.; Zessner, M.; Egle, L. Environmental impacts of phosphorus recovery from municipal wastewater. Resour. Conserv. Recycl. 2018, 130, 127–139. [Google Scholar] [CrossRef]
- Grech, H. Zukunft des Klärschlamms in Österreich; ERFA Klärschlamm 2021, online, Austria, 16 June 2021. Available online: https://www.cleantech-cluster.at/news-presse/detail/news/kuenftige-klaerschlammbewirtschaftung (accessed on 8 December 2021).
- Amann, A.; Zessner, M. StraPhos—Update; ERFA Klärschlamm 2021, online, Austria, 16 June 2021. Available online: https://www.cleantech-cluster.at/news-presse/detail/news/kuenftige-klaerschlammbewirtschaftung (accessed on 8 December 2021).
- BGBl. I No. 102/2002 as Amended by BGBl. I Nr. 8/2021 Waste Management Act. Available online: http://www.ris.bka.gv.at/GeltendeFassung/Bundesnormen/20002086/AWG%202002%2c%20Fassung%20vom%2002.12.2021.pdf (accessed on 8 December 2021).
- Bertling, J.; Zimmermann, T.; Rödig, L. Kunststoffe in der Umwelt: Emissionen in Landwirtschaftlich Genutzte Böden. 2021. Available online: https://www.umsicht.fraunhofer.de/content/dam/umsicht/de/dokumente/publikationen/2021/umsicht-studie-plastikemissionen-landwirtschaft.pdf (accessed on 8 December 2021).
- Jacobs, U. Kosten und Wirtschaftlichkeit der Klärschlammtrocknung. In Energie aus Abfall; Band 10; TK Verlag Karl Thomé-Kozmiensky: Neuruppin, Germany, 2013; pp. 961–974. [Google Scholar]
- Maier, W.; Keller, J.; Zürn, M.; Meyer, C.; Reinhardt, T.; Zettl, U.; Poppe, B. Status Quo der Klärschlammentsorgung und P-Rückgewinnung in Baden-Württemberg Plattform P-Rück. In Proceedings of the State forum for Operators of Sewage Sludge disposal, Filderstadt, Germany, 22 April 2021. [Google Scholar]
- Hanßen, H. Erste Erfahrungen aus einer großtechnisch umgesetzten P-Rückgewinnungsanlage in Hamburg DWA KlärschlammTage. In Proceedings of the KlärschlammTage-Digital Mit Fachausstellung, online, 16 June 2021. [Google Scholar]
- Federal Institute of Agricultural Economics, Rural and Mountain Research IDB Deckungsbeiträge und Kalkulationsdaten. Available online: https://idb.agrarforschung.at/ (accessed on 8 December 2021).
- Umweltbundesamt. Auswertung des Förderschwerpunktes “Energieeffiziente Abwasseranlagen” im Umweltinnovationsprogramm; Texte 06/2020; Umweltbundesamt: Dessau-Roßlau, Germany, 2020. [Google Scholar]
- Federal Ministry for Agriculture, Forestry, Environment and Water Management. Phosphorrückgewinnung aus dem Abwasser; Federal Ministry for Agriculture, Forestry, Environment and Water Management: Vienna, Austria, 2014; p. 323. [Google Scholar]
- Sekin, Ö. Vierte Reinigungsstufe in kommunalen Abwasserreinigungsanlagen. Master’s Thesis, University of Technology Graz, Graz, Austria, 2016. [Google Scholar]
- Federal Ministry of Agriculture, Regions and Toursim. Arzneimittelwirkstoffe im Grundwasser—Anwendung einer LC-MS-Multimethode; Federal Ministry of Agriculture, Regions and Toursim: Vienna, Austria, 2020; p. 127. [Google Scholar]
Heavy Metals | Quality Class I | Quality Class II |
---|---|---|
Zinc (Zn) | Lower than the average regional topsoil contents (arable soil up to 25 cm depth, grass land up to 10 cm) | 1500 mg/kg DM |
Copper (Cu) | 300 mg/kg DM | |
Chrome (Cr) | 70 mg/kg DM | |
Lead (Pb) | 100 mg/kg DM | |
Nickel (Ni) | 60 mg/kg DM | |
Cadmium (Cd) | 2 mg/kg DM | |
Mercury (Hg) | 2 mg/kg DM | |
Chlorinated organics | 500 mg/kg DM |
Limit Values for the Production of: | ||
---|---|---|
Heavy Metals | Quality Sewage Sludge Compost | Sewage Sludge Compost |
Zinc (Zn) | 1200 mg/kg DM | 2000 mg/kg DM |
Copper (Cu) | 300 mg/kg DM | 500 mg/kg DM |
Chrome (Cr) | 70 mg/kg DM | 300 mg/kg DM |
Lead (Pb) | 100 mg/kg DM | 200 mg/kg DM |
Nickel (Ni) | 60 mg/kg DM | 100 mg/kg DM |
Cadmium (Cd) | 2 mg/kg DM | 3 mg/kg DM |
Mercury (Hg) | 2 mg/kg DM | 5 mg/kg DM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stürmer, B.; Waltner, M. Best Available Technology for P-Recycling from Sewage Sludge—An Overview of Sewage Sludge Composting in Austria. Recycling 2021, 6, 82. https://doi.org/10.3390/recycling6040082
Stürmer B, Waltner M. Best Available Technology for P-Recycling from Sewage Sludge—An Overview of Sewage Sludge Composting in Austria. Recycling. 2021; 6(4):82. https://doi.org/10.3390/recycling6040082
Chicago/Turabian StyleStürmer, Bernhard, and Melanie Waltner. 2021. "Best Available Technology for P-Recycling from Sewage Sludge—An Overview of Sewage Sludge Composting in Austria" Recycling 6, no. 4: 82. https://doi.org/10.3390/recycling6040082
APA StyleStürmer, B., & Waltner, M. (2021). Best Available Technology for P-Recycling from Sewage Sludge—An Overview of Sewage Sludge Composting in Austria. Recycling, 6(4), 82. https://doi.org/10.3390/recycling6040082