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Abstract: Textile waste, from both consumption and production, has dramatically increased due to a
lack of diversification in its use. Increasing the number of textile alternatives can help to solve these
problems. Producing a green composite product is an interesting alternative method. The objectives
of this work were to study the preparation and characterization of green composites created from PLA
and cotton fabric waste (CFW) and to consider the effect of the CFW content on the composites. The
procedure of the research began with CFW pellets preparation; this was subsequently compounded
with PLA pellets using a melt-mixing technique with a twin-screw extruder at ratios of 90:10, 80:20,
and 70:30 wt% between the PLA and cotton fabric waste, respectively. Then, the testing specimens
were produced by compression molding. The experiments demonstrated that an increase in the CFW
caused an increase in the viscosity, stiffness, Tg, Tm, and water absorption of the composites. The
decomposition temperature of the composites showed a range of 302.41 to 361.22 ◦C; this decreased
when the CFW increased. An increase in the CFW also produced greater and clearer phase separation
and roughness on the fracture surface area.

Keywords: green composites; cotton; fabric waste; polylactic acid; textile recycling

1. Introduction

Currently, PLA is the most widely used biodegradable polymer. It is used in the
medical, automotive, textile, food, and agricultural industries because it has appropriate
mechanical properties and transparency. It can also be molded in various processes. How-
ever, it has also disadvantages, such as a low operating temperature and brittleness. It
is also relatively expensive. Improving the properties of PLA can be achieved by adding
thermal stabilizers such as carbon powder, titanium dioxide, or titanium dioxide nanoparti-
cles [1–6] or reinforcing materials such as glass fiber, natural fibers, or charcoal powder to
provide greater strength and flexibility [7–9]. Production costs can be reduced by adding
cassava starch [10,11]. Improving strength by reinforcing biodegradable natural materials
combined with a PLA matrix can be termed a “green composite material” because both are
biodegradable materials [12,13].

Cotton fiber is the natural fiber most commonly used in the textile industry because
of its many notable properties such as high tensile strength and easy processing. It can be
mixed with other fibers to easily create the characteristics of yarn. Cotton fibers are mostly
used for garments, but they are also used for other applications such as reinforcement in
polymers [14].
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Recently, technology has changed, as has the lifestyle of people as a result of rapid
population growth. Clothing manufacturers have adapted to these changes by increasing
mass production, reducing product quality, and producing disposable clothing. All of these
factors cause “fast fashion”, dramatically increasing clothing waste in a short time as well
as the waste from the upstream production process such as fabric and yarn waste. Most
waste management methods usually use a landfill site [15]. In a few countries with limited
space, waste is sent to be buried in other areas; this causes the costs to increase. Therefore,
the use of fabric waste for other applications may be more cost-effective than conventional
waste management methods. The use of waste fabric as a reinforcement for polymers is
one method that can help to reduce waste problems and also, improve the properties of
polymers [16–18].

Several studies have examined the use of natural fibers to reinforce PLA. The modulus
of PLA increased up to 50% when 30% natural fibers were used with epoxidized jatropha
oil [19]. The cellulose extracted from natural fibers could increase the PLA strength to a
maximum of 60% [20]. In the case of PLA reinforced with cotton fibers, it was observed that
using cotton gin waste (CGW) obtained from the by-products of the gin-making process
could increase the flexural modulus of PLA by 42% with a 30% CGW addition [21]. The
yield stress of PLA increased by 30% when it was mixed with waste cotton fibers [22].
The mixing of cotton waste derived from waste garments with PLA at various ratios from
2–15%, together with a PP-g-MA of 5%, had higher tensile strength than pure PLA in all
cases [23]. The use of absorbent cotton fibers as a reinforcement to PLA can be achieved
by cutting the fiber to a shorter length and a certain length. After that, mixed with PLA
and a coupling agent by the torque rheometer, and produced the samples by injection
molding. Such a composite preparation method will allow higher tensile strength, impact
strength, and flexural modulus than PLA pure in all cases. However, it should be noted
that if the cotton fiber content is more than 20%, the tensile and impact strength tended
to decrease [24]. Past research has demonstrated that too great a focus has been placed
on using cotton pure (unprocessed textiles) and recycling clothing waste. Another point
has also been overlooked: the volume of waste from garment production factories is also
difficult to manage.

Therefore, in this paper, we researched the preparation and characterization of green
composites from PLA and cotton fabric waste (CFW). We used a simple technique to change
the CFW fiber to CFW pellets by compression molding and a die-cut machine. Then the
twin screw extruder was used compounding to produce the green composite of PLA and
CFW at the ratio of 90:10, 80:20, and 70:30 wt%. The molded specimens were then tested by
compression molding. Finally, the mechanical properties, fractured morphology, thermal
properties, and water absorption of the composites were investigated.

2. Results and Discussion
2.1. CFW Pellets Characterization

The CFW appearance is shown in Figure 1. The dimensions of the CFW pellets had an
average length of 2.73 ± 0.28 mm, an average width of 1.67 ± 0.22 mm, and an average
thickness of 0.21 ± 0.13 mm. The density was equal to ~1.40 g/cm3.

2.2. Melt Flow Index

As expected, the results clearly showed that the CWF interfered with the movement
of the PLA molecular chains, causing the melt flow rate of the PLA to decrease with an
increase in the CWF content, as shown in Table 1.
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Figure 1. CFW pellets.

Table 1. The melt flow index.

Samples Melt Flow Rate (g/10 min) 210 ◦C/2.16 kg

PLA 6.19 ± 0.20

CFW10 5.37 ± 0.08

CFW20 3.98 ± 0.21

CFW30 1.91 ± 0.05

2.3. Mechanical Properties

Figure 2 shows the graph of the tensile strength and tensile modulus testing. The
results showed that the tensile strength of the pure PLA was the highest at 58.4 MPa,
followed by CFW10, CFW20, and CFW30 at 25.8, 20.3, and 17.5 MPa, respectively. These
were directly the result of the immiscibility and poor interaction of the PLA and CFW,
which caused a dramatic phase separation when the CFW content increased. In contrast,
the tensile modulus of CFW30 was the highest at 23.3 GPa, followed by CFW20, CFW10,
and pure PLA at 20.2, 12.4, and 5.62 Gpa, respectively. The results of the tensile modulus
clearly showed that adding CFW pellets into PLA could help to improve the stiffness.
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The graph of the flexural strength testing is shown in Figure 3. The results showed
that CFW30 had the highest flexural strength at 15.7 MPa, followed by pure PLA, CFW20,
and CFW10 at 14.2, 9.7, and 8.2 MPa, respectively. It should be noted that the cases of
CWF10 and CFW20 had a lower flexural strength than PLA pure. This may be the result
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of the poor distribution of the fibers in the matrix, resulting in a low continuation phase,
especially in CFW10. While CFW30 showed a higher continuation phase due to the fibers
distributed evenly in the matrix. Figure 4 shows the appearance of PLA/CFW from the
optical microscope. In the case of CFW10, the CFW pellets had loosened slightly due to
low shear causing the formation of a loosely distributed CFW pellet in the PLA matrix, the
specimen had a high light transmittance (low continuation phase). In the cases of CFW20
and CFW30, the CFW pellets had more loosened and became fine fibers due to higher shear
causing the specimens had low light transmittance (high continuation phase) for CFW20
and opaque for CFW30, respectively. Moreover, it may include a result of the favorable
entanglement of a polymer chain with filler which has overcome the weak filler matrix
adhesion. As a result, the flexural strength increased [25,26].
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The Izod impact strength testing is shown in Figure 5. The result was similar to the
flexural strength; CFW30 was the highest at 5.51 kJ/m2, followed by pure PLA, CFW20, and
CFW10 at 2.60, 2.51, and 1.50 kJ/m2, respectively. The result indicates that the CFW was
able to absorb energy because of the encouraging entanglement of fiber and matrix. This
is related to the fiber pull-out, an important energy dissipation mechanism in composites
reinforced with fiber. The increase in CFW content causes requires a higher force to pull out
the fiber. As a result, the impact strength increased [25,26]. Figure 6 shows fiber distribution
on the fracture surface from Izod impact strength specimens. It can be seen that the fiber
concentration increases with increasing CFW content.
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2.4. Fracture Morphology

Figure 7 shows the fracture pictures of the PLA/CFW composites with varying CFW
contents obtained by a digital microscope. We observed that pure PLA had a smooth and
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sharp fracture surface. In the case of the composites, phase separation clearly occurred when
the CFW content increased; they had a rough fracture surface that indicated an immiscible
blend of PLA and CFW. With low CFW content, the fibers were aggregated, clumped, and
had an unregular distribution. With higher CFW content, and with greater friction in the
compounding step, the fibers were regularly distributed in the PLA matrix. An increase
in the phase separation may have resulted in the microstructure of the specimens having
a greater number of stress concentration points; this could have resulted in a decrease
in the mechanical properties when force was applied to the subject. The image analysis
processing used to measure the roughness is shown in Figure 7 (analyzed image); low and
high color contrasts represent the smooth and rough surfaces, respectively. The results
in terms of numerical corresponded with the visual observation. An increase in the CFW
content resulted in greater roughness, as shown in Table 2.
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Figure 7. Fracture morphology and roughness analysis of materials: (a) PLA; (b) PLA/CFW10;
(c) PLA/CFW20; (d) PLA/CFW30.

Table 2. Arithmetic means surface roughness of the fracture.

Samples Arithmetic Means Of Surface Roughness, Ra (Micron)

PLA 16.02

CFW10 34.11

CFW20 40.47

CFW30 52.53

2.5. Thermal Properties

Figure 8 shows the DSC thermograms, indicating the melting temperature (Tm) and the
glass transition temperature (Tg) of the pure PLA and PLA/CFW composites. As expected,



Recycling 2022, 7, 78 7 of 13

the graphs indicated only one endothermic peak appearing for the second heating of
all the cases, in which the value was close to pure PLA. It can be assumed that some
polymeric compounds that may remain from the finishing and dyeing of CFW did not
affect the melting temperature of PLA. The thermal properties are summarized in Table 3.
We observed that the Tg increased with an increase in the CFW content because the CFW
hindered the mobility of the polymer chain. This was one of the reasons that the rigidity
of the composites increased. [27]. The Tm was slightly increased because CFW can affect
the factor of crystallization, molecular weight, chain branching, or cross-linking [28] The
crystallinity percentage showed that the CFW could induce PLA to crystallization [29],
whereas an increase in the CFW content did not have a significant effect.
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Table 3. Thermal property data of the PLA/CFW composites.

Samples

Differential Scanning Calorimetry (DSC) Thermogravimetric Analysis (TGA)

Tg (◦C) Tm (◦C) Crystallinity
(%Xc)

Weight Loss
(%)

Temperature
Decomposition

(Tonset) (◦C)

Temperature
Decomposition

(Tpeak) (◦C)

PLA 58.87 148.61 1.09 98.93 333.56 372.12

CFW - - - 87.88 314.75 431.75

CFW10 61.11 150.03 3.56 93.85 315.24 361.22

CFW20 63.52 152.91 1.73 93.83 306.98 359.10

CFW30 66.31 153.54 1.68 93.07 302.41 356.57

The relationship between the weight loss and an increase in the temperature of the
composites was measured by a TGA. As shown in Figure 9, both PLA and PLA/CFW
showed degradation in a single step at temperatures ranging from 333.56 to 372.12 ◦C and
302.41 to 361.22 ◦C, respectively. Whereas, CFW showed degradation in the double step as
shown in Figure 9b. The first step, the temperature range of 321.72–348.89 ◦C, correlates to
cellulose dehydration and decarboxylation reactions, which result in combustible gasses.
The second step, the temperature range of 404.47–436.73 ◦C, can be attributed to the
oxidative degradation of the char formed in the first step [30,31]. Thus, the presence of
CFW in the PLA matrix resulted in a decrease in the thermal stability of the composites.
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2.6. Water Absorption

Figure 10 shows the water absorption percentages of the pure PLA and PLA/CFW
composites. CFW30 had the highest water absorption percentage, followed by CFW20,
CFW10, and PLA at 8.76, 7.16, 1.77, and 0.34%, respectively. This was likely the result of an
increase in the hydroxyl groups, which are hydrophilic functional groups [23].
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3. Materials and Methods
3.1. Materials

We used polylactic acid (PLA), grade 2003D (NatureWorks LLC product, Plymouth,
MN, USA), obtained from PTT Global Chemical PCL (Bangkok, Thailand) with a melt
flow rate of 6.00 g/10 min at 210 ◦C/2.16 kg, a melting temperature of 210 ◦C, and specific
gravity of 1.21. A PLA sheet, grade 2003D, with a thickness of 0.3 mm was obtained from
Thai Materials Development Co., Ltd. (Uthaithani, Thailand). The cotton fabric waste
(CFW) was obtained from Ratana Apparel Cares Co., Ltd. (Nontaburi, Thailand) and was
treated and dyed with typical finishing agents.

3.2. Method

The CFW had undergone transformation processing from fabric to fibers, which caused
the fibers to be fluffy and tangled. It was difficult to define the characteristics or quality.
Therefore, it could not be directly mixed with PLA by a twin-screw extruder. Thus, the
CFW had to be prepared in an appropriate form, which were CFW pellets. The preparation
of the CFW pellets was achieved as follows: the CFW was placed in the middle of a PLA
film in a sandwich structure and laid down on a mold with a thickness of 2 mm. The mass
of the PLA sheet and CFW were 30 and 60 g. In the second step, a compression molding
machine was used at a temperature of 190 ◦C with a compression time and cooling time of
3 min each (total of 6 min). We then obtained a CFW sheet. In the third step, a die-cutting
machine was used to cut the CFW sheet to form the CFW pellets. The procedure of the
CFW pellets preparation is shown in Figure 11.
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Figure 11. Schematic of the CFW pellet preparation.

The PLA/CFW composite preparation began with the elimination of the moisture in
the pellets using an oven at 80 ◦C for 5 h. The PLA and CFW pellets were then mixed by dry
blending technique at ratios of 90:10, 80:20, and 70:30 wt% in rotary drum tumbler mixers
for 10 min, then mixed again by melt blending technique with a twin-screw extruder at an
approximate temperature of 130–170 ◦C and screw speed of 60 rpm. Finally, the PLA/CFW
pellets were molded by a compression molding machine at a temperature of 190 ◦C and a
compression time and cooling time of 5 minutes each (total of 10 min) to obtain the test
specimens. The composites with various CFW pellets ratios were identified as CFW10 for
the 90:10 ratio, CFW20 for the 80:20 ratio, and CFW30 for the 70:30 ratio.

3.3. Characterization
3.3.1. CFW Pellets Characterization

The purpose of this measurement is to identify the characteristics of the CFW pel-
lets after preparation. The CFW pellets were observed with a digital microscope with
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a maximum magnification of 600× and then analyzed by using the ImageJ software to
measure the average width, length, and thickness. The density was investigated by an
electronic densimeter.

3.3.2. Melt Flow Test

The melt flow index (MFI) test was used to investigate the rheology of the PLA/CFW
composites. The data from the test were reported as the weight (g) per 10 min. A melt flow
index machine from C.B.N. Material test Co., Ltd. (Bangkok, Thailand), model XRL-400A,
was used. The testing condition was set according to ASTM D1238 at a temperature of
210 ◦C and a load of 2.16 kg.

3.3.3. Mechanical Properties

The mechanical properties of the PLA/CFW composites were tested for tensile, flexu-
ral, and Izod impact strength. The tensile strength was tested according to ASTM D638 by
a universal testing machine (Instron, model 3400) with a cross-head speed of 50 mm/min.
The results were reported in terms of the tensile strength (MPa) and tensile modulus (GPa).
The flexural strength was tested according to ASTM D790 in a machine similar to the tensile
test with a cross-head speed of 2 mm/min. The results were reported in terms of flexural
strength (MPa). The Izod impact strength was tested according to ASTM D256 using a CEST
model 6542 Serial 833. The results were reported in terms of the impact strength (kJ/m2).

3.3.4. Fracture Morphology

A digital microscope was used to investigate the fibers embedded within the PLA
matrix. An increase in the fiber content in the specimens would result in individual images
being different in terms of surface smoothness. Therefore, ImageJ software was used for
the analysis in terms of the arithmetic means of the surface roughness, Ra (micron), using
the SurfCharJ function [32].

3.3.5. Thermal Properties

A melting temperature transition (Tm), a glass temperature transition (Tg), and a
crystallinity (%Xc) temperature transition (Tc) were investigated using differential scanning
calorimetry (DSC). DSC was performed using a NETZSCH, model DSC 200 F3, with a
heating rate of 10 ◦C/min from 30 ◦C to 200 ◦C, which was then held for 5 minutes to
remove the thermal history, then the heat was reduced by 10 ◦C/min from 200 ◦C to 30 ◦C
and heated again in a similar to the first heating condition. The following equation was
used to compute the crystallinity of the composites:

Xc(%) =
∆H

∆H f (100)
× 100

w
(1)

where ∆H is the experimental heat of the fusion, w is the weight fraction of the stabilized
PLA matrix, and ∆Hf(100) is the heat of the fusion for the pure PLA crystal with a value of
93 J/g [33].

A thermogravimetric analysis (TGA) was used to investigate the relationship between
the weight loss and the temperature of the composites. It was performed by thermo-
gravimetry (TA Instruments, model TGA550) in a nitrogen atmosphere with a heating rate
of 10 ◦C/min using a specimen of 3–5 g. The range of the temperature was 50–500 ◦C.

3.3.6. Water Absorption Testing

The effect of the CFW content on the water absorption of the composites was deter-
mined by testing according to ASTM D570-1998. The testing procedure began by preparing
a specimen with a size of 50.8 mm in diameter and 3.2 mm in thickness, drying it in the
oven at 50 ◦C for 24 h, and placing it in a container of distilled water maintained at a
temperature of 23 ◦C for 24 h. Afterward, the water on the surface of the specimen was
rapidly wiped off with a dry cloth. The specimen was weighed immediately after the water
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immersion. The water-absorbing ability was calculated by the difference in the weight
before and after the immersion and shown as a percentage.

4. Conclusions

The objective of this work was to study the preparation and characterization of green
composites from PLA and cotton fabric waste (CFW) by considering the effect of the
CFW content on the composites. The procedure of work began by determining the CFW
characteristics to control the quality using a pelletizing technique. The CFW pellets were
prepared using compression molding and die-cutting techniques and then compounded
with PLA in a twin-screw extruder to form the composite pellets. The testing specimens
were produced by compression molding. The results were as follows:

- The melt flow testing showed that an increase in the CFW contents caused the melt
flow rate of the composites to decrease.

- The mechanical testing showed that CFW could improve the tensile modulus, flexural
strength, and Izod impact strength of PLA. The above mechanical properties of the
composites also increased with an increase in the CFW content.

- A fracture morphology observation of the composites showed that an increase in
the CFW content caused greater phase separation and roughness on the fracture
surface area.

- Thermal property testing, in terms of DSC, showed that an increase in the CFW
content caused the Tg and Tm of the composites to slightly increase; the highest were
66.31 ◦C and 153.54 ◦C, respectively. The crystallinity increased by approximately 36%
compared with pure PLA, but an increase in the CFW content did not clearly change
the results. The DSC thermograms of the composites showed one peak, indicating
an immiscible blend of PLA and CFW. This could imply that the finishing and dying
agents that may remain in CFW did not affect the melting point of the composite.
In terms of the TGA, the result showed the decomposition of the composites to be
lower than pure PLA. The temperature of both the Tonset and Tpeak of the composites
decreased with an increase in the CFW content. The decomposition of the composites
was shown in a range of 302.41 to 361.22 ◦C.

- Water absorption testing showed that an increase in the CFW content resulted in the
composites having greater water absorption; the highest was 8.76% when compared
with pure PLA.

- Based on these results, we expected the green composite based on PLA/CFW can pro-
duce the household products such as home decorations and food trays, etc. Moreover,
if we can improve the compatibility or toughness of PLA/CFW, it will make more
options for manufacturing products.
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