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Abstract: As more countries emphasize the importance of the circular economy, recycling resources
from waste has become increasingly crucial. This study proposes a novel separation process for
SmCo magnets, which can separate and recover metals by precipitation, thus reducing the amount
of solvent used. The precipitation process involved the use of Na2SO4, NH4OH, and H2C2O4 to
separate Sm, Fe, Cu, and Co, resulting in high precipitation efficiencies of 96.11%, 99.97%, 93.81%,
and 98.15%, respectively. Moreover, the recovered metals can be directly used to create magnets after
calcination, making this process a step towards achieving a circular economy.
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1. Introduction

Rare earth elements include light rare earth elements (LREEs) such as Lanthanum (La),
Cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Promethium (Pm), Samarium (Sm),
and Europium (Eu), and heavy rare earth elements (HREEs) such as Gadolinium (Gd),
Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Thulium (Tm), Ytterbium
(Yb), and Lutetium (Lu). Yttrium (Y) and Scandium (Sc) are two other elements excluded
from the LREEs and HREEs classifications [1,2]. The Sm in SmCo magnets belongs to the
light rare earth elements.

In 2022, the global rare earth reserves amounted to approximately 130 million met-
ric tons. Among them, China, Vietnam, Brazil, and Russia hold 44 million, 22 million,
21 million, and 21 million metric tons of rare earth reserves, respectively [3]. These four
countries together possess more than 80% of the world’s rare earth reserves. Rare earth
reserves are excessively concentrated in specific countries. In addition, the production
of rare earth is also concentrated in specific countries. China’s rare earth production in
2022 was 210,000 metric tons, which represented about 70% of the total global rare earth
production [3]. Furthermore, in 2010, China issued the “The Opinion on Promoting Mergers
and Acquisitions of Enterprises” [4], which listed rare earth elements as a key industry
for mergers, acquisitions, and reorganization, in an attempt to reduce the export of rare
earths. This led to a historical high in the price of rare earths [5]. The most effective method
currently to reduce the risk of rare earth supply is to recycle metals from waste [6,7].

Rare earth elements have become a significant topic of discussion among researchers,
entrepreneurs, and politicians in recent years due to their crucial role in current techno-
logical advancements. Rare earths are utilized in a broad range of applications [8–10],
including wind turbines, electric vehicles [11], mobile phones, hard disk drives, fluorescent
and LED lamps, defense applications, catalysts, pharmaceuticals, and medicine [12]. Of
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these, over a quarter of rare earths are utilized in magnet manufacturing [13], which is the
field that consumes the most rare earths. Consequently, if a large number of magnets can
be recycled, rare earth elements can be effectively recovered.

Among the rare earth elements, Nd and Sm are commonly used in magnet production.
Nd is primarily used to create NdFeB magnets, which are widely applied across industries
due to their high energy density. These industries include acoustic transducers, wind
turbines, electric vehicles, industrial motors, missiles, tanks, warplanes, submarines, mi-
crowaves, computers, printers, and hard disk drives [14–16]. In comparison, SmCo magnets
exhibit unique properties, including higher coercivity and superior temperature resistance,
making them ideal for specialized applications like aero engines [17–19]. While NdFeB
magnets currently account for over 90% of annual rare earth magnet production, many
experts predict an increase in demand for SmCo magnets in the coming years [20]. This
shift is largely due to the high cost of dysprosium (Dy), a key component in NdFeB magnets.
Consequently, innovative direct and indirect recycling methods for SmCo magnets must
be developed.

Currently, methods for recovering rare earth from NdFeB magnets include hydromet-
allurgical processes [21–24] and pyrometallurgical processes [25–28]. However, there have
been few studies on the recovery of rare earths from SmCo magnets. In the literature [29–31]
on the pre-treatment of SmCo magnets, waste magnets were first demagnetized in a high-
temperature furnace. Sinha et al. (2017) [29] proposed demagnetizing them at a temperature
of 850 ◦C for 6 h. Then, SmCo magnets should be crushed and ground using a hydraulic
press and grinder, which is beneficial for follow-up research. Sinha et al. (2017) [29] also
suggested mechanically crushing, grinding, and screening the SmCo magnet ring with
a 150 µm sieve. After completing the pretreatment process, most studies [29,31–33] use
hydrometallurgical methods to purify and separate valuable metals. First, the powder is
leached with either an inorganic acid (such as sulfuric acid, hydrochloric acid, or nitric
acid) [29,31,32] or an organic acid (such as citric acid) [34]. However, Zhou et al. [33]
(2017) proposed using sulfuric acid to leach waste SmCo magnets. Unfortunately, Sm
easily reacts with sulfuric acid to form samarium sulfate precipitation, which results in
poor leaching efficiency. Therefore, most studies [29,32] have used hydrochloric acid and
nitric acid for leaching. After the leaching experiment was completed, the study used
solvent extraction [17,29,32,35], ion exchange [36], and precipitation [31,33,37,38] methods
for metal separation. Finally, the recovered powder was calcined to meet the raw materials
for making magnets. Sahoo et al. proposed that the separated Sm and Co solutions be pre-
cipitated with oxalic acid, and then the samarium oxalate and cobalt oxalate were calcined
at 800 ◦C and 450 ◦C, respectively, to form metal oxides.

One of the primary strategies for circulating magnet materials throughout the supply
chain involves proposing the most effective approach to refine valuable materials from
discarded SmCo magnets. However, the above studies [17,29,31–33,35,37,38] only focused
on the recovery of Sm and Co, and did not purify and separate all metals (Sm, Co, Fe, Cu,
and Zr) in the waste. Therefore, this study hopes to propose a complete recovery method to
deal with real waste. In addition, in the separation method, after the metal is separated by
the solvent extraction method, metal precipitation is required, and the process is relatively
complicated. The ion exchange method, on the other hand, requires diluting the aqueous
solution, resulting in increased wastewater volumes. In this study, a simpler process was
developed, using the precipitation method to directly separate the metal by precipitation,
so the metal could be reprocessed into a magnet.

2. Results and Discussion
2.1. Selective Precipitation of Sm by Na2SO4

To facilitate subsequent research, precipitation experiments were carried out using
a L9(34) orthogonal table to determine the precipitation efficiency of Sm. The results of
these experiments, showing the precipitation efficiencies of Sm under different parameters,
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are presented in Table 1. The precipitation efficiency was observed to be affected by the
temperature, addition of Na2SO4, and time [33].

Table 1. The orthogonal array experiment results of Sm precipitation.

No. Temp. Time Na2SO4 Sm Co Fe Cu

Unit ◦C min (w/v)% % % % %

1 70 20 6 17.69 0.09 0.64 0
2 70 40 9 90.88 2.05 3.51 1.13
3 70 60 12 99.19 2.31 6.06 0.88
4 80 20 9 90.22 1.78 5.74 0.84
5 80 40 12 99.31 2.85 4.31 0.84
6 80 60 6 44.63 1.25 2.71 0
7 90 20 12 99.40 3.03 4.78 1.34
8 90 40 6 48.59 0 0 0
9 90 60 9 95.60 0 3.19 0

In this study, the priority of each factor on Sm precipitation efficiency was analyzed
through factor effect analysis using results from orthogonal table experiments. The pre-
cipitation efficiency at the addition of Na2SO4 of K3 (as shown in Table 2) represents the
average precipitation efficiency with an addition of Na2SO4 of 12 (w/v)% (as shown in
Table 1). The extreme deviation is the difference between the best and worst precipita-
tion rates of Sm under K1 to K3 conditions. The order of priority for factors that affect
precipitation efficiency was determined using extreme deviation [39,40].

Table 2. Factor response table for Sm precipitation.

Sm

Effect Factor Temperature Time Na2SO4

K1 69.25% 69.10% 36.97%

K2 78.05% 79.60% 92.23%

K3 81.20% 79.81% 99.30%

Extreme Deviation 11.94% 10.70% 62.33%

Priority Order Na2SO4 > Temperature > Time

Table 2 shows the factor response table for the precipitation rate, which revealed
that the order of influence on precipitation efficiency was Na2SO4 > temperature > time.
The preliminary optimal parameters determined were 12 (w/v)% Na2SO4 addition, 80 ◦C
temperature, and 40 min time, which resulted in the highest precipitation efficiency. As the
precipitation efficiency at 40 and 60 min was found to be equivalent, 40 min was chosen as
the initial optimum parameter. Similarly, as the precipitation efficiency at 80 and 90 ◦C was
also found to be equivalent, 80 ◦C was selected as the initial optimum parameter time.

Figure 1 illustrates the results of the Sm precipitation confirmation experiment. As
shown in Figure 1a, Sm precipitation efficiency was less than 50% when 6 (w/v)% of
sodium sulfate was added. However, when the amount of sodium sulfate was increased
to 10 (w/v)%, the precipitation efficiency of Sm significantly improved, reaching 96.25%.
Therefore, the amount of sodium sulfate added was identified as the most crucial parameter,
as it had a significant impact on precipitation effectiveness.

Compared with the amount of sodium sulfate added, the temperature had a negligible
effect on Sm precipitation efficiency, as depicted in Figure 1b. When the Sm temperature
was 60 ◦C, the precipitation efficiency reached 93.44%, and increasing the temperature
did not result in a significant improvement in precipitation efficiency. However, at a
temperature of 60 ◦C, the co-precipitation efficiency of Fe was 18.56%. Thus, 60 ◦C was
not the optimal precipitation parameter. The primary reason for Fe co-precipitation was
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that Fe readily forms ferric sulfate precipitation at lower temperatures [41–43], resulting in
increased co-precipitation rates of Fe. Therefore, the optimal temperature was 70 ◦C.
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Figure 1. Effects of (a) addition of sodium sulfate (temperature = 80 °C, time = 40 min), (b) temper-
ature ([Na2SO4] = 10 (w/v)%, time = 40 min), and (c) time ([Na2SO4] = 10 (w/v)%, temperature = 70 °C) 
on Sm precipitation. 
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et al. [33] utilized sulfuric acid for leaching, resulting in a solution with a high concentra-
tion of sulfate ions, which promoted the precipitation of sodium samarium bisulfate. Con-
sequently, less sodium sulfate was added in their study. The precipitation of sodium sa-
marium bisulfate is demonstrated in Formula (1). Despite the higher molar ratio used in 

Figure 1. Effects of (a) addition of sodium sulfate (temperature = 80 ◦C, time = 40 min), (b) tempera-
ture ([Na2SO4] = 10 (w/v)%, time = 40 min), and (c) time ([Na2SO4] = 10 (w/v)%, temperature = 70 ◦C)
on Sm precipitation.

Figure 1c shows that the Sm precipitation reaction was relatively slow, and it took
50 min to achieve a Sm precipitation rate higher than 95%.

Combining the above results, the optimal conditions for precipitation were determined
to be the addition of 10 (w/v)% of sodium sulfate, a temperature of 70 ◦C, and a precipitation
time of 50 min. Under these conditions, the precipitation rates of Sm, Co, Fe, and Cu were
96.11%, 0.05%, 0%, and 0%, respectively. This successful separation of Sm resulted in a
co-precipitation rate of other metals that were less than 0.1%.

The findings of this study were compared to those of Zhou et al. [33] (Table 3). Zhou
et al. [33] utilized sulfuric acid for leaching, resulting in a solution with a high concen-
tration of sulfate ions, which promoted the precipitation of sodium samarium bisulfate.
Consequently, less sodium sulfate was added in their study. The precipitation of sodium
samarium bisulfate is demonstrated in Formula (1). Despite the higher molar ratio used
in this study, a greater amount of Sm was successfully precipitated at lower tempera-
ture and time conditions. Moreover, this study effectively optimized the parameters for
Sm precipitation.

Sm2(SO4)3 + Na2SO4 + 2H2O ↔ 2NaSm(SO 4)2·H2O (1)
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Table 3. Comparison of results for Sm precipitation.

No. This Study Zhou et al. [33]

Temp. 70 ◦C 80 ◦C

Time 50 min 60 min

Molar ratio 6.69:1 4:1

Leachate HNO3 H2SO4

Ions in the leachate Sm, Co, Fe, and Cu Sm and Co

The precipitation rate of Sm 96.11% 93.4%

2.2. Selective Precipitation of Fe by NaOH

This section analyzes the impact of pH and time on Fe precipitation. Figure 2a shows
the effect of pH on Fe precipitation, revealing that the efficiency of Fe precipitation was less
than 10% when the pH was below 2.5, and the co-precipitation rate of Cu exceeded 50%
when the pH was above 4. Thus, pH was a crucial factor in Fe precipitation. The optimal Fe
precipitation rate of 98.28% was achieved at a pH of 3.5, with less than 1% co-precipitation
of other metals. Therefore, a pH of 3.5 was selected as the optimal parameter.
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Figure 2. Effects of (a) pH (temperature = 25 ◦C, time = 60 min) and (b) time (pH = 3.5,
temperature = 25 ◦C) on Fe precipitation.

The results regarding the effect of time on Fe precipitation are shown in Figure 2b. The
efficiency of Fe precipitation was faster compared with that of Sm precipitation. At a time
of 10 min, the precipitation rate of Fe reached 99.97%.

Combining the aforementioned results, it can be concluded that the precipitation rates
of Fe, Cu, and Co were 99.97%, 0%, and 0%, respectively, when the pH was 3.5 and the time
was 10 min. Fe was successfully separated, and the co-precipitation rate of other metals
was less than 0.1%.

The study of SmCo magnets has not yielded any other studies on Fe precipitation
separation so far. Therefore, no comparison of experimental results was made, highlighting
the novelty of this study.

2.3. Selective Precipitation of Cu by NaOH

This section discusses the impact of pH and time on the efficiency of Cu precipitation.
The effect of pH on the Cu precipitation efficiency is demonstrated in Figure 3a. The pH
level played a crucial role in Cu precipitation as it significantly influenced precipitation
efficiency. The optimal precipitation pH value was found to be 6.5, resulting in a Cu
precipitation efficiency of 94.93%.
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ture = 25 ◦C) on Cu precipitation.

Figure 3b shows the effect of time on Cu precipitation efficiency. The Cu precipitation
rate was slow, taking more than 70 min to achieve over 90% efficiency.

By combining the above findings, it was determined that a pH of 6.5 and a precipitation
time of 70 min resulted in Cu and Co precipitation rates of 93.81% and 0.95%, respectively,
indicating successful Cu separation with less than 1% Co co-precipitation.

The study of SmCo magnets has not yielded any other studies on Cu precipitation
separation so far. Therefore, no comparison of experimental results was made, highlighting
the novelty of this study.

2.4. Selective Precipitation of Co by Oxalic Acid

This part discusses the influence of molar ratio and time on the Co precipitation effect,
as shown in Figure 4. As the molar ratio increased from 0.5 to 1.5, the Co precipitation
efficiency increased from 76.76% to 96.84%. However, increasing the precipitation time
did not significantly increase the precipitation efficiency. Therefore, the molar ratio had a
greater influence on Co precipitation.
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In the study of the influence of time on Co precipitation, it was found that the Co
precipitation rate was very fast. The Co precipitation efficiency reached 98.15% in 1 min.

Based on the above results, the precipitation rate of Co reached 98.15% under the
condition of a molar ratio of 1.5 and a time of 1 min. These results were compared with
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those of Wang et al. [36] (Table 4). Despite the higher molar ratio used in this study, more
Co was successfully precipitated under lower temperature and time conditions. Moreover,
this study effectively optimized the parameters for Co precipitation.

Table 4. Comparison of results for Co precipitation.

No. This Study Wang et al. [36]

Temp. 25 ◦C 60 ◦C

Time 1 min 60 min

Molar ratio 1.5:1 1:1

Leachate HNO3 H2SO4

The precipitation rate of Co 98.15% 96.20%

2.5. Characterization of NaSm(SO4)2

As NaSm(SO4)2 releases sulfur oxides during TGA analysis, which can damage the
instrument, the oxidation temperature was not determined. However, Denisenko et al. [44]
proposed that heating NaSm(SO4)2 to 1187 ◦C would decompose it into liquid sodium sul-
fate and solid samarium oxide. In this study, NaSm(SO4)2 can be used to obtain samarium
oxide, which can be reused to make magnets.

The Sm precipitate obtained was analyzed by XRD, and the results are displayed in
Figure 5. The major peaks of NaSm(SO4)2 H2O at 25.699◦, 29.736◦, 42.325◦, and 49.278◦ were
observed, confirming the presence of crystalline NaSm(SO4)2 H2O as the dominant phase.
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Fe(OH)3 was calcined at 500 °C for 4 h, and the XRD analysis was performed (Figure 
6b). The results showed that after calcination, the sample exhibited the main peak of Fe2O3 
at 33.152°, confirming that Fe(OH)3 had transformed into Fe2O3. 2Fe(OH)ଷ → FeଶOଷ + 3HଶO (2)
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2.6. Preparation of Iron Oxide and Characterization

The TGA diagram and oxidation formula of Fe(OH)3 are shown in Figure 6a and
Formula (2), respectively. It can be observed that there is no significant weight loss when
the temperature reached 500 ◦C, and the weight remained at about 59.40% of the original
weight. Based on the theory of weight loss after oxidation, it can be concluded that the final
oxidation temperature of Fe(OH)3 was 500 ◦C.
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Fe(OH)3 was calcined at 500 ◦C for 4 h, and the XRD analysis was performed
(Figure 6b). The results showed that after calcination, the sample exhibited the main
peak of Fe2O3 at 33.152◦, confirming that Fe(OH)3 had transformed into Fe2O3.

2Fe(OH)3 → Fe2O3 + 3H2O (2)

2.7. Preparation of Copper Oxide and Characterization

Figure 7a and Formula (3) depict the TGA diagram and oxidation formula of Cu(OH)2,
respectively. Upon analysis, it was observed that there was no significant weight loss when
the temperature reached 500 ◦C. At this temperature, the weight was approximately 80.36%
of the original weight, which was consistent with the theoretical value of weight loss after
oxidation. Thus, 500 ◦C was determined to be the final oxidation temperature of Cu(OH)2.
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After calcining Cu(OH)2 at 500 ◦C for 4 h, the XRD analysis was performed, and the
results are shown in Figure 7b. The XRD pattern of the calcined Cu(OH)2 matches with the
main peaks of CuO at 35.495◦ and 38.730◦, confirming the transformation of Cu(OH)2 to
CuO upon calcination.

Cu(OH)2 → CuO + H2O (3)
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2.8. Preparation of Cobalt Oxide and Characterization

The TGA diagram and oxidation formula of CoC2O4 are shown in Figure 8a and
Formula (4), respectively. Upon analysis, it was observed that there was no significant
weight loss when the temperature reached 470 ◦C. At this temperature, the weight was
approximately 38.98% of the original weight, which was consistent with the theoretical
value of weight loss after oxidation. Therefore, 470 ◦C was determined to be the oxidation
temperature of CoC2O4.
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After calcination of CoC2O4 at 500 ◦C for 4 h, the XRD analysis was performed, and
the results are shown in Figure 8b. The XRD pattern of the calcined CoC2O4 corresponds to
the main peaks of Co3O4 at 36.935◦, 59.508◦, and 65.406◦, confirming the transformation of
CoC2O4 to Co3O4 upon calcination.

3CoC2O4 + 2O2 → Co3O4 + 6CO2 (4)

3. Materials and Methods
3.1. Materials

Tai Chuan Metal Co., Ltd. (Taipei, Taiwan) provided the SmCo magnet scraps used in
this study, which were abundant in Sm, Co, Fe, Cu, and Zr. Table 5 displays the composition
of the SmCo magnet scrap after digestive analysis and the concentrations of Sm, Co, Fe, and
Cu in the leachate, which only contains these metals since Zr, which cannot be leached [45],
was initially separated during the leaching process. The leachate was produced at a
temperature of 25 ◦C, a nitric acid concentration of 2.5 mol L−1, a solid-to-liquid ratio of
65 g L−1, and a time of 1 min, resulting in a leaching efficiency of 99.52%, 92.45%, 92.84%,
and 94.30% for Sm, Co, Fe, and Cu, respectively.

Table 5. The content of the SmCo magnet and the concentration in the leachate.

Element Sm Co Fe Cu Zr

The weight percent of
element (wt.%) 22.70 51.08 14.51 5.12 4.31

Metal concentration in
leachate (ppm) 15,756 31,088 8762 3174 -

Nitric acid (HNO3, 70%) and hydrochloric acid (HCl, 37%) for aqua regia digestion,
nitric acid (HNO3, 70%) for leaching, sodium sulfate (Na2SO4, 99.5%) for Sm precipitation,
ammonia (NH4OH, 29%) for precipitation of Fe and Cu, and oxalic acid (H2C2O4, 99%)
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for Co precipitation were purchased from Echo Chemical Co., Ltd. (Miaoli, Taiwan). All
aqueous solutions were prepared in deionized water.

3.2. Equipment

The pH of the solution was monitored by a pH meter (PL-700PVS, Dogger Science,
Taipei, Taiwan). In order to control the precipitation and leaching temperature, the precipi-
tation and leaching process was carried out in a thermostatic bath with magnetic stirring
(Shin-Kwang Precision Industry Ltd., New Taipei, Taiwan). Subsequently, the solid–liquid
separation was carried out through a filter device (Chemker 300, Rone Scientific Co., Ltd.,
New Taipei, Taiwan). An atomic absorption spectrometer (AAS, PinAAcle 900F AA Spec-
trometer, PerkinElmer Inc., Waltham, MA, USA) was used to analyze the concentration
of metals in the aqueous solution. The oxidation temperature of Fe(OH)3, Cu(OH)2, and
CoC2O4 in the precipitation were analyzed by thermogravimetry analysis (TGA, TGA-51,
Shimadzu, Japan). The crystal structure of the product (NaSm(SO4)2, Fe2O3, CuO, and
Co3O4) were analyzed via X-ray diffractometry (XRD, DX-2600, Dandong, China), with Cu
Kα radiation ranging from 2θ = 10–70◦, to identify the phases present. The precipitate was
calcined using a high-temperature furnace (Thermo Scientific Lindberg/Blue M BF51866C
Muffle Furnace, Hogentogler & Co., Inc., Howard County, Columbia, MD, USA).

3.3. Experimental Method
3.3.1. The Composition of the Magnet

To confirm the powder composition, aqua regia digestion was utilized. In detail, 1 g
of SmCo magnet powder was added to a 250 mL conical flask containing 10 mL of nitric
acid and 30 mL of hydrochloric acid. The flask was then placed in a thermostatic bath at
90 ◦C for one day to guarantee complete metal dissolution. The metal concentration in the
resulting aqueous solution was analyzed using AAS. The contents of Sm, Co, Fe, Cu, and
Zr in the magnet are displayed in Table 5.

3.3.2. Leaching of Magnets

The hydrometallurgical method was employed in this study to recover the metals
from the magnet. For leaching, SmCo magnet powder and 100 mL of an acid solution
(a mixture of deionized water and the required amount of acid) were added to a 250 mL
conical flask, and the experimental temperature was regulated using a thermostatic bath.
The resulting solution was filtered, and the metal concentration was analyzed using AAS.
The leaching efficiency (L%) was determined using Formula (5) [33].

L(%) =
V1(L)× C1(g L−1)

M1(g)× W1
× 100% (5)

where M1 is the mass of the alloy sample, W1 is the metal content of the alloy sample, V1
is the volume of the leach solution, and C1 is the mass concentration of the metal in the
leach solution.

3.3.3. Precipitation Method

For the precipitation experiment, this study added 100 mL of leachate and precipitant
to a 250 mL Erlenmeyer flask. The experimental temperature and stirring rate were
controlled using a thermostatic bath. The resulting solution was filtered, and the metal
concentration was analyzed using AAS. The precipitation efficiency (P%) was determined
using Formula (6) [33].

P% =
V2 × C2 − V3 × C3

V2 × C3
× 100% (6)

where P is the precipitation percentage of metal, V2 and V3 are the volume of the leachate
and the filtrate, respectively, and C2 and C3 are the mass concentrations of metal in the
leachate and in the filtrate, respectively.
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3.3.4. Sm Precipitation

The previous study [33] revealed that sodium sulfate exhibited selective separation
characteristics for Sm precipitation under low pH conditions. Therefore, this study first
employed sodium samarium sulfate to investigate Sm separation. In contrast to the study
by Zhou et al. [33], which focused solely on the separation of Sm and Co, this study
aims to investigate the separation of Sm, Co, Fe, and Cu with more complex components.
Furthermore, this study employed the Taguchi method to determine the priority order
of each parameter on precipitation efficiency and determine the optimal precipitation
parameters. In comparison to the one-factor-at-a-time experimental method and the full-
factor experiment method, the Taguchi method requires fewer experiments to obtain useful
statistical information. Therefore, the Taguchi method was adopted for this study.

The efficiency of Sm precipitation is influenced by various factors, such as temper-
ature, the addition of Na2SO4, and time [33]. To determine the priority order of these
three factors on precipitation efficiency, this study used the Taguchi method. First, the
orthogonal array experiment was implemented. This study used a L9(34) orthogonal table
with selected control factors and levels of temperature (70–90 ◦C), an addition of Na2SO4
(6–12 g 100 mL−1), and time (20–60 min), as shown in Table 6. After completing the or-
thogonal array experiment, this study performed a factor effect analysis to understand
the order of priority of each factor affecting the Sm precipitation efficiency and found the
preliminary optimal experimental parameters. Finally, this study used the priority ranking
of precipitation by each factor to conduct confirmation experiments and obtained the best
precipitation parameters.

Table 6. A L9(34) orthogonal table of Sm precipitation.

No. Temp. Time Na2SO4

Unit ◦C min (w/v)%

1 70 20 6
2 80 40 9
3 90 60 12

3.3.5. Fe and Cu Precipitation

This study examines the precipitation efficiency of Fe, Cu, and Co at different pH
values. The results [38] show that Fe precipitation occurs at a pH range of 2–2.7, while
Cu precipitation occurs at pH 4.5–6.5, and Co precipitation at pH 7.5–9. Based on these
findings, it is believed that adjusting the pH value is an effective method for separating
these metals. Furthermore, the research findings [38] indicate that precipitation of each
metal can be achieved at room temperature. As a result, this study opted to investigate the
precipitation of Fe and Cu at 25 ◦C.

Given that the parameters that need to be adjusted for Fe and Cu precipitation are pH
and time, and based on previous studies [38], it is clear that pH affects metal precipitation
more than time. Therefore, the optimal precipitation parameters for Fe and Cu were deter-
mined without evaluating the relative importance of each parameter. For Fe precipitation
parameter adjustments, the pH range was from 2 to 5 and the time range was from 1 to
30 min. For Cu precipitation parameter adjustments, the pH range was from 5 to 7 and the
time range was from 10 to 90 min.

3.3.6. Co Precipitation

To produce a reusable product, this study employed oxalic acid for Co precipitation.
For Co precipitation parameter adjustments, the molar ratio ranged from 0.5 to 4, and the
time ranged from 1 to 9 min.
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3.3.7. Product Preparation and Characterization

To obtain raw materials suitable for magnet production, this study analyzed the
oxidation temperature of the precipitate using TGA to confirm the oxidation temperature
of each metal. However, sodium samarium bisulfate was not analyzed using TGA due to
the generation of sulfur oxides during the analysis process, which could cause damage to
the instrument.

After confirming the oxidation temperature of each metal, this study proceeded with
the oxidation of the precipitate. Specifically, 5 g of the precipitate was placed into a ceramic
vessel, which was put into a high-temperature furnace. The temperature was raised to the
required level in order to obtain the oxides of each metal. Finally, the XRD [46] was used to
confirm the composition of the product (NaSm(SO4)2, Fe2O3, CuO, and Co3O4).

3.3.8. Separation Process

Figure 9 shows the research process. First, this study added sodium sulfate to pre-
cipitate Sm from the leachate. The Sm formed a precipitate of NaSm(SO4)2 which was
separated from the leachate. Secondly, this study added ammonia to precipitate Fe from the
leachate by adjusting the pH, and the Fe formed a Fe(OH)3 precipitate. Thirdly, this study
added ammonia to precipitate Cu by adjusting the pH and obtained a Cu(OH)2 precipitate.
Fourth, the Co was precipitated as CoC2O4 by the addition of oxalic acid. Fifth, this study
carried out a TGA analysis and calcination experiments to obtain the metal oxides of the
precipitates. Finally, this study carried out XRD analysis to confirm the composition of
the precipitates.
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4. Conclusions

In this study, Na2SO4, NH4OH, and H2C2O4 were used to precipitate and separate
Sm, Fe, Cu, and Co. The precipitation efficiencies for Sm, Fe, Cu, and Co were 96.11%,
99.97%, 93.81%, and 98.15%, respectively, with co-precipitation efficiency below 1%. The
XRD analysis indicated that the precipitates were NaSm(SO4)2, Fe2O3, CuO, and Co3O4,
respectively. This study proposes a new method for recycling SmCo magnets, enabling the
recovered metals to be converted back into magnets to support a circular economy.

Compared with solvent extraction and ion exchange techniques, the precipitation
method proposed in this study significantly reduces wastewater output and enables a
one-step recovery process, thereby streamlining the recovery procedure. Nevertheless, the
approach to wastewater treatment in this study warrants further investigation. Given the
advanced state of current industrial wastewater treatment technologies, it is anticipated
that effective solutions can be implemented to address this aspect with clarity.

Author Contributions: Conceptualization, J.-Z.W.; methodology, J.-Z.W.; validation, J.-Z.W.; in-
vestigation, J.-Z.W. and Y.-C.T.; resources, J.-Z.W.; data curation, J.-Z.W.; writing—original draft
preparation, J.-Z.W.; writing—review and editing, J.-Z.W. and Y.-C.T.; supervision, Y.-H.S.; project
administration, Y.-H.S. All authors have read and agreed to the published version of the manuscript.
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