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Abstract

:

Plastics recycling is an important component of the circular economy. In mechanical recycling, the recovery of high-quality plastics for subsequent reprocessing requires plastic waste to be first sorted by type, color, and size. In chemical recycling, certain types of plastics should be removed first as they negatively affect the process. Such sortation of plastic objects at Materials Recovery Facilities (MRFs) relies increasingly on automated technology. Critical for any sorting is the proper identification of the plastic type. Spectroscopy is used to this end, increasingly augmented by machine learning (ML) and artificial intelligence (AI). Recent developments in the application of ML/AI in plastics recycling are highlighted here, and the state of the art in the identification and sortation of plastic is presented. Commercial equipment for sorting plastic recyclables is identified from a survey of publicly available information. Automated sorting equipment, ML/AI-based sorters, and robotic sorters currently available on the market are evaluated regarding their sensors, capability to sort certain types of plastics, primary application, throughput, and accuracy. This information reflects the rapid progress achieved in sorting plastics. However, the sortation of film, dark plastics, and plastics comprising multiple types of polymers remains challenging. Improvements and/or new solutions in the automated sorting of plastics are forthcoming.
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1. Introduction


The path to resource utilization and circularity passes through the recycling of post-consumer plastics and the reduction in the amounts of plastics landfilled or incinerated. The existing recycling infrastructure cannot manage well the high volume and complexity of the plastic waste generated. Higher throughput and recycling rates of post-consumer plastics can be achieved by increasing the efficiency of sorting. Recycled plastic that is poorly sorted increases reprocessing costs and decreases the value of reprocessed plastics [1].



The recycling of plastics can be achieved via mechanical or chemical processes [2,3,4,5]. The mechanical recycling of plastic involves identification, sorting, washing, shredding, and reprocessing of desired types of plastic. All these take place while the solid polymer remains intact. Classification and sortation are key in mechanical recycling, as plastics need to be separated by type and color before reprocessing. Chemical recycling, also called advanced recycling, involves breaking down used plastics into raw materials for fuel, new plastics, or other chemicals [4,6] using chemical processes such as liquefaction, pyrolysis, and gasification [4,7]. Chemical recycling also includes chemolysis, which depolymerizes polymers into monomers, and dissolution/precipitation, which is a solvent-based physical separation of different polymers that does not involve breaking polymer chains [4,8,9,10]. Pyrolysis is the most common chemical recycling process, but not all plastics are suitable for pyrolysis. For example, the pyrolysis of poly(vinyl chloride) (PVC) is undesirable due to the production of hydrogen chloride (HCl), which causes corrosion to equipment. Similarly, the use of poly(ethylene terephthalate) (PET) in pyrolysis is limited due to the low yield (~50 wt %) and oxygen content, which may lead to combustion. Hence, plastics need to be sorted out for both mechanical and chemical recycling applications [4,11].



Separation of plastic by type is typically performed at Materials Recovery Facilities (MRFs). For recycling purposes, plastics are classified as (1) PET, (2) high-density polyethylene (HDPE), (3) PVC, (4) low-density polyethylene (LDPE), (5) polypropylene (PP), (6) polystyrene (PS), and (7) “other”, where the numbers 1, 2, …, 7 refer to the Plastic Identification Codes [12]. In principle, all these types of plastics have the potential to be sorted; however, most types of plastic have low or no market value to justify the cost of sorting, the exceptions being PET and HDPE. The “residual” plastic is typically landfilled.



At MRFs, post-consumer plastics are sorted manually by operators and/or mechanically, based on differences in the properties of plastics [13,14]. Separation of plastics by type, color, or shape/size requires specialized equipment such as optical sorters [15,16,17]. The optimal sorting method depends on the plastic type and product(s) of interest. Sorters of different modality can be combined to improve the sorting efficiency and yield of the desired product [17]. Manual sorting can reduce contamination and improve product quality, but can be relatively costly and slow for high volumes of waste, and potentially dangerous to operators [18,19]. Automated sorting, however, can prove more efficient and cost-effective [18].



Challenges that MRFs face in the sortation of plastic recyclables were identified in a study that our team conducted two years ago [20]. MRFs utilizing manual sorting reported a lower throughput compared to MRFs with automated sorting. For automated MRFs, one of the main challenges are tanglers wrapping around sorting equipment. Films are difficult to sort and typically have high contamination rates. The sortation of black plastics was another challenge identified in this study [20]. The same study compiled and compared information on commercially available automated sorting equipment, thus capturing the progress made in the ten years prior to our study, when similar reports were last published.



The state-of-the-art in technology and equipment for the classification and sortation of plastics is analyzed here. Spectroscopy is primarily used to identify plastics, increasingly augmented by machine learning (ML) and artificial intelligence (AI). The previous report on equipment for sorting plastic [20] dates from over two years ago. In the meantime, the demand for plastics recycling has increased and the recycling technology has advanced. These motivate the present updated inventory of established and emerging sorting equipment and their evaluation regarding their sensors, types of plastics they can sort, primary application, throughput, and accuracy. The information compiled here captures the rapid progress made in recent years that holds promise for positive future developments.




2. Spectroscopic Methods for Identification of Plastic Type


Spectroscopy techniques currently used to identify plastic waste in the context of sorting are based on VIS (color analysis), near infrared (NIR), and X-ray fluorescence (XRF) [21,22,23,24,25,26]. Mid-infrared (MIR) spectroscopy, hyperspectral imaging, and shape recognition show potential for classifying plastics but are not yet deployed in large-scale sorting [27,28,29,30]. NIR, XRF, and VIS have different advantages in sorting different types of plastic, as outlined below.



NIR sensors detect variations in the absorption, transmittance, and scattering of light by different materials in infrared wavelengths, which inform on the plastic type [19,31]. NIR intensity can also be influenced by the color, surface texture, and shape of the plastic object [28,32]. Advantages of NIR include high-speed, high penetration depth, and high signal-to-noise ratio [29]. However, NIR is not effective for black plastics, because the black pigment absorbs most light, nor for plastics that incorporate brominated flame retardants (BFRs) [33]. Since the NIR spectra are affected by instrumental noise, baseline drift, and scattered light, preprocessing of spectral data is required for sorting applications [34]. MIR probes the CH3, methylene (CH2), and methine (CH) functional groups and can address some of the drawbacks of NIR, but, at present, standoff measurements are not practical [24,35].



XRF shines primary X-rays onto the plastic object under testing, and measures the fluorescent X-rays emitted at a different wavelengths by the elements present in the plastic [36]. XRF sorters are widely used to classify PVC and plastics containing BFRs [19]. However, their application is typically limited to the removal of PVC contaminant from PET [37,38].



Visible spectrometry works by analyzing the total range of the visible spectrum, thus accurately characterizing all colors. VIS sorts plastics by color [14,39] using a prism-coupled color camera [40] which measures colors (red, green, and blue) based on intensity [40].



Some of the challenges highlighted above can be addressed by combining spectroscopy with machine learning or artificial intelligence [41,42,43].




3. Utilization of Machine Learning or Artificial Intelligence in Plastic Type Identification


To improve the identification accuracy and separation efficiency of plastics, optical detection methods combined with ML/AI are developed and increasingly being deployed [44]. ML is designed to emulate human intelligence by using data to learn from the surrounding environment [45]. Plastics are identified, classified, and sorted based on data captured digitally in real time with sensors or cameras, and then applying algorithms [46]. The classification and detection are done using a combination of sensors and ML algorithms.



ML algorithms can be supervised, unsupervised, semi-supervised, and reinforced [47] (Figure 1). Supervised machine learning algorithms predict an outcome based on previously characterized input data [48,49]. For their learning, supervised models need to be trained with tagged or sorted data [48]. In unsupervised learning, the data input into the model is not presorted or tagged, with no guide to a desired output. Unsupervised models are ideal when used to identify unknown relationships in training data [50,51]. Semi-supervised learning is the combination of supervised and unsupervised learning [51]. The approach employs a limited collection of sorted or tagged training data alongside an extensive compilation of untagged data. The models are used to conduct specific computations to reach the correct outcome. Moreover, the semi-supervised models need to perform the learning and data organization, while they are only given small sets of training data. Semi-supervised models can have better accuracy than supervised and unsupervised models [51]. For waste management applications, supervised learning (classification) and neural network models are often used [48,49], as discussed below.



Identification of materials though ML is done in three stages: data processing and feature extraction, selection of machine learning algorithms as classifiers, and testing and performance evaluation [44,59]. The input data are extracted from sensors (e.g., images, spectra), while extraction of features is done through image processing. The spectral data are often pre-processed for baseline corrections and to reduce their dimensionality (e.g., by principal component analysis, PCA), thus helping to reduce the computation time. The classifier transforms the data and, based on these transformations, identifies the optimal boundary between the possible outputs. Performance evaluation selects the best model [59]. Classification models (Classifiers) anticipate or draw conclusions of the input data given for training, and then predicts the class and category for the data. The ML workflow shown in Figure 2 is often utilized for plastic sorting.



3.1. Classifiers


Several algorithms, such as the adaptive network fuzzy inference system (ANFIS), artificial neural networks (ANNs), decision trees (DTs), support vector machines (SVMs), naive Bayes, k-nearest neighbor (KNN), and random forest (RF) have been used in machine learning and deep learning to classify waste [60]. The classification algorithms (models) that have been utilized in sorting plastic waste are discussed below.



3.1.1. Convolutional Neural Networks (CNNs)


Neural networks find many applications in solving a range of problems such as classification and regression [47]. CNN is intended to resemble the human brain. CNN is made up of neurons, which receive input signals and lay out output by measuring the input data with images on many channels. Images go through convolution layers with filters, as indicated in Figure 3 [47,61]. Most calculations are conducted in the convolutional layers. The rectifier function is used by the activation layer to correct the non-linearity of the image, while the pooling layer limits the search of an image on optimal features (e.g., dimension). Afterwards, the assembly is converted into a column by interconnected layers and is transmitted to the neural network for processing. Finally, the activation function sorts the output [61].



CNN is useful in computer vision to extract features in images (e.g., color, size) [27,41,60]. On the basis of differences in the granularity of images, three types of datasets can be identified, resulting in three different approaches: classification, object detection, and segmentation [41]. In classification, the class of an object in an image is determined without providing its location. In object detection, details (categories) and multilabel locations of objects in an image are identified by drawing boundary boxes around them. In segmentation, a pixelwise mask of each object in the image is provided, which facilitates the identification of the shapes of different items [41]. CNN encompasses several variations in architecture (e.g., feed forward networks, deep feed forward). Different CNN architectures are able to extract the features in images layer-by-layer using the information flow from input to output [41].




3.1.2. Support Vector Machines (SVMs)


SVMs are non-linear ML algorithms that have been applied to classify the type and shape of plastics [27,62,63,64]. SVMs construct an ideal boundary within the covariate space (p-dimension) based on the provided samples (x1, y1), …, (xN, yN) [65]. The input data in SVMs are gathered as points, and these points are classified in a linear manner based on the hyperplane [61]. Furthermore, the algorithm finds or modifies the variables that best fit the hyperplane, and classifies the item being analyzed (e.g., plastic item) into their respective categories. In the SVM classification process, input vectors that are on the hyperplane of the spatial separation belong to one class, and the positions on the other side of the plane belong to a different class [27,61].




3.1.3. Decision Tree Classifier (DTC)


DTC algorithms employ multiple stages to divide data into smaller and less complex sections according to specific criteria [66]. These algorithms are often based on the “if-then-else decision rules”, where classifications are conducted in a tree-type structure, with complexity being directly proportional to the depth of the tree. The selection of functions is automatically done with qualitative and quantitative data [61,67]. DTC constructs a hierarchical structure in the form of a tree, where every inner node corresponds to a characteristic or property, while each terminal node represents a classification or group [65]. The algorithm chooses the feature that provides the most useful information at each node [65,68]. When there is an item (e.g., plastic) that requires sorting, it progresses through the decision tree, commencing from the initial node. At each internal node, the algorithm assesses the value of the corresponding characteristic for the plastic input and proceeds along the suitable branch based on the value of that characteristic [65,68]. Once the algorithm arrives at a leaf node, it designates the relevant class or category to the input plastic. The plastic is then assigned the anticipated class or category [65,68]. In decision trees, data points that cannot be separated linearly are mapped to higher dimensional spaces by the DTC algorithm with appropriate kernel functions so that they can be separated into these spaces. Decision tree algorithms have been used to develop prediction models for waste generation [69,70].




3.1.4. Random Forest (RF)


Random forest (RF) classifiers and extra tree classifiers are ensembles of decision trees that are interconnected. In RF classifiers, the input data are subsampled with bootstrap replicas, whereas extra tree classifiers use original data to create subsets of each tree [66]. RF classifiers have been successfully used to classify different plastic materials with accuracies over 98% [66].




3.1.5. k-Nearest Neighbor (KNN)


KNN algorithms use distance measurement methods [53]. When sorting new plastic items, the KNN algorithm measures the disparity (distance) between the plastic being categorized (sorted) and all the plastics data in the training set. These algorithms identify the k nearest samples to the test data and assigns the most prevalent class label from the learning samples [61]. This process employs a method called “majority voting”, where the label that garners the highest number of votes is selected as the predicted label for the given plastic input. These classifiers do not make assumptions on how data are distributed, as most data often do not follow a theoretical distribution [53]. KNN algorithms have been used in combination with spectroscopy to classify and sort waste plastics [71,72].




3.1.6. Naive Bayes Classifiers


Naive Bayes classification algorithms utilize the Bayes theorem for probabilistic classification (Equation (1)) [73,74]. The Bayes theorem integrates new evidence (i.e., new data) with previous probabilities of hypotheses to obtain new probabilities for the hypotheses [73]. Through the examination of the input data of a given set parameters or features, denoted as “B” in Equation (1), Naive Bayes classifiers can estimate the probability of the input data associated with a particular class, denoted as “A” [74].


  P   A | B   =   P   B | A     P  A    P  B     



(1)







Naive Bayes classifiers operate by assuming that classified features are independent of each other, given the class variable [66,73,75]. To perform the classification of input data, an assessment of the probability of it belonging to each of the existing classes is conducted, and the class with the highest probability is then identified as the one to which the input data belongs (Equation (2)).


  A = a r g m a  x a  P ( a |  b 1  ,   … ,    b n  )  



(2)




where b1 is one of the n features or predictors.



The Naive Bayes classifiers have predetermined structures, and during the training phase of the classifier, the class probabilities and conditional probabilities are computed based on the provided training data. Subsequently, the generated probability values are utilized to categorize new observations [76]. This process allows the classifiers to estimate the likelihood of events or outcomes by utilizing conditional probabilities [66,73]. To sort plastic waste, Naive Bayes classifiers can be used by gathering information on different attributes of plastic objects, such as color, shape, size, and composition [77,78]. The collected data are prepared to ensure their reliability, and the classifier is trained on this dataset, acquiring knowledge of conditional probabilities and class probabilities connected to the attributes [78,79]. Subsequently, appropriate attributes are derived from the plastic waste items and utilized as inputs for the trained classifier. The classifier then computes probabilities and decides the most probable class for each item, facilitating the categorization of plastic waste into various groups based on the classification outcomes [73,77,78,79].




3.1.7. Logistic Regression


Logistic regression algorithms are designed to estimate the likelihood of one of two possible outcomes (classes) and make a definitive prediction based on various input parameters. Test data points are predicted using binary scales that range from zero to one. Points with values exceeding 0.5 are assigned to class 1, while points with values below 0.5 are assigned to class 0 [53,65]. For example, logistic regression can be used to sort clear plastics from colored plastics, given some input parameters. In cases were more than two outcomes or classes are required, multiclass logistic regression can be used [53]. In regression metrics, true targets are compared with their corresponding predictions, where metrics are R2-score, mean absolute error (MAE), and root mean square error (RMSE) [46]. The closer to 1 R2-score is, the more accurate the model is [46].




3.1.8. You Only Look Once (YOLO)


YOLO integrates image sensors and AI detection algorithms (e.g., Neural networks) to detect and locate objects [80]. YOLO works by applying a neural network to an image, breaks down the image into grid cells, and forecasts the grid cell coordinates into bounding boxes [80,81]. In YOLO, each grid has a corresponding vector in the output that determines if the object is located in that grid cell; if yes, it helps determine the class of the object and the estimated boundary region of the object [81]. Finally, the algorithm generates the final result, which includes the remaining bounding boxes along with their corresponding categories and confidence scores that best fits the items being sorted. The YOLO detection and location of an object is done by looking at the object only once, or a process known as one-stage detection. In a one-stage detector, location and classification of objects are performed at the same time, contrary to a two-stage detector used in algorithms such as a CNN [80]. As a result, a one-stage detector can be computationally efficient compared to a two-stage detector, though less accurate. The YOLO algorithm training allows it to recognize and classify each category, such as plastic bottle, plastic bag, etc. YOLO can be useful in classifying plastics that differ in physical characteristics (e.g., transparency, flexibility) but have similar chemical structure (e.g., PET and PET-G, polyethylene terephthalate glycol) and similar spectra [80]. When sorting plastics with similar chemical compositions, YOLO can reportedly reach an accuracy > 91.7% and mean Average Precision (mAP) much better than traditional optical sorters [80,82].





3.2. Performance


ML classification performance can be measured in terms of accuracy, recall, precision, and F1-score [66]. The performance of ML algorithms can be evaluated using these metrics by first splitting the dataset into training and test data, and then comparing the predictions of the trained algorithms for test data to the known target variables of the test dataset [46].



In classification problems, y (true labels or classes of a classification problem) can have two values: “positive” (P) and “negative” (N). True (T) and false (F) predictions can be visualized in a 2 × 2 confusion matrix as shown in Equation (3) [46].


   Confusion   Matrix  =       T P     F P       F N     T N        



(3)




where true positives (TP) are the number of samples correctly predicted as “positive”, false positives (FP) are the number of samples wrongly predicted as “positive”, true negatives (TN) are the number of samples correctly predicted as “negative”, and false negatives (FN) are the number of samples wrongly predicted as “negative”.



Classification metrics such as accuracy, recall, precision and F1-score can be obtained from TP, FP, TN, and FN as discussed below. Accuracy is a measure of correctly predicted observations among the total observations (Equation (4)). Accuracy computes how many times a model made a correct prediction across the entire dataset. Accuracy is often useful in evaluating model performance in a class-balanced dataset, where each class in the dataset has the same number of samples [83]. Recall is the ratio of correctly predicted observations among all observations for each class (Equation (5)). Precision is the ratio of correct predictions among all predictions assigned to a class (Equation (6)). F1-score is the weighted average of precision and recall (Equation (7)) [66]. The observations reported in accuracy, recall, precision, and F-1 score can be translated into purity and yield in the case of plastics.


  A c c u r a c y =   T P + T N   T P + T N + F P + F N    



(4)






  R e c a l l =   T P   T P + F N    



(5)






  P r e c i s i o n =   T P   T P + F P    



(6)






  F 1 − S c o r e =   2 × R e c a l l × P r e c i s i o n   R e c a l l + P r e c i s i o n ′    



(7)







Accuracy, precision, and recall are often useful in evaluating ML model performance in class-balanced datasets, where each class in the dataset has the same number of samples; however, this can be challenging in unbalanced datasets [83]. Most real-world data are often imbalanced datasets; thus, the F1 score is often used for imbalanced datasets [84]. In imbalanced datasets, for precision and recall, one metric comes at the cost of another. The F1 score combines precision and recall, to better reflect the model’s accuracy.



A compilation of performance in accuracy of different algorithms that have been employed to classify and identify waste, extracted from various published studies, is presented in Table 1 and Figure 4. As shown there, different algorithms can attain high levels of classifications of plastic waste. However, direct comparison of different algorisms (e.g., CNN vs. SVM) is currently not possible due to different sizes of databases, items identified, number of layers in the models, training sets, etc.





4. ML and AI in Combination with Spectroscopy for Plastic Type Identification


As discussed above, spectroscopy plays a key role in the identification and sorting of plastic waste at MRFs. However, various spectroscopy techniques have their limitations when it comes to sorting plastic. For example, NIR has low resolution and cannot sort black plastics. MIR has slow spectrum acquisition and cannot adequately differentiate between HDPE and LDPE. Raman has low sensitivity and is subject to interference from fluorescence. Laser-induced breakdown spectroscopy (LIBS) does not provide molecular structure information and has difficulty distinguishing polymers with similar chemical formulas [47]. Fluorescence is influenced by the overlap of the molecule’s vibrational level with its excited electronic energy level [97].



The fact that no single spectroscopy technique is suitable for all types of plastics motivates the combination of spectroscopy with ML/AI in order to address the limitations [47,98]. The ML models or algorithms discussed in Section 3 have demonstrated the ability to contribute to this end. For example, ML/AI (e.g., CNN) can identify plastics by color, thus correctly sorting black plastics, or sort a plastic based on color (e.g., clear vs. colored PET) [98]. Thus, the combination of AI or ML with spectroscopy-based techniques can increase the sorting accuracy [66]. Carrera et al. [66] used different ML algorithms (SVM, kNN, Naïve Bayes) applied on IR (NIR and MIR) spectra to develop classification models for plastics (PE and PET in the first experiment, PE, PET, PP, and PS in the second experiment, PE, PP, PS, and PVC in the third experiment, and PE, PET, PP, PS, and PVC in the fourth experiment), and reported model accuracy, precision, recall, and F1-score rates all over 99% [66]. Neo et al. [47] used CNN, residual networks and inception networks in a decision tree structure with IR and Raman spectra dataset containing over 20 different polymers to classify and identify PE, PP, and PET with an accuracy of 94.9 and 96.7% with the Raman and IR datasets, respectively [47]. The use of a CNN in combination with spectroscopy technologies did not necessarily require pre-processing of spectral data due its feature extraction capabilities [64].



ML can be combined with optical spectroscopy techniques such as NIR or Mid-IR to increase plastic sorting efficiency (Figure 5).



Bonifazi et al. [98] combined ML and data from laser-induced fluorescence (LIF) to identify and sort black plastics (EPS, PS, PP, HDPE) from a plastic waste stream. Long et al. [99] used a combination of CNN ML and MIR (collected at the rate of 100 Hz) for a fast and accurate characterization of mixed plastics (PE, PP, PS, PVC), reaching an overall accuracy close to 100% [99]. Here, MIR was upconverted from the band 2.0–5.0 μm to the near-visible region 695–877 nm, eliminating the thermal noise present in the MIR range for better sortation [99]. The combination of MIR and ML (CNN) enabled the sortation of plastics by type and color (i.e., blue PS, black PE, deep blue PP, and white PVC) [99].



Neo et al. [47] combined ML and Raman or IR for the identification of plastic waste (consisting of PE, PP, and PET) from a dataset containing over 20 polymers [47]. The identification was conducted using Polymer Spectra Decision Net (PSDN) architecture, achieving an accuracy of 94.9% for Raman and 96.7% for FTIR. The developed PSDN had two neural network modules, with the first trained to classify spectral data into recyclable and non-recyclable, and the second neural network classified recyclable polymers into their individual classes (i.e., PET, PE, PP, Other). PSDN [47] reported higher identification and sortation accuracy compared to the end-to-end neural network often used in ML [47].



Various other models such as like Bernoulli NB, Gaussian NB, decision tree, ensemble models, KNN, SVM, linear models, PLS-DA, and a neural network (MLP) have been tested on spectral data, and the results obtained indicated that five classifiers had accuracy, precision, recall, and an F1-score over 95%, with the MLP classifier having the best performance with 99.71% accuracy, 99.35% precision, 99.82% recall, and 99.58% F1-score [66]. Gaussian NB, Bernoulli, and PLS-DA were reportedly the least effective classifiers, with accuracies of 29.1%, 31.2%, and 75%, respectively [47,66,100].



The following case studies demonstrated the success of AI-based sorting technologies in improving recycling rates. Wilts et al. [17] analyzed the increase in recycling rates and the purity of recovered materials at an MRF in Spain using an AI-based robot (ZenRobotics, Vantaa, Finland) to supplement or replace manual sorting. The waste input of the study comprised 13 different materials, including aluminum, cardboards, HDPE, and textiles. The accuracy or purity of sorted HDPE was approximately 100%, with a recovery rate between 60 to 80% [17]. Manea et al. evaluated the use of smart bins vs. manual sorting or waste segregation by airport passengers, and reported an accuracy of 62% for waste segregation by airport passengers, whereas the smart bin achieved a 90% classification accuracy [100].




5. Application of Robotics in Plastic Waste Management


AI-informed robots have the ability to replace manual sorting and can segregate plastic waste by analyzing the captured information (e.g., color, composition) from cameras and sensors [101]. The integration of cyber-physical systems, blockchains, ML, and the IoT can bridge physical and computational infrastructures in waste management, improving the efficiency of identifying and sorting waste (plastics) for recycling [101]. The efficiency of ML models is related to the computational complexities, resources, and requirement (e.g., training time) in learning and performing classification tasks [102]. AI-based robots used in waste management vary based on application, materials to identify or sort, sizes of materials, etc. IT and robotics can be used for prediction of generation waste, roadside waste collection, smart bins, waste monitoring and tracking, and end-of-life treatments such as pyrolysis or mechanical recycling [103,104,105,106,107].



A variety of robots have been reported in the literature, ranging from mobile robots that can be used to collect waste in challenging environments (e.g., beaches) to fixed robots that be employed in MFRs to identify and sort waste [86,87]. Mobile robots can be equipped with tracks, track belts surrounding wheels, a conveyor to move collected waste, robotic arms, grippers, RBG cameras, actuators, proximity sensors, etc. (Figure 6). To enhance the robot capabilities, configurable platforms can be introduced [108]. Such platforms can provide additional degrees of freedom, often used in robotic arms designed for pick-and-place operations (e.g., SCARA robots, Multiple DoFs Robot) [109]. Furthermore, robot capabilities can be enhanced by using grippers with the ability to handle various shapes, or combined grippers that integrate both a suction cup and finger-like appendages, or having grippers specifically for the items to be separated (e.g., plastic films) [109].



With AI-informed robots, the emphasis is on high speed and low power consumption to reduce sorting costs, making parallel structures like Delta robots a preferred choice, and robots with high degrees of freedom more able to handle materials [108].



AI or ML in combination with automated equipment (robots) making the use of computer vision, sensors, arms, grippers, and suction systems are now being extensively investigated for waste management applications [109]. Lu et al. [47] discussed the usage of both deep learning and machine learning algorithms with computer vision to identify and sort municipal solid waste [104,110]. Sundaralingam et al. [110] reported a waste segregation system that could segregate paper, plastic, metal, organic waste, glass, and one more additional empty class into appropriate bins, using a TensorFlow object detection model and a microcontroller. The developed system could predict and segregate waste in the appropriate bin, with a mean Average Precision (mAP) of 86.5% and recall = 88.3% [110].



Recent studies on robots in plastic waste management often focus on improving the accuracy and efficiency by developing and integrating better sensors and cameras, and better algorithms to accurately classify and sort different types of waste (plastics) [103,111]. Robots can be used to sort plastics based on texture, identifying worn-out plastics and plastics in great physical conditions. With the integration of IT, machine learning, and deep learning into robotics, robots can characterize the shape, size, texture, and colors of different waste materials, and sort them based on adequate categories [109].



Though AI robots have the advantages listed above, they are subject to various limitations, such as not being able to differentiate plastic bottles from glass bottles of the same shape, or to determine between rigid and rubber bottles. Such challenging waste requires better end-effectors and sensors. The end-effector deals with the ability to grasp and sort different waste materials with dirt or deformations, and simultaneously handle both 2D and 3D shaped plastics, while challenges with sensors involve the ability to characterize the shape, color of wet objects, or objects covered with dirt [109]. Examples of AI-informed robots used to sort plastic waste are shown in Figure 7.




6. Recent Advances in Commercial Equipment That Sort Plastics


6.1. Methodology


In this study, equipment for sorting plastic recyclables was identified using publicly available information obtained from manufacturers’ websites and scientific literature. A search for sorting equipment and companies was conducted using Google, Google Scholar, Web of Science, Science Direct, and Engineering Village databases using the keywords “sorting equipment manufacturers or companies”, “optical sorters”, “plastic sorters”, “plastic sorting machines”, “sorting equipment”, and “plastic recycling”.



Sorting devices based on cameras or lasers (e.g., NIR, MIR) to sort whole plastics are classified herein as optical sorters (Table 2). Sorting devices that use ML/AI with cameras or lasers (e.g., NIR, MIR) to sort whole plastics are classified herein as AI-based optical sorters (Table 3). Sorting devices based on cameras or lasers to sort plastic films are classified here as film sorters (Table 4), and sorting devices based on cameras or lasers to sort plastic flakes are classified herein as flake sorters (Table 5). However, sorting devices that use AI in a way to mimic the human brain to make decisions in sorting plastic waste and have a form of robotic arms or SCARA with grippers to sort plastics are classified herein as AI-based sorters or robotic sorters (Table 6).



Contact information of sorting equipment suppliers is reported in Appendix A Table A1 and Appendix B Table A2. The companies listed are based in North America, Europe, and Asia. Our search was conducted in the English language; hence, it may not have captured companies in, e.g., China. The producers (and countries) of optical sorting equipment are summarized in Figure 8.



The information collected here reveals the progress made during the two years since our previous report on plastics sorting equipment was published. This information is further used to assess whether the various challenges reported by MRFs in our previous study [20] can be addressed by currently available technologies or emerging technologies.




6.2. Sorting Equipment for Post-Consumer Plastics


This section describes commercial sorting equipment for sorting mixed plastics. The optical sorters considered here utilize NIR, VIS (light- or camera-based), and XRF. Reported technologies are classified here based on criteria such as plastic identification method (e.g., NIR or XRF), primary application, throughput, whether they sort plastics by color and/or by size, accuracy, and additional features (Table 2).



A total of 37 conventional optical sorting machines produced by 16 different companies have been reported. Out of these, 22 sorters possess the ability to classify plastic based on its color, and 18 among them can effectively separate black plastics from other colors through the utilization of both NIR and VIS technologies. Additionally, a total of 13 optical sorting machines integrated with AI, by 11 different companies, have been identified. Among these, 10 machines are capable of sorting plastic by color, and 8 of them have the capability to separate black plastics from other colors by utilizing ML/AI with NIR, and/or VIS technologies. This brings the total number of whole-plastic optical sorters to 50 (conventional optical sorters and optical sorters with integrated AI). Since our 2022 report [20], there has been an 8.7% growth in the number of optical sorters. Moreover, there are now 13 AI-integrated sorters that were not available in our 2022 study (Table 3). The reported accuracy of these sorters in reclaiming materials can reach an impressive 99.99%, contingent upon the input materials being processed. Furthermore, these sorters offer a broad range of throughput capacities, with the capability to handle up to 10 tons per hour.



Although conventional and AI-based optical sorters have high sorting efficiency, they are primarily intended for sorting 3D/rigid plastic items, and are not as efficient when it comes to sorting plastic films and other two-dimensional materials. There is technology available specifically designed for sorting plastic films or 2D plastics. A total of 16 film-sorting machines by 9 different companies have been identified (Table 4). This marks a substantial 60% increase compared to our 2022 report [20]. These film sorters are said to achieve an accuracy rate of 98%, depending on the materials being processed. Out of the total, six of these machines have the capability to sort films based on their color, while the majority of them (81% of sorters) employ a combination of NIR and VIS technologies.



Before plastic is reprocessed, flake sorting is a crucial stage that helps minimize contamination caused by foreign materials or undesired plastics that may have slipped through previous sorting stages. Flake sorters have the capability to segregate plastics based on their size, typically down to 1 mm, although this may vary depending on the specific types of equipment used. Table 5 presents the existing inventory of plastic flake sorters. A total of 55 flake sorters, produced by 21 different companies, are reported. This represents an increase of 57%, compared to the 35 sorters identified in our 2022 publication. The reported accuracy achieved by flake sorters can reach 99%, contingent upon the materials being processed. The identification of plastic types is accomplished through the use of NIR, XRF, and/or VIS technologies. Additionally, out of the 55 flake sorters, 36 possess the capability to sort flakes based on their color.



The variation in the number of all plastic sorters from our 2021 report to this study is presented in Figure 9.




6.3. AI-Based Robotic Sorting of Plastics


In order to tackle challenges encountered in the field of waste management, new approaches are being developed based on the use of computers and robotic technologies [17,112]. Sorting robots, guided by AI, can either operate as an alternative to traditional optical sorters or can supplement optical sorters by purging incorrectly sorted plastics at the end of the sorting process [17]. Moreover, AI sorters have the ability to improve sorting efficiency over time by using available data to mimic a human brain’s learning and decision-making processes [85,113,114].



A total of 22 AI-based robotic sorters are reported here from 16 different companies, all with the ability to sort plastic by type and color (Table 6). Some MRFs have already integrated AI-based sorters in their processing line, according to manufacturers of AI-based sorters that report in their publicity materials lists of MRFs that have adopted their technologies. The plastic identification method or sorting method involves deep learning and VIS, and in some cases, combine deep learning, VIS, and NIR. There is an increase of 214% in AI-based sorters compared to the seven AI-sorters identified in our 2022 report.





7. Conclusions


The increasingly large amounts of plastic produced and used worldwide necessitate the proper management of plastic waste, which includes various types of recycling processes. Proper classification and sorting of plastic waste are important in recycling, as they increase the quantity and improve the quality and value of the post-consumer plastics that are recovered and sent for reprocessing. Automated sorting promises high throughput and efficient classification of mixed plastic waste. The types and capabilities of commercially available equipment for sorting plastic are reported and analyzed here. To support the content on automated sorting equipment, spectroscopic methods for identification of plastic type are highlighted, and basic principles of ML/AI are presented, with an interest in the combination of spectroscopy and ML/AI, which is at the core of modern equipment employed in plastic type identification.



The inventory of commercial sorting equipment includes 49 optical sorters for whole plastic objects, 55 flake sorters (from 11 companies), 16 film sorters (from 9 companies), and 22 AI-based sorters for mixed plastic recyclables. The recovery accuracy of sorting equipment reported herein can be as high as 99.99%, depending on input materials, with a wide range of throughput capacities (up to 10 ton/h). Growth in available optical sorting technology was about 7%, and a significant shift in incorporating AI in optical sorters was observed, compared to our 2022 study [20]. The observed growth in film sorters, flake sorters, and AI-based sorters signifies the emerging importance of plastics recycling. The potential accuracy of sorting equipment, from past reports and currently available, remains similar when it comes to sorting plastics by chemical composition; however, the introduction of AI has given sorting equipment new capabilities it previously did not have, which is sorting plastics based on physical characteristics such as transparency, morphology, etc., which in turn reduces misclassification of plastics based on physical attributes, thus significantly boosting recycling efficiency. The information presented here can address some of the challenges reported by MFRs in our 2022 article, with an increasing number of available film sorters that can now be integrated in MRFs to sort plastic films for recycling, and an increasing number of sorters for black plastics that could not otherwise be sorted solely by NIR-based optical sorters. Although the available technologies to address those limitations are increasing, economic factors should also be taken into account.
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Table A1. Contact information of optical sorter suppliers.
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	Amut Ecotech

Via San Marco 11/a

31052 Candelù—Maserada sul Piave (TV)—Italy

Phone: +39-0422-877-688

Fax +39-0422-877-690

E-mail: info@amutecotech.it

Website: www.amut.it/amutecotech

(Last accessed 30 January 2024)
	Anhui Zhongke Optic-electronic Color

Sorter Machinery Co., Ltd.

No. 43, Yulan Avenue, Baiyan Science Park, Hefei high tech Industrial Development Zone, China

Email: export@cn-amd.com

Phone: +8613655516956

Fax: 0551-66396866

Website: http://english.cn-amd.com

(Last accessed 30 January 2024)



	Anysort

ANYSORT, Schnackenburgallee 179, 22525 Hamburg

Phone: +49-40-819768-0

Email: info@anysort-usa.com

Website: https://www.anysort-usa.com

(Last accessed 30 January 2024)
	Binder + Co.

Grazer Straße 19-25

A-8200 Gleisdorf, Austria

Phone: +43-3112-800-0

Fax: +43-3112-800-300

Email: office@binder-co.at

www.binder-co.com

(Last accessed 30 January 2024)



	Bollegraaf Group

Tweede Industrieweg 1

9902AM Appingedam

The Netherlands

Email: info@bollegraaf.com

Phone: +31-(0)596-65-43-33

Website: https://www.bollegraaf.com

(Last accessed 30 January 2024)
	Buhler

Gupfenstrasse 5

Uzwil

9240 Switzerland

Phone: +41-71-955-19-00

Website: https://www.buhlergroup.com

(Last accessed 30 January 2024)



	Cimbria

Faartoftvej 22

7700, Thisted, Denmark

Phone: +45-96-17-90-00

E-mail: cimbria.holding@agcocorp.com

https://www.cimbria.com

(Last accessed 30 January 2024)
	CP Group (MSS) Sorting Equipment

6795 Calle de Linea

San Diego, CA 92154, USA

Phone: +1 619-477-3175

Fax: 619-477-3426

https://www.cpgrp.com

(Last accessed 30 January 2024)



	Eagle Vizion

www.eaglevizion.com

(Last accessed 30 January 2024)
	Green Machine LLC

8300 State Route 79

Whitney Point, NY 13862, USA

Phone: +1 800-639-6306

Email: sales@greenmachine.com

Website: www.greenmachine.com

(Last accessed 30 January 2024)



	Hefei Mayson Machinery Co., Ltd.

Block A, Zhongrui Tech-research Building,

No. 9 Hongfeng Road, Hefei City, China

Email: info@hfm-sorter.com

Phone: +86-199-5659-5855

Website: https://hfm-sorter.com

(Last accessed 30 January 2024)
	Hefei Golden Sorter Co., Ltd.

No.230, Jinxiu Road, Economic and Technological Zone, Luan, Anhui province, China.

Email: goldensorter@gmail.com

Phone: +86-19965476623

Website: https://goldensorter.com

(Last accessed 30 January 2024)



	IMRO

Landwehrstrasse 2,

D-97215 Uffenheim, Germany

Phone: +49-(0)-9848-9797-0

Fax: +49-(0)-9848-9797-97

Website: https://www.imro-maschinenbau.de/en/

(Last accessed 30 January 2024)
	MachineX

2121, rue Olivier, Plessisville

QC, G6L 3G9, Canada

Phone: +1-877-362-3281

Website: https://www.machinexrecycling.com

(Last accessed 30 January 2024)



	MEYER Europe s.r.o.

Nam. L. Novomeskeho 1

040 01 Kosice, Slovakia

Email: sales@meyer-corp.eu

Phone: +421 948 209 976

Website: https://meyer-corp.eu

(Last accessed 30 January 2024)
	Mogensen GmbH/Allgaier Process Technology GmbH

Ulmer Straße 75

73066 Uhingen

Germany

Phone: +49-7161-301-175

E-mail: process-technology@allgaier-group.com

https://www.allgaier-process-technology.com/en

(Last accessed 30 January 2024)



	MSS, Inc. [A division of CP Group]

300 Oceanside Drive

Nashville, TN 37204, USA

Phone: +1 615-781-2669

Email: info@mssoptical.com

https://www.mssoptical.com

(Last accessed 30 January 2024)
	MSWsorting

Zhengzhou high-tech zone, China

Email: info@MSWsorting.com

Website: https://www.mswsorting.com/index.html

(Last accessed 30 January 2024)



	NRT Optical Sorting

1508 Elm Hill Pike

Nashville, TN 37210, USA

Phone: +1-615-734-6400

Email: service@nrtsorters.com

www.nrtsorters.com

(Last accessed 30 January 2024)
	Pellenc ST

125 rue François Gernelle BP124

84 124 Pertuis Cedex 4

Phone: +33-4-90-09-47-90

Email: contact@pellencst.com

www.pellencst.com

(Last accessed 30 January 2024)



	PicVisa

Isaac Newton, 2

Barcelona, Spain

Email: info@picvisa.com

Phone: +34-938-268-822

Website: www.picvisa.com

(Last accessed 30 January 2024)
	Redwave (a division of BT-Wolfgang Binder GmbH)

Wolfgang Binder Str. 4

8200 Eggersdorf bei Graz, Austria

Phone: +43-3117-25152-2200

Fax: +43-3117-25152-2204

Email: office@redwave.com

https://redwave.com/en/

(Last accessed 30 January 2024)



	Rhewum GmbH

Rosentalstrasse 24

42899 Remscheid, Germany

Phone: +1-(888)-474-3986

Email: info@rhewum.de

Website: https://www.rhewum.com/en

(Last accessed 30 January 2024)
	RTT Steinert GmbH

1234 Hardt Circle

Bartlett, IL 60103, USA

Phone: +49-221-49840

Email: sales@steinert.de

Website: https://steinertglobal.com

(Last accessed 30 January 2024)



	Satake

10900 Cash Road

Stafford, Texas 77477

USA

Phone: +1-281-276-3600

Website: https://satake-usa.com

(Last accessed 30 January 2024)
	Sesotec GmbH (S + S Separation and Sorting Technology GmbH)

Regener Strabe 130

D-94513 Schonberg, Germany

Phone: +1-224-208-1900

Fax: +1-224-208-1909

Email: info.us@sesotec.com

www.sesotec.com

(Last accessed 30 January 2024)



	Steiner US

285 Shorland Drive

KY 41094 Walton

Phone: +1-(859)-962-2648

Website: https://steinertglobal.com/us/

(Last accessed 30 January 2024)
	TOMRA Systems ASA

Drengsrudhagen 2

Asker 1385

Norway

Phone: +47-66-79-91-00

https://www.tomra.com/en

(Last accessed 30 January 2024)



	Unisensor Sensorsysteme GmbH

Am Sandfeld 11

76149 Karlsruhe, Germany

Phone: +49-(721)-97884-0

Email: info@unisensor.de

Website: www.unisensor.de/en/

(Last accessed 30 January 2024)
	Visys

Birlik Sanayi Sitesi 2. Cadde No:97

PK:34520 Beylikdüzü—İstanbul—Turkey

Phone: +90-212-876-90-36

Fax: +90-212-876-90-37

E-mail: info@visystr.com

Website: www.visys.com.tr

(Last accessed 30 January 2024)



	Wesort

Building 29 LongWangMiao industrial area,

BaiShiXia Community, FuYong Street, Shenzhen, China

Phone: +86-13226817096

Email: wesort.info@gmail.com

Website: https://www.wesortcolorsorters.com

(Last accessed 30 January 2024)
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Table A2. Contact information of suppliers of AI-based robots and sorters.
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	AMP Robotics

1500 Cherry Street, Suite A

Louisville, CO 80027, USA

Phone: +1 (888)-402-1686

Website: www.amprobotics.com

(Last accessed 30 January 2024)
	Back Handling Systems (BHS)

3592 West 5th Avenue

Eugene, OR 97402, USA

Phone: +1 541-485-0999

Email: sales@bhsequip.com

Website: https://www.bulkhandlingsystems.com

(Last accessed 30 January 2024)



	BIN-e

Pasjonatów 9

62-069 Dąbrowa, Poland

Email: contact@bine.world

Website: https://www.bine.world

(Last accessed 30 January 2024)
	Bollegraaf Recycling Solutions

Tweede Industrieweg 1, 9902 AM

Appingedam, The Netherlands

Phone: +31-596-654-333

Email: info@bollegraaf.com

Website: https://www.bollegraaf.com

(Last accessed 30 January 2024)



	CleanRobotics

Email: zak.wehman@cleanrobotics.com

Website: https://cleanrobotics.com

(Last accessed 30 January 2024)
	Enerpat

Enerpat Group Uk Ltd.

55 Crown St, Brentwood,

Essex CM14 4BD, UK

Email: info@enerpatgroup.com

Phone: +86-15051237913

Fax: +86-513-8778-2755

Website: https://www.enerpatrecycling.com

(Last accessed 30 January 2024)



	Everestlabs

48820 Kato Rd Suite 500B, Fremont, CA 94538, USA

Email: hello@everestlabs.ai

Website: https://www.everestlabs.ai

(Last accessed 30 January 2024)
	Greyparrot

Greyparrot AI Ltd.

100 Drummond Road

A401

London, SE16 4DG, UK

Email: contact@greyparrot.ai

Website: https://www.greyparrot.ai

(Last accessed 30 January 2024)



	Intuitive AI

1200-555 W Hastings St, Vancouver, BC V6B4N6, Canada

Email: hello@intuitiveai.ca

Website: https://intuitiveai.ca

(Last accessed 30 January 2024)
	Ishitva Robotic Systems

Website: https://ishitva.in

(Last accessed 30 January 2024)



	Machinex

2121, rue Olivier, Plessisville

QC G6L 3G9, Canada

Phone: +1-(819)-362-3281

Website: www.machinexrecycling.com

(Last accessed 30 January 2024)
	OP teknik

Lastbilsvägen 2

298 32 Tollarp

Sweden

Phone: +46-(0)-10-456-82-70

Email: info@opteknik.se

Website: https://www.opteknik.se/sorteringssida?lang=en

(Last accessed 30 January 2024)



	PicVisa

Isaac Newton, 2

Barcelona, Spain

Email: info@picvisa.com

Phone: +34-938-268-822

Website: www.picvisa.com

(Last accessed 30 January 2024)
	Recycleye

179 Hercules Road,

London

SE1 7LD, UK

Email: hello@recycleye.com

Website: https://recycleye.com

(Last accessed 30 January 2024)



	Redwave (a division of BT-Wolfgang Binder GmbH)

Wolfgang Binder Str. 4

8200 Eggersdorf bei Graz, Austria

Phone: +43-3117-25152-2200

Fax: +43-3117-25152 2204

Email: office@redwave.com

https://redwave.com/en/

http://www.btw-binder.com/en/

(Last accessed 30 January 2024)
	Sortera Alloys

49 S 500 E

Markle, IN 46770, USA

Phone: +1 260-330-7100

Website: https://www.sorteratechnologies.com

(Last accessed 30 January 2024)



	TOMRA Systems ASA

Drengsrudhagen 2

Asker 1385

Norway

Phone: +47-66-79-91-00

https://www.tomra.com/en

(Last accessed 30 January 2024)
	Waste Robotics

3055, rue Tebbutt

Trois-Rivières, QC G9A 5E1

Canada

Phone: +1-819-201-2525

Website: https://wasterobotic.com

(Last accessed 30 January 2024)



	ZenRobotics

Perintötie 8 C 1

01510 VANTAA

Finland

Email: info@zenrobotics.com

Phone: +358-50-4363803

Website: https://www.terex.com/zenrobotics/

(Last accessed 30 January 2024)
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Figure 1. Machine learning algorithms used in waste management applications (compiled by the authors from information presented in references [51,52,53,54,55,56,57,58]). 
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Figure 2. Schematic of ML workflow (from [59]; copyright 2022 SAGE Publications, Inc.). 
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Figure 3. Representation of neural networks (from [41]; copyright 2023, Elsevier). 
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Figure 4. Classification accuracy of different ML models in sorting waste (data extracted from various sources [41,62,85,86,87,88,89,90,91,92,93,94,95,96]). 






Figure 4. Classification accuracy of different ML models in sorting waste (data extracted from various sources [41,62,85,86,87,88,89,90,91,92,93,94,95,96]).



[image: Recycling 09 00059 g004]







[image: Recycling 09 00059 g005] 





Figure 5. Combination of optical spectroscopy and machine learning to sort plastic waste (from [35]; copyright: the authors). 
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Figure 6. Schematic of different types of sensors used in robots to sort plastic waste (from [26]; copyright 2022 American Chemical Society). 
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Figure 7. Examples of AI based robots used to sort plastic waste (Extracted from everestlabs (https://www.everestlabs.ai/, accessed on 12 July 2024), Cosmos Magazine (https://cosmosmagazine.com/technology/ai/robot-can-sort-soft-plastics-for-recycling/, accessed on 12 July 2024), and AMP Robotics (https://venturebeat.com/ai/amp-robotics-raises-55-million-for-ai-that-picks-and-sorts-recyclables/, accessed on 12 July 2024)). 
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Figure 8. Quantities of plastic sorter suppliers per county. 
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Figure 9. Variation in the count of plastic sorters between the years 2021 and 2023. 
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Table 1. Performance of different ML models for waste classification and identification.
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Model

	
Model Description

	
Epoch

	
Layers

	
Classification Accuracy (%)

	
Machine Accuracy

	
Materials Sorted

	
Reference






	
CNN

	
CNN

	

	

	
99.74

	

	

	
[41]




	
CNN

	
ResNet-50

	
24

	
50

	
98.81

	
89.77

	
PET plastic, plastic bottles, metal, glass

	
[85]




	
CNN

	
20

	
15

	
87

	

	

	
[86]




	
Mask-RCNN

	

	

	
89.6

	
55.6

	
Opaque and clear plastic bottle, opaque plastic

container, cardboard box, drink can

	
[87]




	
Mask R-CNN

	

	

	
71.9

	
66

	
Construction waste, i.e., cotton gloves, wood, ferrous items, plastic pipe, bamboo, paper, steel bar

	
[88]




	
Faster R-CNN

	

	

	
91

	

	
Cardboard, plastic, glass, paper, metal, and trash

	
[89]




	
Pre-trained Mobile Net

	

	

	
90

	

	
Garbage (tested only on bottles)

	
[90]




	
CNN

	

	

	
95.3

	

	
Glass, paper, cardboard, plastic, metal, and trash

	
[91]




	
CNN

	

	

	
83

	

	
Plastic, paper and metal

	
[62]




	
CNN

	

	

	
76

	

	
Plastic, paper, cardboard, metals

	
[48]




	
Fast R-CNN

	

	

	
88

	

	

	




	
SVM

	
SVM

	

	

	
94.8

	

	
Plastic, paper and metal

	




	
SVM

	

	

	
78.3

	

	
Paper, plastic, metal, and glass

	
[92]




	
SVM

	

	

	
96.5

	

	
Metal, paper, glass, PET

	
[93]




	
SVM

	

	

	
95.5

	

	
PET, HDPE, LDPE, PVC, PP, and PS

	
[94]




	
KNN

	
KNN

	

	

	
98.8

	

	
PET, HDPE, LDPE, PVC, PP, and PS

	
[94]




	
Logistic regression

	
Logistic regression

	

	

	
92.9

	

	
PET, HDPE, LDPE, PVC, PP, and PS

	
[94]




	
Random Forest

	
Random Forest

	

	

	
97.3

	

	
PET, HDPE, LDPE, PVC, PP, and PS

	
[94]




	
Naive Bayes

	
Naive Bayes

	

	

	
90.2

	

	
PET, HDPE, LDPE, PVC, PP, and PS

	
[94]




	
YOLO

	
YOLOv3

	

	

	
94.99

	

	

	
[95]




	
YOLOX

	

	

	
94.5

	

	

	
[96]




	
YOLOv4

	

	

	
95.16

	

	

	











 





Table 2. Inventory of commercially available sorters for whole (i.e., bottle) plastic. NI: no information reported.
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Manufacturer/Brand

	
Equipment Name

	
Sorting Method

	
Primary Application

	
Plastic Identified

	
Sorts Non-Bottle Rigids in Addition to Bottles

	
Non-Plastics Sorted

	
Colors Sorted/Black Plastic Sorted

	
Throughput (Average)

	
Accuracy

	
Features






	
Anhui Zhongke Optic-electronic Color Sorter Machinery Co., Ltd.

	
AMD G-LPI (Uses deep learning)

	
NIR, deep learning, and visible light technology

	
Can sort labeled bottles, off-label bottles, plastic bottles with labels, mixed plastic bottles in bale form, loose plastic bottles, plastic food packaging

	

	

	

	

	

	

	




	
Binder + Co.

	
CLARITY belt sorting systems

	
VIS, NIR, induction and XRT, 3D Scanner

	
PET, PE, PP, PVC

	
PET, PE, PP, PVC

	
Yes

	
Paper, metals, municipal solid waste, wood, and cardboard

	
Yes/NI

	
Up to 30 ton/h for 1000 mm sorting width system and 60 ton/h for 2000 mm sorting width system

	
Accuracy up to 99.9+%

	
Metal detection




	
Green Machine LLC

	
Green Eye Hyperspectral Optical

Sorters (Uses AI Tech)

	
Patented hyperspectral

vision systems and AI driven neural net

software

	
Sorts all plastics

	
1–7 grades of plastic including difficult-to-sort black plastics, barrier bottles, #5’s, PVCs, vinyls, thermal forms; sorts most plastic grades, black plastics, rubber grades, HDPE, LDPE ABS plastics, and more

	
Yes

	
Fiber, C&D, E-waste, Textiles, carpeting

	
Yes/Yes

	
Up to 12 ton/h (depends on the belt width)

	
95% or more

	
Can be trained to identify and pick out almost any type of polymer by shape and chemical composition




	
Hefei Golden Sorter Co., Ltd.

	
Plastic Bottle Optical Sorter Gép-T LP (Uses deep learning)

	
NIR, VIS, deep learning technology

	
Bottle sorting equipment

	
non-PET bottle materials, such as PP/PE/PC/PS/ABS/PVC/PA, and other non-PET bottles

	
Yes

	
Non-plastic bottles

	
Yes/Yes

	
Up to 4 ton/h

	

	




	
Hefei Mayson Machinery Co., Ltd.

	
MAS-B series bottle separator (Uses deep learning)

	
Fusion modeling technology, deep learning algorithm, vision system, image processing system, and intelligent self-learning system

	
Sorts different types of plastic bottles

	
Non-PET bottle materials, such as PP/PE/PC/PS/ABS/PVC/PA and other non-PET bottle sorting

	
Yes

	
Non-plastic bottles

	
No/No

	
From 1.5–2.0 ton/h to 4–7 ton/h

	
Up to 99%

	
Deep learning system helps in improving the sorting quality/efficiency




	
MEYER Europe s.r.o.

	
KL Sorter (Uses AI Tech)

	
AI cameras working in the electromagnetic spectrum: full RGB visible light, infrared standard, infrared HD, InGaAs, and UV light

	
Identify different color PET bottles

	
Detect and remove non-PET bottles, such as PVC/PS/PC/PA/PP/PE/ABS

	
Yes

	
Glass, non-ferrous metal, and ore sorting

	
Yes/Yes

	
Up to 7 ton/h

	

	




	
MSW Sorting

	
Optical Sorter (Uses AI Tech)

	
VIS, NIR, High resolution camera, and AI

	
Plastic, paper, glass, and other recyclable materials

	
PET bottles, HDPE bottles, and plastic bottles

	
Yes

	
Cans, glass, and cardboards

	
Yes/NI

	
Maximum belt speed can reach 6.5 m/s

	
Over 95%

	




	
NRT Optical Sorting

	
ColorPlus with Max-AI (Uses AI Tech)

	
RGB line-scan sensor combined with Max-AI

	
All plastics

	
Capture form-specific PET (ex. Bottle only, blue/green bottle only.). Capture food-grade-only PET and/or HDPE. Identify black plastics, thermoform trays

	
Yes

	
Cardboard, metal cans, and fiber

	
Yes/Yes

	

	

	




	
SpydIR-R with Max-AI (Uses AI Tech)

	
NIR and Multi-layered vision system and neural networks

	
Plastics, paper, metals

	
Capture form-specific PET (ex. Bottle only, blue/green bottle only.). Capture food-grade-only PET and/or HDPE, and identify black plastics, thermoform trays

	
Yes

	
Paper, metal cans, wood, cardboard, fiber

	
Yes/Yes

	

	

	
PET Boost technology for detection of thin-wall PET, wet PET, and full-sleeve PET




	
Pellenc ST

	
Compact+

	
AI CNS platform

	

	
PET, PE, PP, paper, wood, domestic waste, organic, RDF

	

	

	
Yes/Yes

	

	

	
Compact+




	
Xpert

	
X-ray

along with machine learning

	
Chlorine or brominated plastic removal

	
Chlorine or brominated plastic removal

	
NI

	
WEE, glass, aluminum

	
NI/NI

	
Top Speed ready < 4.5 ms

	

	




	
PicVisa

	
Ecopack—Model EP Optical Plastic Sorting Machine

	
NIR, VIS, deep learning

	
PET/PE recycling, Plastic film

(PEBD, PP, HDPE/LDPE, etc.)

	
PET, HDPE, PP, PS, PVC, EPS, ABS)

HDPE, PET, Mixed LDPE, Sorting film (HDPE/LDPE)

	
Yes, sorting of films (PE) from bottles of the same material

	
Paper,

and cardboards, wood recycling, metal recycling, textile, RDF, construction and demolition waste

	
Yes/NI

	

	

	
Allows separating the always-present silicone cartridges in

HDPE flows. Can add AI technology




	
TOMRA systems ASA

	
Autosort Sharp Eye

	
NIR, Sharp Eye technology (Add-on sensors: VIS, Deep Laiser, metal detector, and AI based Cameras)

	
Sorts all resins

	
Plastisc, paper

	

	
Wood, RDF, mixed paper, cardboard, metals, and organic waste

	
Yes/Yes

	

	

	
Can add AI deep learning to improve sorting accuracy and can sort glass and black polymers by adding the DEEP LAISER sensor. Remote access
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Manufacturer/Brand

	
Equipment Name

	
Sorting Method

	
Primary Application

	
Plastic Identified

	
Sorts Non-Bottle Rigids in Addition to Bottles

	
Non-Plastics Sorted

	
Colors Sorted/Black Plastic Sorted

	
Throughput (Average)

	
Accuracy

	
Features






	
Anhui Zhongke Optic-electronic Color Sorter Machinery Co., Ltd.

	
AMD G-LPI (Uses deep learning)

	
NIR, deep learning, and visible light technology

	
Can sort labeled bottles, off-label bottles, plastic bottles with labels, mixed plastic bottles in bale form, loose plastic bottles, plastic food packaging

	

	

	

	

	
1.5–2.0 ton/h for G-LPI2.

3.0–4.0 ton/h for G-LPI4 model

	

	




	
Binder + Co.

	
CLARITY belt sorting systems

	
VIS, NIR, induction, and XRT, 3D Scanner

	
PET, PE, PP, PVC

	
PET, PE, PP, PVC

	
Yes

	
Paper, metals, municipal solid waste, wood, and cardboard

	
Yes/NI

	
Up to 30 ton/h for 1000 mm sorting width system and 60 ton/h for 2000 mm sorting width system

	
Accuracy up to 99.9+%

	
Metal detection




	
Green Machine LLC

	
Green Eye Hyperspectral Optical

Sorters (Uses AI Tech)

	
Patented hyperspectral

vision systems and AI-driven neural net

software

	
Sorts all plastics

	
1–7 grades of plastic including difficult-to-sort black plastics, barrier bottles, #5’s, PVCs, vinyls, thermal forms; sorts most plastic grades, black plastics, rubber grades, HDPE, LDPE ABS plastics, and more

	
Yes

	
Fiber, C&D, E-waste, textiles, carpeting

	
Yes/Yes

	
Up to 12 ton/h (depends on the belt width)

	
95% or more

	
Can be trained to identify and pick out almost any type of polymer by shape and chemical composition




	
Hefei Golden Sorter Co.Ltd

	
Plastic Bottle Optical Sorter Gép-T LP (Uses deep learning)

	
NIR, VIS, deep learning technology

	
Bottle sorting equipment

	
non-PET bottle materials, such as PP/PE/PC/PS/ABS/PVC/PA, and other non-PET bottles

	
Yes

	
Non-plastic bottles

	
Yes/Yes

	
Up to 4 ton/h

	

	




	
Hefei Mayson Machinery Co., Ltd.

	
MAS-B series bottle separator (Uses deep learning)

	
Fusion modeling technology, deep learning algorithm, vision system, image processing system, and intelligent self-learning system

	
Sorts different types of plastic bottles

	
Non-PET bottle materials, such as PP/PE/PC/PS/ABS/PVC/PA and other non-PET bottle sorting

	
Yes

	
Non-plastic bottles

	
No/No

	
From 1.5–2.0 ton/h to 4–7 ton/h

	
Up to 99%

	
Deep learning system helps in improving the sorting quality/efficiency




	
MEYER Europe s.r.o.

	
KL Sorter (Uses AI Tech)

	
AI cameras working in the electromagnetic spectrum Full RGB visible light, Infrared Standard, Infrared, HD, InGaAs, and UV light

	
Identify different color PET bottles

	
Detect and remove non-PET bottles, such as PVC/PS/PC/PA/PP/PE/ABS

	
Yes

	
Glass, non-ferrous metal, and ore sorting

	
Yes/Yes

	
Up to 7 ton/h

	

	




	
MSW Sorting

	
Optical Sorter (Uses AI Tech)

	
VIS, NIR, High resolution camera, and AI

	
Plastic, paper, glass, and other recyclable materials

	
PET bottles, HDPE bottles, and plastic bottles

	
Yes

	
Cans, glass, and cardboards

	
Yes/NI

	
Maximum belt speed can reach 6.5 m/s

	
Over 95%

	




	
NRT Optical Sorting

	
ColorPlus with Max-AI (Uses AI Tech)

	
RGB line-scan sensor combined with Max-AI

	
All plastics

	
Capture form-specific PET (ex. Bottle only, blue/green bottle only). Capture food-grade-only PET and/or HDPE. Identify black plastics, thermoform trays

	
Yes

	
Cardboard, metal cans, and fiber

	
Yes/Yes

	

	

	




	
SpydIR-R with Max-AI (Uses AI Tech)

	
NIR and Multi-layered vision system and neural networks

	
Plastics, paper, metals

	
Capture form-specific PET (ex. Bottle only, blue/green bottle only). Capture food-grade-only PET and/or HDPE, and identify black plastics, thermoform trays

	
Yes

	
Paper, metal cans, wood, cardboard, fiber

	
Yes/Yes

	

	

	
PET Boost technology for detection of thin-wall PET, wet PET, and full-sleeve PET




	
Pellenc ST

	
Compact+

	
AI CNS platform

	

	
PET, PE, PP, paper, wood, domestic waste, organic, RDF

	

	

	
Yes/Yes

	

	

	
Compact+




	
Xpert

	
X-ray

along with machine learning

	
Chlorine or brominated plastic removal

	
Chlorine or brominated plastic removal

	
NI

	
WEE, glass, aluminum

	
NI/NI

	
Top Speed ready < 4.5 ms

	

	




	
PicVisa

	
Ecopack—Model EP Optical Plastic Sorting Machine

	
NIR, VIS, deep learning

	
PET/PE recycling, Plastic film

(PEBD, PP, HDPE/LDPE, etc.)

	
PET, HDPE, PP, PS, PVC, EPS, ABS)

HDPE, PET, Mixed LDPE, Sorting film (HDPE/LDPE)

	
Yes, sorting of films (PE) from bottles of the same material

	
Paper and cardboards, wood recycling, metal recycling, textile, RDF, construction and demolition waste

	
Yes/NI

	

	

	
Allows separating the always-present silicone cartridges in

HDPE flows. Can add AI technology




	
TOMRA systems ASA

	
Autosort Sharp Eye

	
NIR, Sharp Eye technology (Add-on sensors: VIS, Deep Laiser, metal detector, and AI based Cameras)

	
Sorst all resins

	
Plastisc, paper

	

	
Wood, RDF, mixed paper, cardboard, metals, and organic waste

	
Yes/Yes

	

	

	
Can add AI deep learning to improve sorting accuracy and can sort glass and black polymers by adding the DEEP LAISER sensor. Remote access
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Manufacturer/Brand

	
Equipment Name

	
Sorting Method

	
Primary Application

	
Plastic Identified

	
Sorts Non-Bottle Rigids in Addition to Bottles

	
Non-Plastics Sorted

	
Colors Sorted/Black Plastic Sorted

	
Throughput (Average)

	
Accuracy

	
Features






	
Binder + Co.

	
Clarity Plastic

	
NIR, Reflection VIS, Inductive metal detection

	
Lightweight packaging, film sorting, plastic flakes, plastic granules, and hallow plastic sorting

	

	

	

	
Yes/NI

	
0.5 ton/h for 700 mm sorting width, 0.7 ton/h for 100 mm, and 1 ton/h for 1400 mm

	

	
Metal detection




	
Clarity Multiway for Light Packaging

	
NIR, VIS

	

	
PET, PE, PP, PVC

	

	
Paper and cardboard

	

	
Up to 2.1 ton/h for 1000 mmm sorting width and up to 3 ton/h 2000 mmm sorting width

	

	




	
CLARITY belt sorting

	
VIS, NIR, induction and X-ray

	
Plastics, packaging waste, municipal solid waste, refuse-derived fuels, metals, and wood

	
PET, PE, PP, PVC

	

	
Municipal solid waste, refuse-derived fuels, metals, and wood

	

	
Up to 30 ton/h for 1000 mm sorting width system and 60 ton/h for 2000 mm sorting width system

	
Accuracy up to 99.9+%

	




	
CP Group (MMS) Sorting Equipment

	
FilmMax

	
NIR, color, and metal sensors

	
Sorts bags, pouches, bags, foil, and other ultra-light products

	
LDPE/LLDPE, natural/white films, PET, PVC, PS, colored film

	
No

	
foil, and other ultra-light products.

	
Yes/Yes

	
0.5–3.0 ton/h

	
Up to 98%

	
Metal detector upgrade available




	
CIRRUS FiberMAX

	
NIR and color sensors

	
Flexible plastics packaging (FPP) such as film, bags, pouches

	

	

	
All metal detector

	

	
Belt speeds of 1000 ft/min (5 m/s). Capacity 2.0–12.0 ton/h

	
Up to 98%

	




	
RTT Steinert GmbH

	
Unisort Film EVO 5.0

	
NIR, VIS, hyperspectral imaging technology

	
Agricultural film, bio-based film, biodegradable film, conventional PVC film and papers

	
Identifies and sorts plastics and materials

by type. Plastic film, bags, and paper

	

	
Beverage cartons,

paper, cardboard, paperboard, and textiles

	
Yes/NI

	

	

	




	
Pellenc ST

	
Mistral + Films

	
NIR

	
Used to separate films from other plastics

	
PE film, PP, PVC, metals, fibrous, PS, HDPE

	

	
Papers, cardboards, and metals

	
Yes/No

	
Up to 2.5 ton/h

	
Up to 91%

	




	
Mistral + Connect

	
NIR/VIS spectrum

	
provides better detection and sorting of PET bottles versus PET trays or thermoforms, paper versus cardboard in sorting centres

	
PET, PE, PP, paper, films

	

	
Wood, domestic waste, organic, RDF

	
NI/Yes

	

	

	




	
Compact+

	
AI CNS platform

	

	
PET, PE, PP, paper, wood, domestic waste, organic, RDF

	

	

	
Yes/Yes

	

	

	




	
PicVisa

	
Ecopack—Model EP Optical Plastic Sorting Machine

	
NIR, VIS, deep learning

	
PET/PE recycling, plastic film

(PEBD, PP, HDPE/LDPE…)

	
PET, HDPE, PP, PS, PVC, EPS, ABS)

LDPE, film (HDPE/LDPE)

	
Yes, sorting of films (PE) from bottles of the same material

	
Paper and cardboard, wood recycling, metal recycling

	
Yes/NI

	

	

	
Allows separating the always-present silicone cartridges in

HDPE flows




	
ECOPICK (Uses Robotic, AI, and deep learning)

	
RGB and/or NIR sensors, 3D, AI based robot, deep learning, and machine vision

	
PET bottles, HDPE bottles, trays, and film

	
All types

	

	
Cans, Tetra Pak, paper, cardboard, glass, textile, aluminium

	

	
1 pick/s

	
>95%

	




	
RTT Steinert GmbH

	
Unisort Film

	
NIR, VIS

	
Agricultural film, bio-based film, biodegradable film, conventional PVC film, and papers

	
Plastic film

	

	
bags and paper

	

	

	

	




	
TOMRA systems ASA

	
Autosort Speedair

	
NIR, SHARP EYE™ technology, and can add-on DEEP LAISER

	
Plastic films and lightweight packaging

	
Film (LDPE, HDPE), papers, and packaging

	

	

	
NI/Yes (with DEEP LAISER)

	

	

	
Available as solutions bundle or as an add-on device to an existing AUTOSORT machine setup.




	
Bollegraaf Group

	
Opti-Sort

	
Optical sorting and mechanical sorting by pressure

	
Processing lightweight materials such as flexible plastic packaging or single sheets of paper

	

	

	

	

	
Speed levels to up to 6.5 m/s

	

	




	
NRT Optical Sorting

	
SpydIR®-R

	
NIR, In-Flight Sorting

	
Film, fiber, PET, HDPE, or mixed plastics

	
PET container stream with high accuracy including PVC, PS, PETG, PLA, and PC, PE, PP, and other polymer contaminants in any combination

	
Yes

	
Cardboard, paper, metals, and other fiber

	

	
throughput rates exceeding 8 ton/h

	

	




	
SDi semi-mobile wind shifters

	
Mechanical sorting based on weight

	
Plastic, HDPE, film

	
Plastic, HDPE, film

	

	
Wood, cardboard, paper, rubber

	

	
Capacities up to 15 t/h

	

	
Semi-mobile
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Manufacturer/Brand

	
Equipment Name

	
Sorting Method

	
Primary Application

	
Plastic Identified

	
Sorts Non-Bottle Rigids in Addition to Bottles

	
Non-Plastics Sorted

	
Colors Sorted/Black Plastic Sorted

	
Throughput (Average)

	
Accuracy

	
Features






	
Best

	
NIREX

	
NIR, and vision technology

	
Sorts e-scrap

	

	
Yes

	

	
Yes/Yes

	

	
Depends on product type

	




	
Binder + Co

	
Clarity Plastic

	
NIR, reflection VIS, inductive metal detection

	
Light- weight packaging, film sorting, plastic flakes, plastic granules, and hollow plastic sorting

	

	

	

	
Yes/NI

	
0.5 ton/h for 700 mm sorting width,

0.7 ton/h for 100 mm, and 1 ton/h for

1400 mm

	

	
Metal detection




	
Buhler

	
Sortex Z + Series

	
Vision-based and high-resolution IR sensors

	
Sorts PET, PVC flakes, and nylon

	

	

	

	
Yes/Yes

	
0.675 to 1.16 ton/h depending on model

	
99.9% or higher

	




	
Sortex N PolyVision

	

	
Sorts PET flakes

	
PET, PVC, PP. PE, PS, PA, POM, PMMA, SAN

	

	

	
Yes/NI

	
Up to 6 t/h

	

	
Integrated chute feeding system




	
Sortex B MultyVision

	

	
Commodities, but sorts plastics as well

	
plastic

	

	
Pulse, nut, and coffee

	
No/No

	
up to 8 t/h

	

	
Remote acess for real-time monitoring




	
Sortex A GlowVision

	

	
Plastic sorting

	

	

	

	

	

	

	




	
Sortex A

	

	
Plastics, commodities

	
Plastics

	

	
Nuts, seeds, grains, coffee, pulses

	
NI/Yes

	

	

	
Remote acess for real-time monitoring




	
BT-Wolfgang Binder GmbH (Redwave)

	
Redwave QXR

	
XRF

	
Used for PET and WEEE stream purification

	
Removes PVC and BFR-containing plastics

	

	

	
No/No

	
2.5 to 8.0 ton/h

	
80%

	




	
Redwave XRF-P

	
X-ray Fluorescent

	
Segregation of dark PVC and brominated plastics from an infeed of shredded plastics.

	
BFR and chloride-containing plastics

	

	

	
No/No

	

	
Up to 99%, depending on input material

	




	
Redwave CX

	
NIR, metal sensor

	

	

	
Yes

	
Glass, metals

	
Yes/Yes

	

	

	




	
CP Group (MMS) Sorting Equipment

	
FlakeMax

	
NIR

	
Best suited for PET and PE/PP

	

	
Non-metals

	

	

	
3–16 ton/h

	
Up to 98%

	




	
eMax

	
NIR, color, and metal always included

	
Designed for e-scrap recyclers

	
Sorting of opaque, transparent, and black commodities such as ferrous, non-ferrous, and stainless steel, wires, PCB, as well as durable plastics such as ABS, HIPS, PC, and PMMA

	

	

	

	
0.5–3.0 ton/h

	
Up to 98%

	




	
Eagle Vizion

	
Black Sorter

	

	
Sorts PE and PP Flakes

	
PE, PP, and others

	

	

	

	
Up to 0.55 ton/h

	

	
2–12 mm




	
CP Group (MMS) Sorting Equipment

	
L-VIS

	
VIS high-resolution color camera

	
Color sorting, flakes and pellets.

Sorts PET PE, and PP flakes and pellets

	
Yes, electric scrap

	

	

	
Yes/Yes

	

	
98%

	
Statistics and quality control report, metal detector, remote modern or ethernet access




	
E-sort

	
NIR

	
Separate different types of plastics (all resin) by composition and color

	
Useful for flake sorting, shredded plastics (i.e., WEEE)

	

	

	
Yes/Yes

	
Up to 3 ton/h

	
92–98%

	




	
MEYER Europe s.r.o.

	
CL-L-Sorter (Uses AI Tech)

	
AI cameras working in the electromagnetic spectrum: full RGB visible light, infrared standard, infrared HD, InGaAs, and UV light

	
Detect and remove non-PET materials flakes

	
PVC/PS/PC/ PA/PP/PE/ABS

	

	
Rubber/aluminum

	
Yes/Yes

	
up to 6 ton/h

	

	




	
Mogensen GmbH/Allgaier Process Technology GmbH

	
Msort

	
IR and X-ray

	
Sorts all resins of size from 0.5 mm up to 250 mm

	
Sorts all resins (mostly used to sort PET flakes)

	

	
Yes

	
Yes/Yes

	
Up to 4.4 tons/h. Detection of up to 25,000 particles/s

	
Up to 99.9%

	




	
MikroSort AF

	
CCD Linear Camera

	
Sorts PET flakes by color

	

	

	

	
Yes/Yes

	
1–3 ton/h

	

	




	
NRT Optical Sorting

	
Flakesort

	
NIR

	
Mainly used to remove contaminants from PET streams

	

	

	

	

	
Up to 2.5 ton/h

	
Removal efficiency of flakes up down to 0.1 inch

	




	
Pellenc ST

	
Mistral + Metal Sensor

	
NIR

	
Applicable for all resins

	
Mostly used in shredded e-scrap sorting

	

	
Paper, cardboard, and metals/No

	
No/Yes

	
Up to 6.5 tons/h

	

	




	
Rhewum GmbH

	
Datasort

	
CCD camera system, LED

	
Sorts all resins

	

	

	

	
Yes/Yes

	
4.4 to 8.3 ton/h

	
Up to 97% accuracy

	




	
RHEWUM DataSort S

	

	
Mostly used for ore sorting, but can be used to sort plastic flakes as well

	

	

	

	

	

	
Up to 98%

	




	
Satake

	
Scanmaster IE

	
High-resolution CCD Camera

	
Separates plastics by color

	
PET, PVC

	

	

	
Yes/NI

	
1–3 ton/h

	

	
Remote monitoring




	
MikroSort AF

	
CCD Linear Cameras

	
Sorts PET flake by color

	

	

	

	
Yes/Yes

	
0.25–5 ton/h

	

	
Remote monitoring




	
Satake RNEZX

	
NIR, full-color RGB camera.

	
Sorts PET flakes by color

	

	

	
Yes

	
Yes/Yes

	

	

	




	
Beltuza sorter

	
NIR, full-color RGB

	
Sorts plastic flakes by color

	

	

	
Yes

	
Yes/Yes

	
Up to 12.5 ton/h

	

	




	
FMSR-IR Sorter

	
Full-color RGB, infraRed

	
Sorts plastic flakes by color

	

	

	
Beans, seeds, corns, nuts

	
Yes/Yes

	

	

	




	
ScanMaster XE

	
Proprietary inGas/Color camera technology

	
Removes clear PVC from PET, and other non-contaminants

	
Sorts all resin

	

	
Yes

	
No/No

	
Up to 3 ton/h

	

	
Remote monitoring




	
RGB Full Color Belt Sorter

	
NIR, full-color Cameras (RGB)

	
Separates plastics by color

	
PET, twisted PVC

	

	

	
Yes/Yes

	
9 to 19 t/h

	
Up to 99%

	




	
Pellet Scan

	
High-resolution CCD Cameras

	
Separates plastics by color

	
No

	

	

	

	

	
Up to 99%

	
Data Scan




	
Sesotec GmbH

(S + S Separation and Sorting Technology GmbH)

	
Flake Purifier N

	
NIR

	
Purifies resin streams, also sorts e-plastic

	
PET, HDPE, PLA, PVC, and more

	

	

	
No/No

	
Up to 10 ton/h depending on how the unit is scaled

	
90% to 99.8% depending on input

	




	
Flake Purifier C

	
CCD linear camera

	
Color sorting

	
No

	

	

	
Yes/Yes

	
Up to 10 ton/h depending on how the unit is scaled

	
90% to 99.8% depending on input

	
Dual ejection




	
Varisort X

	
X-ray

	
Identifies BFR-containing plastics

	
Identifies BFR containing plastics

	

	

	
No/No

	
Up to 2.5 ton/h depending on how the unit is scaled

	

	
Dual ejection




	
TOMRA Systems ASA

	
Ixus

	
X-ray

	
Useful for sorting shredded e-scrap

	
Useful for sorting BFR- and chloride-containing plastics (i.e., PVC)

	

	

	
No/No

	
1 ton/h

	
Depends on product type

	




	
Innosort Flake

	
NIR, Visible spectra

Sensors

	
Used for purifying PET flakes, purifying

transparent and opaque flakes, sorting of mixed color flakes

	
PVC, PE, PET, PP, PS, and others, including Tetra Pak and film

	

	

	
Yes/NI

	

	

	




	
Autosort Flake

	
Flying beam, full-color camera

	
Sorts plastic flakes

	
PET, PO, PVC flakes

	

	
Yes, metal removal

	
Yes/NI

	
6 ton/h

	

	
Advanced statistics for real-time quality control




	
Unisensor Sensorsysteme GmbH

	
PowerSort 200

	
Ultra-high-speed laser spectroscopy

	
Useful for bottle-to-bottle recycling

	
Sorts all resins

	

	

	
Yes/Yes

	
Up to 3 ton/h

	
98% or higher

	




	
Visys

	
Spyder

	
Laser

	
Separation based on color, structure, shape, and size differences

	
No

	

	

	
Yes/Yes

	
1–3 ton/h

	
Up to 99% depending on input

	




	
Python

	
Laser and cameras

	
Separation based on color, structure, shape, and size differences

	

	

	

	

	

	

	




	
Tyrex

	
X-ray

	
Separation based on density of materials (i.e., plastic, WEEE, ASR)

	
Useful for sorting BFR and chloride-containing plastics (i.e., PVC)

	

	

	
No/No

	

	
Up to 99% depending on input

	




	
Wesort

	
6SXZ-680

	
AI deep learning

	

	
ABS, PC, PE, PET, PP, PPS, PPU, PVC, bottle plastic, resin, masterbatch, nylon, acrylic

	

	

	
Yes/Yes

	
1.5–2.5 tonne/h

	
≥99%

	




	
6SXZ-340

	
AI deep learning

	

	
ABS, PC, PE, PET, PP, PPS, PPU, PVC, bottle plastic, resin, masterbatch, nylon, acrylic

	

	

	
Yes/Yes

	
0.75–1.15 tonne/h

	
≥99%

	




	
6SXZ-272

	
AI deep learning

	

	
ABS, PC, PE, PET, PP, PPS, PPU, PVC, bottle plastic, resin, masterbatch, nylon, acrylic

	

	

	
Yes/Yes

	
0.6–1 tonne/h

	
≥99%

	
Multidimentional sorting




	
6SXZ-204

	
AI deep learning

	

	
ABS, PC, PE, PET, PP, PPS, PPU, PVC, bottle plastic, resin, masterbatch, nylon, acrylic

	

	

	
Yes/Yes

	
0.45–0.75 tonne/h

	
≥99%

	
Dual camera




	
6SXZ-272L

	
AI deep learning

	

	
ABS, PC, PE, PET, PP, PPS, PPU, PVC, bottle plastic, resin, masterbatch, nylon, acrylic

	

	

	
Yes/Yes

	
0.6–1 tonne/h

	
≥99%

	
Shape selection




	
6SXZ-136L

	
AI deep learning

	

	
ABS, PC, PE, PET, PP, PPS, PPU, PVC, bottle plastic, resin, masterbatch, nylon, acrylic

	

	

	
Yes/Yes

	
0.3–0.5 tonne/h

	
≥99%

	




	
6SXZ-68L

	
AI deep learning

	

	
Same as ebove

	

	

	
Yes/Yes

	
0.15–0.25 tonne/h

	
≥99%

	




	
6SXZ-68

	
AI deep learning

	

	
Same as ebove

	

	

	
Yes/Yes

	
0.15–0.25 tonne/h

	
≥99%

	




	
6SXZ-90

	
AI deep learning

	

	
Same as ebove

	

	

	
Yes/Yes

	
0.2–0.4 tonne/h

	
≥99%

	




	
6SXZ-136

	
AI deep learning

	

	
Same as ebove

	

	

	
Yes/Yes

	
0.3–0.5 tonne/h

	
≥99%

	




	
6SXZ-136L

	
AI deep learning

	

	
Same as ebove

	

	

	
Yes/Yes

	
0.3–0.5 tonne/h

	
≥99%

	




	
AnySort

	
VDR Series (6 Series)

	

	
PE, PET, PVC, PP

	

	

	

	
Yes/Yes

	

	

	
Sorts based on shape as well




	
PicVisa

	
EcoFlake X600

	
N