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Abstract: Durable building materials are essential for sustainability in construction projects, aiming
to reduce environmental damage from the start to the end of a building’s life. Reducing the use of
Portland cement in concrete production is essential because of the significant CO2 emissions generated
globally during its production process. This study investigates the workability, compressive strength,
and water absorption of concrete when Portland cement is partially substituted with waste glass
powder (WGP) and recycled concrete powder (RCP). These two waste powders can be used to
partially substitute Portland cement in order to produce environmentally friendly concrete. The
activity of the particles in concrete made from these two waste powders is mostly determined by the
type and rate of the powders, as well as the curing methods. Therefore, the current research examines
how different curing conditions impact the workability, compressive strength, and water absorption
characteristics of this innovative eco-friendly concrete that includes the abovementioned waste
powders. According to the experimental results obtained, adequate strength can be achieved using an
appropriate replacement level of the powders and curing methods. Therefore, the application of these
two recycled mineral admixtures in concrete can save Portland cement and has certain environmental
and economic benefits.

Keywords: admixture; compressive strength; curing; durability; eco-efficient concrete; recycled
concrete powder; sustainability; waste glass powder; water absorption

1. Introduction

Sustainable building materials are essential for advancing the sustainability of con-
struction and infrastructure projects by reducing the environmental impact at every stage.
These resources are designed to lower energy usage, decrease waste, reduce greenhouse gas
emissions including CO2, and promote eco-friendly construction methods. As the amount
of waste produced worldwide grows, it becomes more important to have effective waste
management plans, as improper disposal can damage the environment. Sustainable devel-
opment focuses on incorporating recycled materials into construction, especially in concrete
production, to meet current needs without destroying future generations’ abilities [1,2].
Incorporating materials such as recycled aggregates, silica fume, fly ash, waste glass, waste
plastic, and other industrial byproducts can greatly decrease the construction industry’s
carbon footprint. Using a combination of different waste materials in concrete production
improves waste management sustainability, while also preserving natural resources and
cutting down on expenses [1–3].

Concrete sustainability is receiving more attention in engineering projects, resulting
in efforts to reduce the environmental impact of the construction industry. The rapid
expansion of this industry is driven by the strong demand for cement in the construction of
infrastructure and buildings, particularly in less developed, developing, and developed
countries [3,4].
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The global construction sector, essential for economic progress and societal advance-
ment, is largely dependent on concrete as a key construction material. Concrete is essential
for building a range of civil engineering structures, including homes, roads, bridges, and
dams. Yet, the conventional linear process of producing concrete, which includes its
extraction, processing, use, and disposal, has notable environmental and sustainability dis-
advantages [5,6]. The extraction of natural resources, especially sand, gravel, and cement,
leads to the destruction of habitats, erosion, and changes in waterways. Furthermore, the
manufacturing of cement, an essential ingredient in concrete, requires a significant amount
of energy and contributes significantly to the worldwide release of carbon dioxide [7,8].
Moreover, the concrete waste produced during construction, renovation, and demolition
activities creates a notable problem by taking up space in landfills and hindering opportu-
nities for resource recycling. Therefore, it is worth mentioning here that, in the quest for
sustainable development, it is crucial that we prioritize durability alongside the mechanical
properties of construction materials to extend the service life, to avoid depleting natural
resources and causing damage to the environment in construction practices.

First and foremost, it is crucial that we reduce the extraction of raw materials. This
includes examining different sources of aggregates and cement, like recycled concrete
powder (RCP) or industrial by-products, to decrease the dependence on new resources.
Moreover, maximizing the mixture composition guarantees that the concrete attains the
necessary characteristics using a reduced quantity of raw ingredients. Another crucial
element is optimizing the reutilization and recycling of concrete waste. Concrete waste
from the construction, renovation, and demolition stages can be transformed into recycled
aggregates or recycled powders, diverting materials from landfills and decreasing the
demand for new extraction [9].

In construction materials engineering, affordable concrete is crucial, providing cost-
effective choices for building projects. The focus of sustainable concrete production is to
minimize environmental damage by utilizing recycled materials and decreasing global
CO2 emissions, particularly in the production of Portland cement [10]. According to the
literature, the mass production of Portland cement (PC) is subject to significant energy
pressure due to its synthesis temperature of up to 1450–1500 ◦C. In contrast, there are some
other types of cements with a lower energy consumption such as calcium sulfoaluminate
(CSA) cement. It has a lower calcination temperature (1250 ◦C) during production; there-
fore, CSA cement can reduce energy pressure and CO2 emissions through research and
promotion [11,12]. In the production process of this type of cement, raw materials can be
replaced by other industrial wastes, such as calcium carbide slag, red mud, and desulfur-
ization gypsum. Because of its quick setting time, high strength and durability properties,
and excellent early strength characteristics, CSA cement is typically utilized in grouting
materials. Recently, the impacts of sodium aluminate and quicklime, and potassium and
sodium sulfates on the characteristics and hydration process of a double-liquid grouting
material based on calcium sulfoaluminate (CSA) cement were investigated [11,12]. They
concluded that the sodium sulfate and potassium sulfate accelerate the hydration of CSA
cement and the formation of ettringite from the very beginning. Furthermore, sodium
aluminate accelerated the early formation of ettringite but did not increase the overall
amount of hydration products. The initially accelerated hydration by sodium aluminate
and quicklime facilitated the later strength development of CSA cement.

The concrete sector currently requires focused initiatives to investigate substitute
materials, especially waste materials, that do not consume natural resources and tackle
environmental issues. Waste glass powder (WGP), obtained from different sources such
as bottles and containers, offers a potential option for the cement and concrete sectors
as supplementary cementitious materials (SCMs) because of its chemical makeup and
pozzolanic characteristics. By grinding waste glass to a fine powder, it can be used in place
of certain elements in normal concrete, providing a sustainable option that helps preserve
natural resources and lower CO2 emissions. Incorporating WGP into concrete mixes helps
reduce the increasing amount of waste glass and supports sustainability objectives in the
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construction industry [13–16]. Many studies have been conducted on the use of WGP as
SCMs in the production of geopolymer concrete due to its high concentration of amorphous
silica, which is required for pozzolanic reactivity. This innovative method lowers the
quantity of glass trash produced, the price of producing concrete, and the quantity of
CO2 emissions that have a negative impact on the environment when cement is produced.
Contradictory findings about the benefits or disadvantages of utilizing WGP in concrete
have been documented due to the variety of glass varieties and their varying compositions
and particle sizes. While some studies have found improvements in concrete’s workability
and compressive strength, others have found decreases in the material’s compressive
strength [17–19]. Research from the past [20–23] has demonstrated that adding WGP, fibers,
and micro-silica to concrete can improve its behavior. Some researchers have even gone so
far as to propose the practical application of waste glass in the subbase and base of roads
as well as asphalt concrete [24]. Although the use of WGP in concrete has been shown to
increase the tensile strength in numerous research projects, it has also been reported by
some researchers to decrease the mechanical properties [24].

In civil engineering, emphasis is being placed on substituting natural aggregates with
recycled resources, such as recycled concrete aggregates (RCAs) from the construction,
renovation, and demolition stages [25–32]. One issue with employing RCAs is that it causes
the concrete sample to absorb water at a higher rate and have significant porosity. This
is because the cement paste bonded to the RCA hydrates, which reduces the mechanical
and durability properties of recycled aggregate concrete (RAC) [33]. Reducing the amount
of old cement paste adhered to RCA has, regrettably, limited their use on a broad scale
and increased energy consumption [34,35]. However, eliminating the cement paste that
is connected on its own accelerates the rate at which waste is produced and accumulates
at landfill locations. Thankfully, there have been encouraging developments lately re-
garding the use of recycled concrete powder (RCP) as a cementitious material in concrete
mixtures [35].

A recently published study [35] investigated the characteristics of RCP and analyzed
the engineering properties of concrete mixes with different percentages of RCP replacement.
Their investigation found that changing the replacement rate of recycled concrete powder
(RCP) had an effect on the slump of the newly made RAC. The findings also showed a
reduction in compressive strength as the replacement rate of RCP increased at all ages. In
another study [36], fully recycled concrete with 100% recycled cement + 100% recycled ag-
gregates were investigated. According to their results, the water absorption (WA) behavior
of fully recycled concrete can be divided into three stages, with the initial stage being three
times faster than ordinary concrete. In another work of research [37], the effect of different
factors, including the burn temperature for preparing recycled cement, the carbonation
degree of the precursor, the particle size of the recycled cement, and the water-cement
(w/c) ratio on the compressive strength, was studied. The results showed that the burn
temperature is the most important parameter for recycled cement, and a temperature of
650 ◦C performed best and resulted in the highest compressive strength of the paste.

The objective of this study is to develop a concrete solution that is both financially
viable and environmentally friendly, tailored for various civil engineering applications
including low strength uses like pedestrian walkways, in order to contribute to sustainable
development. The current research examines how various curing conditions impact the
fresh and hardened characteristics of this innovative eco-efficient concrete that includes
WGP and RCP mineral admixtures. Although there is similar research in the literature,
due to the lack of the available data on the performance of concrete, and contradictions
and variations of the available test results of concrete modified with WGP and RCP, this
work presents an experimental program to study in detail the effect of these two recycled
powders on concrete properties. Specifically, the influence of using WGP and RCP on the
workability, compressive strength, and water absorption under various curing conditions
have been explored in the present study. The outcome of the present investigation would
be communicated to engineers, construction companies, and concrete production plants in
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order to obtain concrete with an adequate performance utilizing recycled powders while
saving large quantities of natural resources.

2. Materials and Methods
2.1. Fine Aggregates

Table 1 provides a detailed description of the physical properties of river sand origi-
nating from Soran, Kurdistan region, Iraq. Additionally, the ASTM C136-06 [38] standard
is followed to show the particle size distribution of fine aggregate (FA), which is illustrated
in Figure 1.

Table 1. Physical properties of FA.

Physical Properties Values

Relative density (specific gravity) at OD 2.67

Relative density (specific gravity) at SSD 2.69

Apparent relative density (apparent specific gravity) 2.75

Water absorption 1.1%

Density at oven dry condition (OD) 2670 kg/m3

Density at saturated surface dry condition (SSD) 2690 kg/m3

Apparent density 2750 kg/m3
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2.2. Coarse Aggregates

This experiment utilized natural crushed stone from Soran, Kurdistan, Iraq. The
crushed stones were able to pass through a sieve with a diameter of 12.5 mm. Table 2
displays the physical characteristics, while Figure 2 illustrates the particle size distribution
of coarse aggregate (CA) based on ASTM C136-06 [38].
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Table 2. Physical properties of CA.

Physical Properties Values

Relative density (specific gravity) at OD 2.63

Relative density (specific gravity) at SSD 2.65

Apparent relative density (apparent specific gravity) 2.7

Water absorption 1.1%

Density at oven dry condition (OD) 2618.83 kg/m3

Density at saturated surface dry condition (SSD) 2646.49 kg/m3

Apparent density 2693.51 kg/m3
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2.3. Portland Cement

The Tasluja cement plant [39] in Kurdistan, Iraq is renowned for its consistent quality,
following the Iraqi standard IQS 5:1984 [40], ensuring trustworthiness in building projects.
Table 3 details the physical characteristics, verifying its suitability for the planned evalua-
tion. The precise production method guarantees the reliability of the cement as a stable
foundation for demanding assessments in various construction scenarios.

Table 3. Physical properties of cement.

No Physical Properties Values

1 Specific gravity 3.15

2 Normal consistency 32.8%

3 Initial setting time of cement 210 min

4 Final setting time of cement 342 min

2.4. Waste Glass Powder

During the study, various colored waste from glassware was used and put through a
grinding process using an abrasion machine. The powder (Figure 3) from sieve No. 200
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was used as an alternative to cement in various ratios. The density of WGP was measured
to be 2.6.
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2.5. Recycled Concrete Powder

Mixed-aged concrete was used in this study. As with the WGP, it was subjected
to grinding using a special machine, then sieved. Afterwards, the powder (Figure 3)
passing through sieve No. 200 was used as a substitute for cement in various proportions.
The powder’s specific gravity was determined to be 2.69. Information on the chemical
properties of WGP, RCP, and cement is presented in Table 4.

Table 4. Chemical composition of WGP, RCP and Portland cement.

Composition by Mass % WGP RCP Cement

CaO 18.55 52.52 64.62

SiO2 64.94 28.7 19.83

Al2O3 1.81 7.4 4.48

Fe2O3 1.97 3.6 2.32

SO3 - 0.6 2.57

P2O5 - - -

MgO 3.12 2.7 3.14

K2O 0.44 1.2 0.68

Na2O 9.16 1.8 0.19

2.6. Mix Proportion

In this experiment, all mixtures were made using a 1:2:4 ratio of cement, fine aggregate,
and coarse aggregate. Additionally, the water-to-binder ratio (W/B) of 0.5 remained
consistent across all mixtures. The mixture calculation was carried out using the absolute
volume method (Equation (1)), with 10% of each material added as a reserve for any
dilution during mixing, as detailed in Table 5.

C
Gsc

+
FA

Gs f a
+

CA
Gsca

+
W

Gsw
= 1 (1)

This study involved conducting fifteen different mixtures. Mix 1 was used as a control
concrete mix without recycled concrete powder (RCP) and waste glass powder (WGP),
cured under water condition, to assess its characteristics in comparison to other mixes with
RCP or WGP under the same curing conditions. Mix 2 was used as a second control concrete
mix without RCP and WGP, undergoing wrapping curing (covered with wet gunny bags)
for comparison with mixes containing RCP or WGP under the same curing conditions. The
third control concrete mix, named Mix 3, was prepared without adding RCP and WGP,
and instead used 1% PEG-400 for self-curing, with samples kept at room temperature.
The self-curing agent used was poly-ethylene glycol PEG-400 [41]. Its properties were
compared to other mixes containing RCP or WGP under similar curing conditions. The
ratios of 10% and 20% of RCP and WGP by weight of ordinary Portland cement (OPC) were
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used, and they were mixed in an electric concrete mixer. Two slump measurements were
conducted for every mixture, and then the average was calculated based on the results.
For every test/curing age in the study, three samples were prepared. The cubes were
carefully stacked in three layers with manual compaction. The samples remained at room
temperature in the laboratory for 24 h. Following this period, the cubes were prepared to be
taken out of the mold and stored in various curing environments such as water, wrapping,
and self-curing. The curing durations were 7 and 28 days.

Table 5. Concrete mix proportions.

Mix Mix Code W.G.P
(%)

R.C.P
(%)

Curing
Condition

Cement
(kg/m3)

F.A.
(kg/m3)

C.A.
(kg/m3)

Water
(kg/m3)

1 Water-0 0 0 Water 362 724 1448 181
2 Wrapping-0 0 0 Wrapping 362 724 1448 181
3 Self-curing-0 0 0 Self-curing 362 724 1448 181
4 Water-10WGP 10 0 Water 326 724 1448 181
5 Wrapping-10WGP 10 0 Wrapping 326 724 1448 181
6 Self-curing-10WGP 10 0 Self-curing 326 724 1448 181
7 Water-20WGP 20 0 Water 290 724 1448 181
8 Wrapping-20WGP 20 0 Wrapping 290 724 1448 181
9 Self-curing-20WGP 20 0 Self-curing 290 724 1448 181

10 Water-10RCP 0 10 Water 326 724 1448 181
11 Wrapping-10RCP 0 10 Wrapping 326 724 1448 181
12 Self-curing-10RCP 0 10 Self-curing 326 724 1448 181
13 Water-20RCP 0 20 Water 290 724 1448 181
14 Wrapping-20RCP 0 20 Wrapping 290 724 1448 181
15 Self-curing-20RCP 0 20 Self-curing 290 724 1448 181

WGP: waste glass powder; RCP: recycled concrete powder; FA: fine aggregate; CA: coarse aggregate.

2.7. Testing Methods

The slump test, conducted following ASTM C143 [42] guidelines, evaluates the ma-
neuverability of recently blended concrete by gauging its deformation right after mixing.
For each mix in the study, two tests were carried out using a metal mold called a slump
cone, and the average of the results was calculated.

To ascertain the compressive strength, three cubes from each concrete mix were tested
and the results were averaged. Testing took place at 7 and 28 days under different curing
times and conditions. A compression machine with a 2000 KN capacity and 1 KN accuracy
is considered standard.

The current research conducted the water absorption (WA) test following ASTM
C1585 [43], using three cubes for each concrete mix to determine WA rates, and then
averaging the results from all three cubes.

WA =
W1 − W2

W2
× 100 (2)

The cubes were tested every 7 and 28 days to observe changes as time passed. In the
experimental process, the saturated cubes were initially weighed and recorded as W1. After
that, the cubes were dried in an oven at 110 ◦C for 24 h until they reached a uniform dry
weight. After this drying period, the cubes were weighed again, and the final weight was
recorded as W2. By using Equation (1), it was possible to assess WA traits in the concrete
samples in a controlled environment, providing a better understanding of the material’s
behavior and performance across different time periods.

Assessing the density of concrete, especially in terms of saturated surface dry (SSD)
conditions, is essential in comprehending the material’s physical properties and its perfor-
mance in structural uses.

p =
m
V

(3)
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This research focuses on finding the density of concrete by testing three cubic samples,
then calculating the average weight and dividing it by their volume.

3. Results and Discussion
3.1. Workability
3.1.1. Effect of WGP

Figure 4 shows how the workability of fresh concrete is affected by the WGP content
when exposed to various curing conditions. The findings show a decline in workability
at 10% WGP, followed by a steady increase in workability as the percentage of WGP rises
to 20%. This betterment is credited to the higher amount of water in the combination,
as shown by the increasing actual water-to-cement ratio with the greater incorporation
of WGP particles. This pattern is consistent with the results of [27], indicating a slow
improvement in the ease of working with increased levels of WGP. As an example, the
workability is 36 mm without any substitution, but decreases to 26 mm with the 10%
replacement and then increases to 32 mm with the 20% WGP replacement. The slump
values for concrete containing RCP are different. The workability decreases from 36 mm to
20 mm with 10% RCP and decreases more to 16 mm with 20% RCP.
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3.1.2. Effect of RCP

Figure 4 also demonstrates how incorporating RCP affects the workability of fresh
concrete in various curing conditions. Concrete workability involves how smoothly it
flows, pumps, and undergoes finishing processes, all of which are essential for construction.
It is crucial in achieving proper compaction and ensuring the overall quality of the final
structure. The findings showed a small decrease in workability with higher proportions
of RCP. A study [44] also found similar results, as they observed that the workability of
different RCP mixtures did not show significant changes when monitoring the slump. For
instance, the decrease in the workability of standard concrete mixes (M1 and M2) is over
two times greater than that seen in the concrete with 20% RCP.

3.1.3. Effect of Curing Regimes

Figure 4 also demonstrates how the workability of fresh concrete, which includes
various amounts of waste powders, is affected by the inclusion of 1% PEG as a self-curing
agent. The slump in concrete increased with a higher WGP content and decreased with a
higher RCP content. Based on the findings, the impact of PEG-400 on the consistency of
traditional concrete mixes is greater compared to mixes with varying amounts of WGP and
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RCP. For instance, the drop in the slump for the control concrete (M3) is double the amount
seen in the concrete with 10% and 20% RCP.

3.2. Density
3.2.1. Effect of WGP

During this trial, the impact of WGP on the density of concrete in the SSD condition
was examined by varying the amounts by 10% and 20%. As with conventional concrete,
various WGP ratios were tested in different curing periods, as illustrated in Figure 5. An
increase in the percentage of WGP used instead of cement in a concrete mix typically results
in a reduction in density. Nevertheless, the decrease is not substantial. This is due to
the lower density of WGP compared to cement, which leads to a decrease in the overall
density of the mixture when it is used as a substitute. Nonetheless, there are situations
where increasing the WGP replacement may result in an increase in density. The higher
overall density may be attributed to factors like the type, particle size, and shape of the
WGP, which enhance the packing density in the concrete mix. Furthermore, there is a
possibility of specific chemical reactions occurring between the WGP and other elements in
the concrete mixture, resulting in a more compact product. A higher WGP content can also
impact the compaction process, leading to a tighter and denser concrete mix. A recently
published investigation [9] has documented comparable findings.

Recycling 2024, 9, x FOR PEER REVIEW 9 of 18 
 

traditional concrete mixes is greater compared to mixes with varying amounts of WGP 

and RCP. For instance, the drop in the slump for the control concrete (M3) is double the 

amount seen in the concrete with 10% and 20% RCP. 

3.2. Density 

3.2.1. Effect of WGP 

During this trial, the impact of WGP on the density of concrete in the SSD condition 

was examined by varying the amounts by 10% and 20%. As with conventional concrete, 

various WGP ratios were tested in different curing periods, as illustrated in Figure 5. An 

increase in the percentage of WGP used instead of cement in a concrete mix typically re-

sults in a reduction in density. Nevertheless, the decrease is not substantial. This is due to 

the lower density of WGP compared to cement, which leads to a decrease in the overall 

density of the mixture when it is used as a substitute. Nonetheless, there are situations 

where increasing the WGP replacement may result in an increase in density. The higher 

overall density may be attributed to factors like the type, particle size, and shape of the 

WGP, which enhance the packing density in the concrete mix. Furthermore, there is a 

possibility of specific chemical reactions occurring between the WGP and other elements 

in the concrete mixture, resulting in a more compact product. A higher WGP content can 

also impact the compaction process, leading to a tighter and denser concrete mix. A re-

cently published investigation [9] has documented comparable findings. 

 

Figure 5. Density of concretes incorporating different contents of WGP and RCP. 

3.2.2. Effect of RCP 

The present study was carried out to assess how RCP impacts the density of concrete, 

as illustrated in Figure 5. The impact on the concrete mix density from replacing RCP is 

comparable to the replacement of WGP. Nevertheless, the drop in the density of concrete 

with RCP is greater than that of concrete with WGP when compared to control mixes. For 

instance, the reduction in percentage for the 10% WGP concrete is 0.3%, while, for the 10% 

RCP concrete, it is 0.5% when compared to the control mixes. 

3.2.3. Correlation between Strength and Density 

Typically, there is a direct correlation between the concrete density and compressive 

strength, indicating that denser concrete usually exhibits a greater compressive strength. 

This happens because denser concrete generally contains fewer empty spaces, leading to 

enhanced strength. Yet, the connection may not always be straightforward, as variables 

2375

2380

2385

2390

2395

2400

2405

2410

D
en

si
ty

 (
kg

/m
3
)

Figure 5. Density of concretes incorporating different contents of WGP and RCP.

3.2.2. Effect of RCP

The present study was carried out to assess how RCP impacts the density of concrete,
as illustrated in Figure 5. The impact on the concrete mix density from replacing RCP is
comparable to the replacement of WGP. Nevertheless, the drop in the density of concrete
with RCP is greater than that of concrete with WGP when compared to control mixes. For
instance, the reduction in percentage for the 10% WGP concrete is 0.3%, while, for the 10%
RCP concrete, it is 0.5% when compared to the control mixes.

3.2.3. Correlation between Strength and Density

Typically, there is a direct correlation between the concrete density and compressive
strength, indicating that denser concrete usually exhibits a greater compressive strength.
This happens because denser concrete generally contains fewer empty spaces, leading to
enhanced strength. Yet, the connection may not always be straightforward, as variables like
the water–cement ratio, aggregate type, and curing conditions can impact the compressive
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strength regardless of density. Figure 6 displays a significant correlation (R2 = 0.98) between
these two characteristics.

y = 0.7499x + 2377.8 (4)
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3.3. Compressive Strength
3.3.1. Effect of WGP

Figure 7 shows a graphical display of the compressive strength of concrete mixtures
with various levels of WGP and RCP replacements, at 7-day and 28-day intervals, using
different curing methods. The results indicate that adding WGP results in a lower compres-
sive strength when compared to regular concrete. The compressive strength of concrete
was found to change depending on the different mixtures of WGP used, specifically 10%
and 20% as replacements. An illustration of this is seen in the compressive strength values
of concretes with 10% WGP at 7 and 28 days of curing, which varied from 11.4 to 14.5 MPa
and 25.9 to 27.9 MPa, respectively. This indicates the ongoing hydration process leading
to a higher compressive strength as the curing time increases. In other studies [29,30],
similar findings have also been documented. Usually, concrete containing WGP is suitable
for non-structural applications like pavements, precast elements, decorative concrete, etc.
Continuing research is necessary in order to fully understand the long-term performance
and potential applications of concrete incorporating WGP.

3.3.2. Effect of RCP

The results indicate that adding RCP to concrete causes a decrease in compressive
strength when compared to traditional concrete, as demonstrated in Figure 7. Before label-
ing RCP as eco-friendly, it is important to evaluate its impact on structural integrity, despite
the potential benefits in waste reduction. It might be more suitable for non-structural
purposes or projects where a high compressive strength is not crucial. Different levels of
compressive strength were observed in concrete with varying replacement percentages of
RCP at 10% and 20%. For instance, with 10% RCP, concrete strengths ranged from 9.5 to
12.6 MPa at 7 days and from 21.3 to 23.9 MPa at 28 days, showing ongoing hydration and
strength gain with longer curing periods. RCP might show irregular properties compared to
traditional cement, leading to differences in strength. The decreased compressive strength
of concrete when using RCP could be caused by different factors related to hydration and
the pozzolanic process. The composition and reactivity of RCP may vary compared to
Portland cement, which can affect the hydration process and lead to less strong connections.
Furthermore, impurities or contaminants found in recycled materials might hinder the
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pozzolanic reaction, reducing the creation of strength-enhancing substances like calcium
silicate hydrates (C-S-Hs). This primary factor probably plays a role in the documented
decrease in compressive strength in comparison to the control concrete.
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Figure 7. Compressive strength of concrete containing different contents of WGP and RCP under
different curing conditions at different curing times.

3.3.3. Effect of Curing Regimes

Based on the findings shown in Figure 8, the WGP achieved 44%, 45.1%, and 52% of
their 28-day strength after 7 days with a 10% ratio for wrapping, self-curing, and water
curing, respectively. In 7 days, the strength of control concrete has achieved 63.8%, 75.1%,
and 76.8% of its 28-day strength for wrapping, self-curing, and water curing, respectively.
The strength improvements of concrete with 20% WGP are 48.3%, 49.7%, and 57.7% for
different curing methods: wrapping, self-curing, and water curing. These low values
in concretes with WGP may be due to the slower hydration at the start of the strength
development compared to control concretes. Wrapping curing resulted in the lowest
compressive strength due to incomplete hydration caused by the lack of water availability.
Notable is the demonstration of the PEG-400 admixture efficacy at a 1% dosage in the
current research to retain water within the concrete for ongoing hydration, resulting in
a strength enhancement greater than wrapping but less than water curing. Self-curing
agents like PEG-400 contain a polymer that forms hydrogen bonds with water molecules,
decreasing the evaporation rate from the concrete surface [7,37,41,44]. Hence, the higher
compressive strength seen in mixes with PEG-400, as opposed to those without, is attributed
to the presence of water that facilitates ongoing hydration.

3.3.4. Strength Development

Figure 8 reveals that concrete with 10% RCP achieved 44.6%, 45.0%, and 52.7% of its
strength gain within 7 days for wrapping, self-curing, and water curing, respectively, by
28 days. The concrete strength increases by 60.7%, 62.0%, and 68.1% when 20% RCP is used
in wrapped, self-cured, and water-cured conditions. Figure 5 reveals that the increase in
strength is greater for high percentages (20%) of both WGP and RCP compared to lower
replacement levels (10%). Water curing is considered the most effective curing condition as
it has resulted in the highest compressive strength for all types of concretes—control, WGP,
and RCP. The clear distinction between the curing methods occurs since, in water curing,
hydration reaches its final stages with little to no remaining cement to be hydrated.

Figure 9 displays the comparative compressive strength of concrete mixes with water,
self-curing, and wrapping curing at 28 days, in relation to control mixes. The concrete with
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10% WGP displayed the highest relative strength of 71.9% under the water condition, while
71.0% under wrapping and 70.6% under self-curing regimes were also achieved compared
to control concretes. The values fell to 51.8%, 48.4%, and 48.2% for 20% WGP concretes
in water, with self-curing, and with wrapping curing. Concrete with RCP has exhibited a
reduced strength gain compared to concrete with WGP under all curing conditions.
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Figure 8. Relative strength gain of concrete mixtures by 28-day curing.
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Figure 9. Relative strength gain of concretes compared to control mixtures.

3.4. Water Absorption
3.4.1. Effect of WGP

The findings illustrated in Figure 10 display the water absorption (WA) of concrete
with various WGP and RCP levels in various curing conditions at 28 days. One of the
key properties of concrete is its absorption characteristic, which can be used, particu-
larly in engineering, as a representative descriptor to reflect and forecast the material’s
durability [45,46]. In order to ensure sufficient strength, it is crucial for concrete’s water ab-
sorption (WA) to be between 4–6% under normal pressure [46]. The concrete with 10% WGP
consistently shows WA values within the range of 4–6%. Some blends exceed this boundary.
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Substituting larger quantities of WGP for Portland cement in concrete causes a rise in
WA as a result of the uneven form and porous composition, resulting in additional empty
spaces within the concrete. The silica in WGP reacts with water and alkalis in the cement
mixture, increasing the water absorption of concrete. Moreover, the surface properties of
WGP enhance the WA, while its poor adhesion to cement paste allows for water infiltration.
Based on the findings, the WA values for concrete with 10% WGP are 5.8% when cured in
water, 6.3% when self-cured, and 6.4% when wrapped for curing. An investigation [36] has
reported similar results. The percentages of 6.3%, 6.7%, and 6.9% are observed for water
curing, self-curing, and wrapping curing with the 20% WGP replacement.
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Figure 10. WA of concrete mixtures.

3.4.2. Effect of RCP

The water absorption values for concrete with varying levels of RCP replacement
are greater than those of the control and WGP concrete, as demonstrated in Figure 10.
The water-cured concrete with 10% RCP content consistently maintains a WA range of
4–6% [7,46]. Nevertheless, WA can exceed this range in certain mixtures containing 20%
RCP under various curing conditions. The higher the quantity of RCP in concrete is, the
higher the WA rates increase because of RCP’s physical irregularities and porous structure,
which make WA easier. Moreover, the leftover cement in RCP stimulates hydration pro-
cesses, resulting in a higher number of pores in the concrete and elevated water absorption.
These observations have implications for enhancing concrete mixtures to address water
penetration issues in construction.

The WA results show that adding PEG-400 in concrete reduced the WA compared
to traditional wrapping curing. According to sources [41,47,48], the decline in the water
absorption of concrete during self-curing suggests a lower porosity level. Using 1% PEG-
400 in concrete with waste powders reduced the water absorption compared to the control
concrete due to the self-curing method application. Similar findings have been reported in
recently published studies [41,49].

3.4.3. Correlation between Strength and WA

The relationship between the concrete compressive strength and water absorption
is shown in Figure 11. Nevertheless, there is typically a negative correlation between
the compressive strength and water absorption. Concrete with an increased compressive
strength usually has a decreased water absorption, showing a more compact, less permeable
composition and high durability. On the other hand, concrete that has a lower compressive
strength might show a higher WA, indicating it is a more porous and less long-lasting
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material. The relationship between these two characteristics is highly evident in Figure 11
which indicates a very strong correlation (R2 = 0.93).

y = −0.1177x + 8.9089 (5)
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4. Conclusions

Waste materials allow for cost savings and support environmental sustainability
by reducing landfill waste and the need for natural resources. This study explores the
potential of waste glass and recycled concrete powders as substitutes for some of the
Portland cement in construction materials. Both waste powders have a detrimental impact
on the engineering properties of concrete. Under identical curing conditions and with the
same percentage of replacement, RCP has a greater impact compared to WGP. Although the
engineering properties decreased by replacing ordinary Portland cement with these two
recycled powders, the findings validate the possibility of effectively utilizing small amounts
of these two waste powders by implementing an appropriate curing method for structural
purposes. The practicality of incorporating greater amounts of these two waste powders is
still feasible and appropriate for low-strength uses like pedestrian walkways with a focus
on cost-efficiency. As a result, each application will determine the best replacement level
and curing technique. While it is true that recycling concrete and waste glass can lead to
some degradation in material properties over multiple cycles, there are ways to mitigate
these issues including quality control, a passport for products, blending materials, ongoing
research, etc. Overall, despite the difficulties, cautious management and creative solutions
can contribute to the continued viability and sustainability of recycled concrete and waste
glass as building materials.

1. The findings show a decline in workability at 10% WGP, followed by a steady increase
in workability as the percentage of WGP rises to 20%; however, the slump values for
concrete containing RCP are different. The workability decreases with 10% RCP and
decreases more with 20% RCP.

2. An increase in the percentage of WGP results in a reduction in density. Nevertheless,
the decrease is not substantial. The impact on the concrete mix density from replacing
RCP is comparable to the replacement of WGP. Nevertheless, the drop in density
of concrete with RCP is greater than that of concrete with WGP. For instance, the
reduction in percentage for the 10% WGP concrete is 0.3%, while, for the 10% RCP
concrete, it is 0.5% when compared to the control mixes.
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3. The compressive strength of concrete containing WGP decreased with increasing per-
centages of WGP. The compressive strength of concretes with 10% WGP at
28 days of curing varied from 25.9 to 27.9 MPa under different curing conditions.
The compressive strength for concrete with 10% RCP ranged from 9.5 to 12.6 MPa at
7 days and from 21.3 to 23.9 MPa at 28 days, showing ongoing hydration and strength
gain with longer curing periods.

4. The concrete containing 10% WGP achieved 44%, 45.1%, and 52% of their 28-day
strength after 7 days under wrapping, self-curing, and water curing, respectively.
This strength gain for concrete with 10% RCP is 44.6%, 45.0%, and 52.7%. Wrapping
curing resulted in the lowest compressive strength due to incomplete hydration
caused by the lack of water availability. Water curing is considered the most effective
curing condition as it has resulted in the highest compressive strength for all types of
concretes—control, WGP, and RCP.

5. Higher proportions of WGP and RCP resulted in increased water absorption due to
their porous nature; however, the acceptable level of 4–6% can be achieved with a 10%
WGP and RCP replacement.

Future research work could involve examining the microstructural properties, addi-
tional mechanical properties, and durability properties by different replacement percent-
ages of these recycled powders with Portland cement and examining different
curing conditions.
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