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Abstract: This study investigates the potential of utilizing industrial by-products—mill scale (MS)
and aluminum dross (AD)—as sources of Fe2O3 and Al2O3, respectively, for hercynite (FeAl2O4)
production. Through combustion of MS-AD-graphite systems at 1550 ◦C under air atmosphere,
hercynite-based refractory materials were synthesized. Results confirm the viability of this upcycling
approach for hercynite synthesis. During the formation of hercynite, the development of a dendritic
structure can be observed, which subsequently fuses into a grain shape. XRD phase analysis using
the Rietveld method revealed that the major components of the product with a C/O ratio of 1 were
85.11% FeAl2O4, 10.99% Al2O3, and 3.9% C. For the product with a C/O ratio of 2, the composition
was 82.4% FeAl2O4, 13.0% Al2O3, and 4.6% C. The combustion of raw pellets with a C/O ratio of 1 at
1550 ◦C for 1 h in a normal air atmosphere is economically viable for producing hercynite, yielding
85.11 wt%. This approach presents a sustainable and eco-friendly alternative to using commercial
raw materials, potentially eliminating the need for virgin alumina and iron ore. By repurposing waste
materials from the steel and aluminum industries, this study contributes to the circular economy and
aligns with the goal of zero waste.

Keywords: industrial wastes; mill scale; aluminum dross; hercynite; upcycling

1. Introduction

In recent decades, the industrial sector has experienced rapid development and ex-
pansion, resulting in the widespread generation of wastes and by-products worldwide.
Among the heavy industries contributing significantly to this phenomenon are the steel
and aluminum sectors, which produce vast quantities of waste materials and by-products.
Typical waste or by-products from steel industries include electric arc furnace (EAF)-ladle
slag, dust, and mill scale. In the aluminum industry, this waste or these by-products can
consist of primary and secondary aluminum dross, as well as aluminum buff powder.

Mill scale (MS), a by-product generated from the hot rolling of semi-finished steel
products, like slab, bloom, and billet, is of significant interest for numerous applications due
to its composition, containing over 70% metallic iron or more than 90% iron oxides [1–3].
Traditionally, MS has been recycled in the smelting process by blending it with graphite or
coke, serving as a charge material to substitute for iron ore or scrap iron [4,5]. Furthermore,
researchers have investigated the direct reduction of MS using various reducing agents,
including biomass [6–8] and reducing gas [9]. The direct reduction process yields products
such as iron powder and iron-bearing compounds [5,10].

During the aluminum melting process, primary aluminum dross, a by-product, forms
to cover the liquid aluminum surface, absorbing impurities and preventing heat loss.
Following pouring, the resulting dross consists mainly of metal oxides with some metallic
aluminum content. Typically, this dross undergoes re-melting in a rotary kiln to extract
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the metallic aluminum. However, this process generates secondary aluminum dross (AD)
composed of Al2O3 and salts as the major components.

In China, the environmental impact and economic cost of two processes for pro-
ducing alumina, namely from bauxite and AD, were assessed using the life cycle costing
method [11]. Results indicated that the total normalized midpoint value of the dross process
is 32.16% lower than that of the bauxite process. Moreover, the cost of producing 1 ton of
alumina via the dross process is $130.01, accounting for only 49.54% of the cost incurred by
the bauxite process [11]. AD constitutes approximately 40–60 wt% Al2O3, 2–5 wt% Al, and
10–30 wt% aluminum nitride. AD could serve as both a resource and a contaminant [12].
The harmlessness of AD is primarily achieved through the extraction of alumina using
hydrometallurgical methods. Reported approaches for the harmless extraction of alumina
from AD primarily focus on removal of fluoride and aluminum nitride by high-temperature
roasting [13]. The utilization of AD primarily entails its integration into the manufacturing
processes of high-value products, including ceramics, refractory, construction materials,
and calcinated alumina [14]. One of the most interesting aspects for several researchers is
the utilization of AD as a source of Al2O3 for synthesizing hercynite (FeAl2O4).

Hercynite is a mineral with a spinel crystal structure, characterized by its dark-grey
color. It possesses a high melting temperature of 1780 ◦C and registers a high hardness of
8.5 on the Mohs scale, rendering it an exceptional material for thermal stability. Due to its
excellent properties, hercynite finds widespread applications in various fields, including
the manufacturing of cutting tools [15] and the production of refractory materials. Due
to the harmful effects of chrome, hercynite is employed as a substitute for Cr2O3 in the
production of magnesia–chrome bricks. This substitution leads to the creation of a new
product called chrome-free magnesia hercynite bricks (MgO.FeAl2O4), which are utilized
in cement rotary kilns [16].

The solid-state reaction and the electro-fusion method are the two principal processes
for hercynite synthesis, both of which are conducted within a temperature range of 1450 ◦C
to 1800 ◦C [17]. Achieving high-purity hercynite poses a challenge and relies on the forms of
the iron oxides present. To synthesize hercynite, the reaction between FeO and Al2O3 must
occur at temperatures above 1450 ◦C and under a partial pressure of oxygen. However,
it was reported [18] that hercynite can also be synthesized from a mechanochemically
activated mixture of Al and Fe3O4 powder at 1200 ◦C under an argon atmosphere for
30 min. Chen et al. [19] developed a method for hercynite synthesis involving reaction
sintering at temperatures of 1450 ◦C, 1550 ◦C, and 1650 ◦C in the presence of nitrogen
and solid carbon. Their study revealed that single-phase hercynite with no impurities
was obtained only at temperatures of 1550 ◦C and 1650 ◦C. Ma et al. [20] conducted an
experiment involving the sintering of Fe2O3 and Al2O3 with varying amounts of carbon
black present at temperatures exceeding 1500 ◦C under a nitrogen/oxygen atmosphere.
Their findings indicated that lower oxygen partial pressures favored the production of
pure hercynite. Furthermore, several research studies have reported on the synthesis of
hercynite and its properties [21–25]. However, the full utilization of industrial wastes for
hercynite production via combustion methods has not been widely investigated.

In our previous study [26], the conversion of MS–AD into ferroalloy via carbothermic
reduction at 1550 ◦C using graphite as a reductant has been reported. The MS–AD-graphite
pellets were heated at 1550 ◦C for up to six h under an inert argon atmosphere. By
this method, the Fe–Si–Al–C alloy, consisting of Fe3Al and Fe3Si phases, was produced.
These results demonstrate a novel method for upcycling aluminum dross and mill scale,
contributing to a circular economy [26].

In pursuit of advancing the circular economy and achieving the zero-waste objective,
the current study focuses on expanding the technique for upcycling industrial wastes,
such as aluminum dross (AD) and mill scale (MS), to serve as sources of Al2O3 and Fe2O3,
respectively, for hercynite production. The process involves mixing MS and AD with
graphite, followed by combustion in a normal air atmosphere at 1550 ◦C for up to three
hours. The study focuses on investigating the effects of carbon concentrations and heating
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durations on the formation of hercynite. This work is novel in its approach in replacing
virgin Al2O3-Fe2O3 resources entirely with industrial wastes/by-products for the synthesis
of hercynite, achieved through combustion in a standard air atmosphere without the need
for inert gas.

2. Results and Discussion
2.1. High-Temperature Products and Phase Analysis

The pellets, after being heated at 1550 ◦C for a period of up to 3 h, are depicted in
Figure 1. In comparison to the green pellets, the size of the heated pellets was observed to
slightly shrink, with a cracked surface. Furthermore, the heated pellets exhibited increased
strength with higher hardness, and their color had transitioned from light gray to black. A
portion of the heated pellets was embedded in resin, while others were ground into powder
for subsequent analysis. Optical micrographs depicting cross-sectioned pellets with C/O
ratios of 1 and 2 after being heated for 3 h are presented in Figure 2. The images reveal
distinct light gray and dark gray regions, as well as various pore sizes. It is anticipated that
the light gray and dark gray phases correspond to hercynite and unreacted slag oxides,
respectively. It was suggested that the formation mechanism of hercynite involves the
formation of a dendritic shape, and subsequent fusing to form a grain shape. The shape of
hercynite grains is non-equiaxed.
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Figure 1. Pellet samples after heating at 1550 °C for up to 3 h. Figure 1. Pellet samples after heating at 1550 ◦C for up to 3 h.

The XRD technique was employed to identify the phases of the products subsequent
to heating the pellets with C/O ratios of 1 and 2 for a duration of 3 h (see Figures 3 and 4).
Phase identification and quantitative analysis were conducted using the Rietveld refinement
technique with JADE 9.7.0 software and ICDD 2022 database. It was found that the major
components of the product were FeAl2O4, Al2O3 and C. The amounts of FeAl2O4, Al2O3,
and C present in the product with a C/O = 1 were 85.11% 10.99 and 3.9%, respectively while,
for the product with a C/O = 2, they were 82.4%, 13.0% and 4.6%. The peaks corresponding
to hercynite are distinctly identifiable at 2Theta angles of 31.0◦, 36.53◦, 44.42◦, 48.65◦, 55.15◦,
58.81◦, 64.63◦, 73.40◦, and 76.58◦, with interplanar spacings ranging from 1.2431 to 2.8821 Å.
This XRD pattern is consistent with the results reported previously [21,25]. This provides
evidence suggesting the formation of hercynite within the experimental systems at 1550 ◦C.
Small amounts of carbon, MgO, SiO2 and CaO may still be present in the heated pellets as
impurities. However, due to the low intensity of the impurities, their peaks could not be
detected by the XRD technique and thus were not considered in the quantitative analysis.
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After undergoing heating at 1550 ◦C for 1, 2, and 3 h in standard atmospheric con-
ditions, pellets with C/O molar ratios of 1 and 2 were pulverized into powder for XRF
analysis. Table 1 presents the chemical compositions of these heat-treated pellets. Analysis
revealed that the predominant constituents of the resulting products were Fe2O3 and Al2O3,
indicating that the major phase of the product was the hercynite spinel phase (FeO-Al2O3).
Additionally, traces of other ash oxides, including MgO, SiO2, and CaO, were identified,
all of which are impurities from the raw materials employed in this study. The remaining
percentage comprised of 2.25–2.38 wt% of MgO, 1.22–1.65 wt% of CaO, 10.25–11.35 wt%
of SiO2 and 2.88–3.72 wt% of other ash oxides. Small amounts of Fe2O3 and Al2O3 could
be present in the ash oxides phase, not just in the hercynite phase. Permado-Gonzalez
et al. [25] reported the synthesis of hercynite from mill scale and aluminum chips using the
aluminothermic process. By XRD Rietveld refinement, the major products obtained were
60.9% FeAl2O4 and 21.7% Al2O3. Additionally, the FeAl2O4 component was composed of
56.1 wt% Al2O3 and 43.9 wt% Fe2O3 [25]. For the present study, the major products were
85.11% FeAl2O4 and 10.99% Al2O3 for pellets with a C/O ratio of 1, and 82.4% FeAl2O4
and 13.0% Al2O3 for pellets with a C/O ratio of 2.

Table 1. XRF analysis of the pellets after heating at 1550 ◦C for up to 3 h.

C/O
Ratios

Times
(h)

Oxides (wt%)

Fe2O3 Al2O3 MgO SiO2 CaO Other

1 1 55.64 26.43 2.38 10.49 1.34 3.72
1 2 55.15 26.68 2.38 10.95 1.34 3.62
1 3 56.13 26.90 2.62 10.25 1.22 2.88
2 1 54.77 26.74 2.25 11.35 1.65 3.24
2 2 55.61 25.91 2.35 11.27 1.65 3.21
2 3 55.14 26.64 2.53 11.02 1.61 3.06
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2.2. Effect of Time on the Formation of Hercynite

The microstructure of the heated pellets was further investigated as a function of
heating times and carbon, and the findings are presented in Figure 5. The distinct light gray
and dark gray regions, along with various pore sizes, were also observed. The light gray
region represents the hercynite phase, while the dark gray region represents the slag phase.
The formation of the hercynite phase was detected as early as 1 h into the heating process,
characterized by numerous small grain sizes. Based on visual observation, it was observed
that the grain size of hercynite increased as the heating time extended from 1 to 3 h. It
is expected that a longer heating period will provide more time for the formation of the
reaction product.
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Figures 6 and 7 present the SEM images (×1500) and EDS analysis of the pellets
with C/O ratios of 1 and 2, respectively, at varying heating times. The figures confirm
that the light gray region (Spectrum 2 and 3) consists of Fe-Al-O atoms, corresponding
to the hercynite phase (FeAl2O4). A small extent of MgO can be detected as an impurity
from the raw materials. The dark gray region (Spectrum 1) indicates unreacted slag oxides,
comprising Fe2O3, Al2O3, MgO, SiO2, and CaO. These findings support the results obtained
from XRD and XRF analyses. The formation of the hercynite phase is influenced by the
heating time, as it enables the formation of grains and subsequent grain growth. Based on
visual observation, the grain size of the hercynite phase was seen to increase with longer
heating times.
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Figure 7. SEM images (×1500) and EDS analysis of the cross-sectioned pellets of C/O = 2 after
heating at 1550 ◦C.

2.3. Effect of Carbon on the Formation of Hercynite

The different C/O molar ratios were also found to influence the development of the
microstructures of the products. In systems with lower carbon content (C/O = 1), the size
of hercynite grains was observed to be smaller in pellets with a lower carbon concentration
(C/O = 1) compared to those in pellets with a higher carbon concentration (C/O = 2). The
dark gray region (#2) corresponding to the slag phase increases with an increase in carbon
concentration in the systems. Consequently, better grain fusion was observed for pellets
with C/O = 1, as a smaller area of the dark gray phase (oxides) was observed compared to
that with C/O = 2.

3Fe2O3 + C = 2Fe3O4 + CO (1)
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Fe3O4 + C = 3FeO + CO (2)

FeO + C = Fe + CO (3)

Fe3O4 + CO = 3FeO + CO2 (4)

FeO + CO = Fe + CO2 (5)

FeO (l) + Al2O3 (s) = FeAl2O4 (s) (6)

Fe (l) + Al2O3 (s) +
1
2

O2(g) = FeAl2O2 (s) (7)

Al2O3 + 3C = 2Al + 3CO (8)

The formation of hercynite in the excess oxygen system could occur according to
Equations (1)–(7). At 1550 ◦C, the carbothermic reduction reactions of Fe2O3 in the MS by
carbon from graphite could occur more quickly than those of Al2O3 in the aluminum dross.
This is attributed to the higher negative value of standard Gibbs free energy (∆G◦) [26,27].
A higher negative value of ∆G◦ indicates a greater driving force for the reactions to occur.
The carbothermic reduction reaction of Al2O3 in the aluminum dross by carbon from
graphite, as described in Equation (8), is known to proceed in the temperature region of
2200 ◦C at a pressure of 1 atm [27]. Firstly, carbon could react with Fe2O3 to form Fe3O4
and CO as the reaction products, as described in Equation (1). Subsequently, the remaining
carbon and produced CO could further react with Fe3O4 to produce FeO and CO/CO2
in the system, following Equations (2) and (4). The produced FeO could then undergo
reduction by carbon and CO to form metallic Fe and CO/CO2 gas, as indicated by Equa-
tions (3) and (5). At 1550 ◦C, ∆G◦ for Equations (3) and (5) are −124.46 kJ and −271.71 kJ,
respectively [28]. The formation of hercynite in this system could occur through three
possible reactions. Firstly, the produced FeO could directly interact with Al2O3 to form
hercynite, as represented by Equation (6). The standard Gibbs free energy for Equation (6)
is ∆G◦ = −71,086 + 11.89·T J/mol [17,19]. Secondly, the metallic Fe, derived from Equa-
tion (3), could be oxidized by oxygen to reform FeO. Subsequently, the produced FeO could
interact with Al2O3 to produce hercynite as the final product, as described in Equation (7).
The standard Gibbs free energy for Equation (7) is ∆G◦ = −328,348 + 82.004·T J/mol [17,19].
Thirdly, both possible reactions could occur concurrently. The standard Gibbs free energy
in Equations (6) and (7) indicates the potential for hercynite formation at 1550 ◦C.

Carbon is essential for the formation of hercynite in the system of MS-AD-graphite;
without carbon, the formation cannot proceed. The vital role of carbon in the system is to
reduce Fe2O3 in the mill scale for subsequent reactions to take place. Figure 8 shows the
SEM micrograph and EDS analysis of the MS-AD pellet after being heated at 1550 ◦C for 1 h
in the absence of carbon. It was found that the resulting product consists of three regions:
Fe2O3 (spectrum#1), SiO2-Al2O3-MgO-Fe2O3 (spectrum#2), and Al2O3-Fe2O3-MgO-SiO2
(spectrum#3). The chemical composition and morphology of the phase in spectrum#3
resemble that of hercynite; however, its formation occurs at a slow rate. In comparison
to the system with carbon (MS-AD-Graphite) shown in Figures 6 and 7, where hercynite
synthesis can be achieved with hercynite as the major product, the system without carbon
(MS-AD) does not yield hercynite. These findings confirm that the formation of hercynite
occurs via the carbothermic reduction of Fe2O3 in the MS and cannot proceed adequately
without carbon.

Figure 9 presents the thermogravimetric analysis (TGA) and differential scanning
calorimetry (DSC) analyses of the raw pellets with C/O ratios of 1 and 2. Due to limitations
in our laboratory, the thermal analyses were restricted to 1550 ◦C. In the excess oxygen
system, two significant reactions take place at temperatures of above 625 ◦C and 1430 ◦C.
The first is expected to be the combustion of some carbon from graphite [29,30], which is
slightly different in weight loss. The second involves the reduction reaction of Fe2O3 and
the formation of hercynite [19]. The release of moisture and volatiles from MS and AD
should occur before 625 ◦C. These results corroborated the findings from XRD, XRF, and
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EDS analyses regarding the formation of hercynite in the MS-AD-graphite system at the
temperature above 1430 ◦C.
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In the TGA and DSC analysis, the raw sample (the blend in the form of powder) was
heated slowly from room temperature to 1550 ◦C at a heating rate of 20 ◦C/min under an
oxygen atmosphere. It was observed that the high amount of carbon in the system (C/O
ratios of 1 and 2) has an insignificant effect on the formation of hercynite above 1430 ◦C,
but it does slightly affect carbon combustion, which occurs above 625 ◦C. The TGA and
DSC graphs for the pellet with a C/O ratio of 2 are higher than those in the case of a C/O
ratio of 1 at 625 ◦C; however, they are the same above 1430 ◦C. It is suggested that the
amount of carbon in the system at a C/O ratio of 1 is sufficient for the progression of
hercynite formation. However, in the nature of our hercynite production experiment, the
raw sample (the blend in the form of pellets) was immediately introduced into the hot zone
of the furnace, where the temperature was 1550 ◦C. The extent of reactions, such as the
combustion of carbon, the reduction of iron oxides, and the formation of hercynite, are
slightly different, resulting in variations in product yield, as shown in Figures 3 and 4. The
carbon in the system was not completely burned off; some participated in the reduction of
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iron oxides, and some remained in the products (3.9 wt% and 4.6 wt% for the pellets with
C/O ratios of 1 and 2, respectively). The differences in the amount of carbon (C/O ratios of
1 and 2) in the system have an insignificant effect on the quantity of hercynite produced. The
hercynite yield slightly decreases with increasing carbon content, with yields of 85.11 wt%
and 82.4 wt% for C/O ratios of 1 and 2, respectively. It can be concluded that industrial
wastes/by-products like AD and MS can be upcycled for the production of hercynite. From
an economic standpoint, the combustion of raw pellets with a C/O ratio of 1 at 1550 ◦C
in a normal air atmosphere is suitable for the production of hercynite from MS, AD, and
graphite. Future work could explore the utilization of industrial wastes for the production
of magnesia–hercynite-based refractory materials. The synthesis of hercynite using mill
scale and aluminum chips via aluminothermic reaction has been reported previously [25].
In that study, the hercynite yield was 58 wt%, with 42 wt% Al2O3, which is significantly
different from the yield obtained using the approach in the present study.
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2.4. Preliminary Evaluation of Worthiness for the Production of Hercynite from the Industrial Wastes

AD and MS are by-products of aluminum melting and steel milling processes that
would typically be considered waste and disposed of in landfills or through other methods.
The transportation of these wastes needs to comply with the Basel Convention, which has
led to a low rate of waste utilization, particularly in Thailand. The disposal of these wastes
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in landfills, particularly AD, can occur through either legal or illegal means, with significant
repercussions on the underground water system, the air quality of the surrounding area,
and the considerable expense associated with disposal. Figure 10 illustrates the typical
waste generation from aluminum and steel industries and the possible management meth-
ods in the present study. Instead of being discarded, AD and MS are being repurposed for
a useful application, namely the production of hercynite-based refractory materials.
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In the present study, the utilization of industrial wastes, such as AD and MS, in the
production of hercynite materials is economically and environmentally feasible. To prelimi-
nary assess the economic worthiness for the production of hercynite, only the costs of raw
materials and types of supplier are taken into consideration. Costs related to processing,
electricity, and other expenses associated with suppliers, including transportation fees,
import/export duties, or any other procurement-related fees, are not taken into considera-
tion. The primary raw materials for manufacturing hercynite are alumina and iron/iron
oxides. Table 2 compares the costs and suppliers of raw materials used in the production
of hercynite and assesses their economic and environmental viability. The cost compari-
son between utilizing commercial alumina and AD reveals a significant difference, with
commercial alumina priced at approximately $340 per metric ton, whereas AD offers a
considerably lower cost of around $145 per metric ton. Similarly, the cost analysis for
iron sources demonstrates that, while iron ore and iron scrap are priced at approximately
$117 to $213 per metric ton, respectively, the employment of MS proves more economical,
ranging between $36 and $108 per metric ton. These cost differentials underscore the
potential economic benefits associated with utilizing industrial by-products, such as AD
and MS, in hercynite production processes. Moreover, the utilization of industrial wastes
can lower the cost of disposing AD and diminish the consumption of natural resources,
while also adding value to the industrial waste. However, other factors, such as impurities
in the final product, need to be considered when developing at an industrial scale.
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Table 2. Comparison of the feasibility of using different raw materials for the production of hercynite.

Raw Materials
Cost (US$/ton) Types of Supplier

Worthiness

Aluminum Sources Iron Sources Economy Environmental

Alumina [31] - 340 Commercial
Mining/

Commercial
Recycler/

Commercial

Higher
productions cost/
Natural resources

consumption

Wastes generation/
More landfill/

Underground water
and air pollutions

-
Iron ore [32] 117

- Scrap iron [33] 213.31

AD [34] - 145
Aluminum

Smelter waste
Steel mill

byproduct

Lower
productions cost/

Reduce disposal cost/
Waste valorization/

Resources
consumption reduction

Waste reduction/
Landfill reduction/

Reduced pollutions/
Resource conservation/

Energy Savings

- MS [35] 36–108

Utilizing AD and MS as raw material resources for the production of hercynite-based
refractory materials offers several environmental benefits. These include waste reduction,
decreased disposal in landfills, reduced pollution, resource conservation, and energy sav-
ings. The amount of AD sent to landfills could be reduced, thus minimizing environmental
pollution and conserving valuable landfill space. Utilizing aluminum AD and MS in manu-
facturing reduces the necessity for processing virgin raw materials, thus conserving natural
resources and lessening the environmental impact of resource extraction. Moreover, it
requires less energy compared to processing virgin materials, leading to reduced energy
consumption and associated greenhouse gas emissions.

3. Materials and Methods
3.1. Materials Preparation

The AD utilized in this study was provided by Top Five Manufactory Co.,Ltd, Chacho-
engsao province, Thailand. It is in the form of fine powder. The AD was sifted through a
sieve to isolate particles with sizes below 180 µm. Top Five, an aluminum melting company,
is located in the eastern industrial sector of Thailand. MS was supplied by UMC Metal
Co., Ltd., an electric arc furnace steel mill located in Chonburi, Thailand. It was ground
and sieved into a powder with particle sizes of less than 180 µm. Both the AD and the MS
underwent XRF analysis, and their chemical compositions are presented in Tables 3 and 4,
respectively. The X-ray fluorescence spectrometer (XRF) used in the present study was the
Rigaku ZSX Primus, Rigaku, Japan. The analysis was conducted using sample powder,
scanning the elemental range from boron (B) to uranium (U).

Table 3. Composition of the AD used in the present study [26].

Oxides (wt%)

Al2O3 SiO2 Fe2O3 CaO K2O MgO MnO Na2O SO3 CuO TiO2 ZnO Others
69.94 5.01 0.54 1.0 0.76 4.91 0.15 10.65 2.46 0.37 0.17 0.25 3.79

Table 4. Composition of the MS used in the present study [26].

Oxides (wt%)

Fe2O3 SiO2 Al2O3 CaO SO3 TiO2 K2O P2O5 other
93.66 1.42 0.82 0.17 0.08 0.04 0.02 0.04 3.75

The AD and MS were subsequently mixed with graphite powder, following the C/O
molar ratios of 1 and 2, as shown in Table 5. Blends A and B were homogeneously mixed in a
rolling mill for 30 min. The molar quantity of C represents the total moles of carbon present in
the graphite. The molar quantity of O corresponds to the total moles of oxygen derived from
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Al2O3 in the AD and Fe2O3 in the MS. The graphite utilized in the experiment was procured
from Kanto Chemical Co., Tokyo, Japan (Cat. No. 17046-02). The XRD patterns of the raw
pellets are illustrated in Figure 11. The raw pellets exhibit peaks corresponding to Al2O3,
FeO, Fe2O3, and Fe3O4, indicating that these are the major components in aluminum dross
and mill scale. This observation is consistent with the XRF results shown in Tables 1 and 2.
X-ray diffraction (XRD) phase analysis was carried out using a Bruker D2 PHASER with Cu
Kα (k = 1.54184 Å) radiation, Bremen, Germany. XRD scans were carried out over the range
(2theta angle) 20◦ to 80◦ at a step size of 0.05◦/step. Phase identification was performed using
JADE 9.7.0 software and the ICDD 2022 database.

Table 5. Composition in the blend samples.

Blend AD (wt%) MS
(wt%)

Graphite
(wt%)

C/O
Ratios

A 52.5 39.2 8.3 1
B 48.5 36.2 15.3 2
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3.2. High-Temperature Experiment

The blends A and B were each mixed with a suitable amount of water to add moisture
and then hand-rolled to form spherical pellets of 5 g. Subsequently, these raw pellets were
dried in a hot air oven at 90 ◦C for 48 h. After the drying process, the dried pellets were
transferred into refractory crucibles and placed into a horizontal tube furnace under normal
air atmosphere. The refractory crucible employed in the experiments was made of alumina
and is capable of withstanding high temperatures up to 1800 ◦C. The crucible was initially
held in the cold zone of the furnace for 5 min to prevent thermal shock and was then
transferred to the hot zone, where the temperature was maintained at 1550 ◦C for durations
of 1, 2, and 3 h. The overview of sample preparation and the experimental procedure are
provided in Figure 12.
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3.3. Analysis

The quenched pellets underwent various analyses. Microstructure examination was
conducted using the DM750 model optical microscope from Leica, Wetzlar, Germany.
Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were
performed using the JSM-7800F instrument from JEOL, Akishima, Japan. Thermal analysis
of raw blends A and B was conducted using the Mettler TGA/DSC 3+ HT/1600/360,
Greifensee, Switzerland. Due to the limitations of the instrument, the analysis was carried
out in a temperature range from 30 to 1550 ◦C, with a step size of 20 ◦C/min under an
oxygen atmosphere.

4. Conclusions

In this study, AD and MS were blended with graphite at two different ratios. These
blends were then formed into spherical pellets and subjected to heating at 1550 ◦C for
up to 3 h in a normal air atmosphere. The study investigated the effect of heating times
and carbon concentrations on the formation of hercynite. The experimental results can be
summarized as follows.

1. The utilization of AD and MS in the production of hercynite is indeed feasible. The
formation mechanism of hercynite in the AD-MS-graphite system involves the forma-
tion of a dendritic shape, and subsequent fusing to form grain shapes, followed by
further grain growth.

2. The formation of the hercynite phase is influenced by the heating duration from
1 to 3 h. Visual observations indicate that, with longer heating times, the grain size of
hercynite increases.

3. XRD phase analysis using the Rietveld method revealed that the major components
of the product were FeAl2O4, Al2O3, and C. For the product with a C/O ratio of 1,
the amounts were 85.11% FeAl2O4, 10.99% Al2O3, and 3.9% C. For the product with
a C/O ratio of 2, the amounts were 82.4% FeAl2O4, 13.0% Al2O3, and 4.6% C. The
combustion of raw pellets with a C/O ratio of 1 at 1550 ◦C for 1 h in a normal air
atmosphere is economically viable for producing hercynite, with a yield of 85.11 wt%.

4. Carbon is essential for the formation of hercynite within the AD-MS-graphite system.
Its crucial role lies in reducing Fe2O3 present in the MS, which facilitates subsequent
reactions leading to the formation of hercynite. The increase in carbon content in
the system from C/O ratios of 1 to 2 can slightly decrease the yield of hercynite
products. Visual observations indicated that this increase in carbon content impacts
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the development of the microstructure of the product, with hercynite grain size being
larger in pellets with a C/O ratio of 2.

5. AD and MS can serve as sources of Al2O3 and Fe2O3, respectively, for producing her-
cynite, potentially eliminating the need for commercial alumina and iron ore entirely.
This utilization presents a sustainable, cost-effective, and eco-friendly alternative to
using virgin raw materials.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/recycling9050080/s1, ICDD Powder Diffraction File supplementary data:
XRD patterns and Rietveld refinement of the pellets with C/O = 1 after heating at 1550 ◦C for 3 h
(FeAl2O4: PDF#98-000-0242, Al2O3: PDF#98-000-0174, and C: PDF#98-000-0231).
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