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Abstract: Dog and cat faeces are a globally neglected issue that demands proper management. The
poor handling of pet waste not only impacts environmental health but also contributes to community
conflicts due to insufficient waste management practices. The objectives were to investigate the
properties of pet wastes compared to livestock wastes (pigs, hens, and cattle) with the intention of
formulating an efficient compost product suitable for agricultural applications. Faeces from dogs
and cats were collected from the community, while faeces from livestock (pigs, cattle, and hens)
were collected from farms. Faeces were mixed with probiotics, rice bran, and rice husk to make
compost and used to grow sweet corn plants. The nutrient content was compared between fresh
and composted faeces. Composted manure from different animal sources was compared for its
effectiveness in promoting sweet corn growth. The results showed that fresh and composted dog
and cat manures contained higher levels of nutrients (p < 0.05) compared to livestock manures.
Additionally, composted pet manure accelerated (p < 0.05) the growth of the plants compared to
composted livestock manures and control groups. This is the first study to conclude that composted
pet faeces surpass livestock manure in their higher nutrients and enhance plant growth. The findings
could help reduce pet waste and transform it into a valuable recycled resource. However, the safety
of composted manure, especially concerning toxoplasmosis from cat faeces, remains a significant
concern and requires further investigation.

Keywords: compost; faeces; livestock; manure; pet; plant

1. Introduction

Pet waste, specifically from dog and cat manure, is a globally overlooked issue. It is
estimated that more than 2 million tons of pet faeces are produced annually, highlighting
the need for effective management and sustainable solutions [1,2]. In 2023, the number
of pets in our society increased, with an estimated total of around 900 million including
approximately 471 million dogs, followed by 370 million cats [3]. The growing number
of animals is leading to challenges in waste disposal, particularly with regard to animal
faeces. This issue contributes to problems such as odours and the attraction of insects,
which have a negative impact on environmental health and can cause conflicts within
communities [4,5]. These problems are continuously increasing, particularly in countries
with inadequate waste management systems and weak law enforcement [6].
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In Thailand, the total population of dogs and cats is estimated to be 10 million; however,
there remains a lack of proper management for pet faeces, resulting in numerous public
health and environmental issues [7]. From our observation, pet faeces are mainly left in
gardens or public areas and allowed to decompose naturally, leading to issues such as odour,
contamination, and the spread of germs to others. Some pet owners dispose of pet faeces in
plastic bags, further contributing to the growing problem of plastic waste [8]. Few owners
combine faeces with leaves, attempting natural fertilisation without proper knowledge,
potentially resulting in the spread of zoonotic diseases and also exerting negative effects
on plant biodiversity and ecosystem functioning due to excessive salinity and nitrogen
levels [9].

Although dog and cat faeces are produced in large quantities, proper protocols for
recycling and waste management have rarely been explored. A few reports have demon-
strated that dog waste has the potential to generate biogas, but it has a limited quantity and
less gas production; therefore, it is recommended to be used with plant and other animal
wastes to enhance its efficiency for biogas production [10,11].

Another possible method for recycling pet waste is composting, although most of the
existing protocols are not based on scientific research [12]. One scientific study indicated
that composting cat manure with spent coffee grounds produced a nutrient-rich mixture
that supported the growth of spinach, showing superior results compared to composted
chicken manure [13]. While composting and anaerobic digestion are viable treatments
for managing dog faeces on both small and large scales, there is no scientific report on
the ability to grow plants using the resulting products [14,15]. Given the current limited
understanding of composting pet waste and its uncertain potential as a viable composting
material, more studies are needed to investigate the properties of pet faeces, the proper
composting process, and its effectiveness in promoting the growth of various plants.

The hypothesis of this study was that composted dog and cat faeces could be nutrient-
rich and suitable for growing plants. The objectives of this study were to investigate the
properties of pet (dog and cat) wastes compared to livestock (pig, chicken, and cattle) wastes
with the intention of formulating an efficient compost product suitable for agricultural
applications at the home scale. The goal of this study was also to develop a practical
and effective protocol for composting dog and cat manure. The findings derived from
this pioneering study could potentially contribute to the mitigation of pet waste and its
transformation into a valuable recycled resource.

2. Results
2.1. Comparison of the Physical and Chemical Properties Among Different Types of Fresh Manure

The physical and chemical characteristics of fresh manures from various animals,
rice husk, and rice bran are detailed in Table 1. The moisture content percentages were
significantly higher (p < 0.05) in livestock, especially in hens, compared to pet manures.
Meanwhile, cattle manure exhibited a significantly higher (p < 0.05) pH than other sources
of manure. Cat manure contained significantly higher levels of phosphorus and calcium
(p < 0.05) compared to other species, while dog manure had a notably higher nitrogen
concentration (p < 0.05). The potassium levels in manure from hens, pigs, cats, and dogs
were comparable, whereas those in cattle manure were significantly lower (p < 0.05). Cattle
manure exhibited significantly higher magnesium levels compared to other types of manure
(p < 0.05). Additionally, the sulphur levels in dog and cat manure were significantly higher
(p < 0.05) than those in other manures.

2.2. Physical and Chemical Composition of Composted Manures Obtained from Pets and Livestock

The physical and chemical properties of composted manures from various animal
sources are presented in Table 2. Cattle manure demonstrated a significantly higher
moisture content percentage (p < 0.05). Cat manure contained a significantly greater
proportion of organic matter compared to the other animal manures, while dog manure
exhibited a significantly higher pH relative to the other manure types.
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Table 1. Physical and chemical properties of fresh manures from different animals, rice bran, and rice husk (mean ± SD).

Source of Manure MC (%) OM (%) pH P (%) N (%) K (%) Ca (%) Mg (%) S (%) EC (mS/m)

Cat 40.91 ± 0.27 b 71.20 ± 0.42 c 7.33 ± 0.02 c 2.73 ± 0.00 f 2.23 ± 0.01 e 0.49 ± 0.00 b 1.57 ± 0.00 g 0.49 ± 0.00 f 0.27 ± 0.02 f 1.87 ± 0.00 f

Dog 42.80 ± 0.24 b 64.33 ± 0.30 b 8.64 ± 0.02 f 2.53 ± 0.01 e 3.06 ± 0.06 g 0.72 ± 0.00 e 0.89 ± 0.00 e 0.46 ± 0.00 e 0.25 ± 0.01 e 1.20 ± 0.00 c

Hen 84.40 ± 0.96 d 60.93 ± 0.68 a 8.08 ± 0.02 d 1.51 ± 0.01 c 2.61 ± 0.04 f 1.04 ± 0.00 g 0.91 ± 0.00 f 0.32 ± 0.00 d 0.25 ± 0.00 e 1.68 ± 0.00 e

Pig 73.11 ± 0.32 c 75.36 ± 1.02 d 8.29 ± 0.04 e 2.09 ± 1.32 d 1.92 ± 0.04 d 0.86 ± 0.01 f 0.65 ± 0.06 c 0.66 ± 0.00 g 0.24 ± 0.00 d 1.44 ± 0.00 d

Cattle 80.61 ± 1.56 d 64.59 ± 0.34 b 7.16 ± 0.03 b 1.26 ± 0.01 b 1.80 ± 0.03 c 0.67 ± 0.01 d 0.25 ± 0.00 b 0.29 ± 0.00 c 0.16 ± 0.00 c 1.20 ± 0.00 c

Rice husk 9.60 ± 0.06 a 89.74 ± 0.16 f 6.99 ± 0.03 b 1.21 ± 0.08 b 0.46 ± 0.01 a 0.57± 0.00 c 0.13 ± 0.00 a 0.25 ± 0.00 a 0.12± 0.00 b 0.09 ± 0.00 a

Rice bran 9.81 ± 0.08 a 85.47 ± 0.76 e 6.36 ± 0.12 a 0.44 ± 0.01 a 1.25 ± 0.01 b 0.44 ± 0.02 a 0.68 ± 0.14 d 0.28 ± 0.00 b 0.06 ± 0.00 a 0.11 ± 0.00 b

Abbreviations: MC = moisture content, OM = organic matter, N = nitrogen, P = phosphorus, K = potassium, Ca = calcium, Mg = magnesium, S = sulphur, and EC = electrical conductivity.
Three replicates were performed. a–g represent a statistical difference (p < 0.05).

Table 2. Physical and chemical properties of composted manure derived from different animal sources in comparison to composted rice bran with husk and
conventional soil (mean ± SD).

Source of
Compost Manure MC (%) OM (%) pH P (%) N (%) K (%) Ca (%) Mg (%) S (%) EC (mS/m)

Cat 35.05 ± 0.03 c 30.61 ± 0.58 c 6.31 ± 0.11 c 1.95 ± 0.02 f 0.96 ± 0.01 c 0.20 ± 0.02 b 1.49 ± 0.04 g 0.18 ± 0.00 d 0.06 ± 0.00 d 0.02 ± 0.00 b

Dog 34.39 ± 0.23 c 20.94 ± 0.75 b 6.99 ± 0.16 d 0.54 ± 0.00 c 1.56 ± 0.03 d 0.20 ± 0.08 b 0.59 ± 0.00 e 0.15 ± 0.00 c 0.06 ± 0.00 d 0.02 ± 0.00 b

Hen 54.15 ± 0.06 e 29.71 ± 1.76 c 6.54 ± 0.03 c 0.44 ± 0.00 b 0.97 ± 0.06 c 0.26 ± 0.04 b 0.90 ± 0.02 f 0.11 ± 0.00 b 0.05 ± 0.00 c 0.04 ± 0.00 c

Pig 52.28 ± 0.52 d 28.40 ± 2.86 c 7.12 ± 0.10 e 0.72 ± 0.03 d 0.98 ± 0.01 c 0.22 ± 0.04 b 0.37 ± 0.00 d 0.23 ± 0.01 e 0.04 ± 0.00 b 0.02 ± 0.00 b

Cattle 59.94 ± 0.34 f 27.32 ± 4.73 c 7.51 ± 0.20 f 0.10 ± 0.00 a 0.87 ± 0.01 b 0.08 ± 0.01 a 0.14 ± 0.00 c 0.05 ± 0.00 a 0.05 ± 0.00 c 0.01 ± 0.00 a

Rice bran/husk 4.14 ± 0.46 a 19.11 ± 1.77 b 5.87 ± 0.01 b 0.14 ± 0.00 a 0.83± 0.00 b 0.28 ± 0.00 b 0.03 ± 0.00 a 0.04 ± 0.01 a 0.00 ± 0.00 a 0.09 ± 0.00 d

Soil 29.29 ± 0.12 b 4.89 ± 0.03 a 5.67 ± 0.01 a 1.13 ± 0.04 e 0.16 ± 0.03 a 0.44 ± 0.01 c 0.08 ± 0.01 b 0.23 ± 0.01 e 0.00 ± 0.00 a 0.14 ± 0.00 e

Abbreviations: MC = moisture content, OM = organic matter, N = nitrogen, P = phosphorus, K = potassium, Ca = calcium, Mg = magnesium, S = sulphur, and EC = electrical conductivity.
Three replicates were performed. a–g represent a statistical difference, p < 0.05.
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The composted cat manure exhibited significantly higher levels of calcium, phospho-
rus, and sulphur (p < 0.05) compared to the other composted manures. Composted dog
manure contained a significantly higher nitrogen content (p < 0.05), while the potassium
levels were notably higher (p < 0.05) in composted hen manure. Furthermore, the magne-
sium content was significantly higher (p < 0.05) in composted pig manure compared to the
other composted animal manures.

2.3. Transition of Colour, Odour, and Temperature Change During Composting

On day 14, the compost manures were morphologically different from the fresh
manure, resembling conventional compost manure (Figure 1). The colour of composts
changed from a brown colour (day 0) to a black colour on day 14 (Figure 1). The odour
and temperature of manures before (day 0) and after composting (day 14) are shown
in Table 3. All manure odours were significantly reduced following composting. The
temperature of the manure increased markedly (p < 0.01) during the transition from fresh to
composted manure. The daily temperature measurements during the composting process
are presented in Figure 2, with the highest temperature, approximately 40 ◦C, recorded on
day 14.
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Table 3. Comparison of the odour and temperature of manures pre composting (day 0) and post
composting (day 14). Three temperature measurements were taken from separate pots, and the
temperature values are reported as the mean ± SD.

Source of Manure
Fresh Animal Manure Composted Animal Manure

Odor Temperature (◦C) Odor Temperature (◦C)

Cat ++ 31.70 ± 1.15 + 40.30 ± 1.53 *

Dog +++ 31.30 ± 0.58 + 40.70 ± 1.15

Hen ++++ 30.70 ± 0.58 + 37.70 ± 1.15 *

Pig ++ 30.30 ± 1.53 + 39.30 ± 0.58

Cattle ++ 28.30 ± 1.15 * + 36.70 ± 1.53 *

Rice brand/husk + 27.28 ± 0.58 * + 34.30 ± 1.53 *
* represents statistical difference, p < 0.01. + represents the strength of odour (+ = very mild odour, ++++ = very
strong odour).

2.4. Effect of the Animal Manures on Growth of Sweet Corn

In general, the soil without compost exhibited lower nutrient levels compared to all
composts (Table 2). However, it was still able to partially support the growth of sweet corn,
albeit at a lower level than soil with compost.
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The sweet corn crop’s height, number of leaves, leaf length, and root length at 3 weeks
after sowing are detailed in Table 4 and Figure 3. The results indicate that the treatment with
composted dog manure yielded the highest height of trunk (14.20 ± 1.10 cm), followed by
composted hen manure (13.80 ± 2.27) and composted cat manure (13.60 ± 2.77). Notably,
composted dog manure significantly promoted the growth of sweet corn compared to
composted pig manure, composted cattle manure, and the control composts (p < 0.05).
However, there was no statistical difference (p > 0.05) between composted dog, cat, and
hen manures.
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Table 4. The effect of composted animal manures on the growth of sweet corn plants (on day 21).
Each group consisted of five samples, with the growth data expressed as the mean ± SD.

Treatments Height of Sweet
Corn (cm)

Number of Leaves
(per Plant)

Leaf Length
(cm)

Root Length
(cm)

Cat compost + soil 13.60 ± 2.77 cd 8.00 ± 1.00 bc 18.57 ± 1.29 d 24.7 ± 0.40 d

Dog compost + soil 14.20 ± 1.10 d 9.00 ± 1.00 c 18.87 ± 1.88 d 23.1 ± 0.35 c

Hen compost + soil 13.80 ± 2.27 cd 5.00 ± 1.00 ab 10.43 ± 2.27 bc 23.1 ± 0.46 c

Pig compost + soil 12.00 ± 0.32 c 6.67 ± 2.08 b 16.90 ± 1.51 d 24.7 ± 0.59 d

Cattle compost + soil 10.10 ± 0.61 b 6.67 ± 1.53 b 12.93 ± 1.79 c 31.6 ± 1.07 e

Rice bran/husk compost + soil
(control 2) 11.80 ± 1.72 bc 4.67 ± 0.58 a 9.83 ± 1.50 b 16.1 ± 0.75 b

No compost + soil (soil only)
(control 1) 8.40 ± 0.20 a 3.85 ± 1.00 a 5.32 ± 0.81 a 11.2 ± 0.31 a

a–e represent a significant difference, p < 0.05.
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The highest number of leaves (9.00 ± 1.00) was observed in corn grown with com-
posted dog manure, and the second highest was with composted cat manure (8.00 ± 1.00),
but there was no significant difference between the dog and cat compost. Composted dog
manure significantly increased (p < 0.05) the number of leaves compared to the livestock
compost and control groups. The highest leaf length was found in composted dog manure
(18.87 ± 1.88), followed by the cat (18.57 ± 1.29) and pig composts (16.90 ± 1.51), but
there is no statistical difference (p > 0.05). Moreover, composted dog and cat manures
significantly supported (p < 0.05) the length growth of leaves compared to the hen compost,
cattle compost, and control groups.

The longest root length was observed in composted cattle manure (31.6 ± 1.07 cm),
and it was significantly different (p < 0.05) from other manures and the controls. The second
longest root length was observed with composted cat manure (24.7 ± 0.40) and composted
pig manure (24.7 ± 0.59).

3. Discussion

This study appears to be the first to compare the nutrient content and plant growth-
promoting abilities of compost manures derived from pets and livestock faeces. As expected,
the dog and cat manures contained higher nutrient levels than the livestock manures,
particularly of nitrogen, sulphur, phosphorus, and calcium. This is likely attributed to
their carnivorous diet, which predominantly consists of commercial food that is higher in
protein, calcium, and phosphorus compared to livestock feed [16,17]. Similarly, previous
research has shown comparable findings, with cat manure co-composted with spent coffee
grounds exhibiting high nitrogen levels [13]. Additionally, composted canine manure was
found to have a higher nitrogen content than municipal solid waste and urban pruning
waste [15].

The present study demonstrated high levels of nitrogen, calcium, phosphorus, and
sulphur in composted dog and cat manure. These nutrients are essential for plant growth,
particularly during the vegetative stage of corn cultivation [18]. It is known that nitrogen
plays a dominant role in plant growth and development, serving as a key component
of proteins that regulate shoot branching, flowering, and panicle formation through cell
division and metabolic processes [19]. Calcium is a vital regulator of growth and devel-
opment, influencing nearly all aspects of plant function through enzyme activity and as
a primary component of cell walls. It maintains plant structure, supports root and leaf
growth, and aids in nutrient uptake and transport [20]. Phosphorus is crucial for energy
transfer within plants, particularly through the production of ATP, which drives cellular
processes. It is essential for root growth, flower and seed production, and plant maturation,
though its availability in soil is often insufficient for optimal plant growth [21]. Sulphur is
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an essential structural element in disulfide bonds found in proteins (including enzymes),
as well as in amino acids, vitamins, and cofactors, all of which are crucial for plant growth
and metabolism. A deficiency in sulphur can result in stunted plant growth and, ultimately,
a reduction in yield [22].

Regarding plant growth, this study demonstrated that both composted dog and cat
manures promoted better growth, resulting in taller trunks, a greater number of leaves,
and longer leaf lengths compared to other compost manures. These findings align with
earlier research, which showed that composted cat manure with coffee grounds produced
taller trunks and a higher number of leaves compared to composted chicken manure [23].
However, the plant-growing potential of dog manure has not previously been reported.

In this study, we used complex probiotics (EM) to accelerate the composting of ma-
nure. Without the use of EM, the initial composting of manure was slow, requiring over
30 days to undergo noticeable morphological changes into compost-like material. The
use of probiotics, particularly complex ones, can hasten composting, reduce odour, de-
crease pathogenic bacteria, and improve growth performance, as observed in poultry and
pigs [23,24]. In contrast, EM did not show significant benefits for cattle manure [25]. This
lack of improvement may be attributed to the nature of cattle manure, which is already
partially digested and fermented by microbes. The remaining materials in cattle manure
are predominantly fibrous and more resistant to microbial breakdown compared to the
less fibrous manure from carnivorous animals [26]. Additionally, probiotics are generally
designed to decompose more readily degradable organic matter, such as that found in
omnivorous animal manure. Therefore, microbial digestion tends to be more effective for
manure from carnivorous or omnivorous animals than for herbivores.

Turning pet faeces into composted manure is a potential alternative that some en-
vironmentally conscious pet owners may consider. In addition to improving soil fer-
tility, composting pet waste can help reduce global waste and minimise the release of
pathogens into the environment. However, there are important considerations when it
comes to composting pet waste. Pet faeces may contain zoonotic pathogens such as bacte-
ria (e.g., E. coli and Clostridium spp.) and parasites (e.g., intestinal worms, Toxoplasma spp.)
that may require extra treatment compared to conventional composting processes [27]. One
limitation of the present study is the lack of an investigation of the hazard of composted
dog and cat manure before and after composting. Most studies about composting manure
mainly investigate the dynamics of bacteria in the faeces, and it is believed that tempera-
tures above 55 ◦C are necessary to eliminate pathogenic bacteria during the composting
process in livestock manures [28]. Several studies have shown that some dog composting
processes can reach 55–60 ◦C [14,15], whereas cat manure composts reach a maximum
temperature of around 40 ◦C [13], similar to the present study. Additionally, one study
showed that although the temperature of the anaerobic digestion of dog waste does not
reach 55 ◦C (28–44 ◦C), the number of pathogenic bacteria is significantly reduced, both in
terms of type and the total number [29].

Regarding intestinal parasites, the composting process markedly reduced the number
of intestinal parasite eggs and cysts, including Ascaris eggs and Entamoeba cysts, after
composting [30,31]. One study showed that no viable eggs of many intestinal parasites
were observed at temperatures above 50 ◦C after 33 days [32].

Among various pathogens, Toxoplasma gondii is particularly concerning in cat faeces,
as cats are the definitive hosts of this parasite. T. gondii oocysts have been found in soil
samples from public areas worldwide, with a global prevalence of approximately 16% [33].
While soil contamination with T. gondii has been attributed to feline faeces, research findings
on this association remain contradictory [34]. For instance, high levels of contamination
have also been reported in locations without cats, such as farms and hospitals [34,35]. It is
known that the cysts and oocysts of T. gondii can be inactivated at 50 ◦C and completely
destroyed at temperatures of 58 ◦C or higher sustained for 30 min [36]. Consequently, the
existing protocols for the natural composting of cat manure may be insufficient to fully
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eliminate T. gondii oocysts from faeces or contaminated soil. Supporting this, traces of
T. gondii have been detected in commercial fertilisers [37].

There is a misunderstanding about the concept that pet manures are more dangerous
than livestock manures. In fact, pet animals are usually well kept, clean, and have regular
vaccinations and deworming. In Thailand, zoonotic pathogens are usually found more
often in livestock manure than in pet dogs and cats, possibly due to intensive farming
and the inappropriate use of antimicrobials [38–41]. Importantly, a microbiome study in
large agricultural composts found that only 1% of potential pathogens were observed, and
there was no significant difference between compost made using the in-vessel or windrow
methods, suggesting that composted animal manures are quite safe [42].

Another limitation of this study is that the manure was weighed directly without
accounting for moisture content, which varies among different types of animal manure.
This approach may have influenced the nutrient levels reported in the manure. The lower
nutrient content observed in livestock manure could be attributed to its higher moisture
content compared to dog and cat manure. However, weighing manure directly reflects
real-world conditions and provides a straightforward, practical method for application.
In this study, animal manures were composted for 14 days for practical use in home
gardens, and the composted dog and cat manures showed promising results, providing
a higher nutrient content and promoting better plant growth. However, the temperature
data suggest that full maturation may not have been achieved, as the temperature did
not reach the maximum thermophilic phase before cooling down, which is typical in
conventional composting processes [43]. Additionally, compost maturation can be assessed
using alternative methods, such as measuring the pH and odour. In this study, the pH of
the composted dog and cat manures increased from 6 to 8, and the odour was significantly
reduced, indicating that the compost may be nearly or fully mature [44]. Therefore, 14 days
of composting manure with complex probiotics might be enough for dog and cat manure,
while without probiotics, around 30 days may be required to fully compost cat manure, as
shown in a previous study [13].

Given the limited knowledge about composting dog and cat manure, future studies
should focus on optimising the use of probiotics and other factors to enhance the com-
posting process. The key areas of improvement include reducing the composting time,
improving the quality and safety of the resulting compost, and examining the changes in
the microbial community, nutrient levels, and plant growth after incubation over various
time frames.

4. Materials and Methods
4.1. Sample Collection

This project was approved by the Institutional Animal Care & Use Committee
(WU-ACUC-66082). This study utilised five sources of manure, comprising waste from
cats, dogs, pigs, beef cattle, and hens. Faeces from pets (dogs and cats) were sourced from
local households, while faeces from livestock (pig, beef cattle, and hens) were collected
from local animal farms in Tha Sala district, Nakhon Sri Thammarat province, Thailand.

Following prompt defecation (within an hour), 30 samples were obtained from each
animal by the owners, who then notified the researcher to collect. The samples were sealed
in clear plastic bags, collected by the researcher within 30 min, and transported to the
laboratory at Walailak University in Nakhon Sri Thammarat, Thailand, where they were
stored at 4 ◦C. Upon arrival, each faecal sample, weighing 200 g, was transferred to clear
plastic bags and stored at −20 ◦C for subsequent chemical analysis and compost production.
A total of 6000 g of faeces was collected from each animal manure source.

4.2. Preparation of Compost

In this experiment, animal faeces from dogs, cat, hens, cattle, and pigs were composted
for 14 days, as this would be convenient for the pet owner to apply in the future. Prior to
composting, fresh manure from each species (6000 g per manure type) was mixed. Of this,
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2000 g was combined with rice husk and rice bran in a 1:1:1 ratio by weight. Additionally,
500 mL of EM Extra® probiotics (EM Extra Company, Bangkok, Thailand) was added to
the mixture. The EM Extra® probiotics, as per the manufacturer’s data, consist of oxygenic
photosynthesis bacteria, Lactobacillales, Bacillus, and yeast. The composting process was
conducted with three replicates.

The compost mixture was prepared in a lidded plastic container with dimensions of
40 × 60 × 15 cm (width × length × height). Throughout the entire composting period,
a daily spray of 10 mL of sterilised tap water was applied to the compost to uphold
the necessary moisture content. The compost was stored in a well-ventilated indoor
environment at a room temperature of 28 ± 4 ◦C. To ensure optimal composting conditions,
the composting materials were turned over every other day.

4.3. Physical and Chemical Analysis of Manure

The temperature was recorded daily at 11 a.m. throughout the transformation of fresh
manure into composted manure. Additional parameters, including the pH, organic matter
content percentage, moisture content percentage, and percentages of phosphorus, nitrogen,
potassium, calcium, magnesium, and sulphur, were assessed on day 0 (fresh manure) and
day 14 (composted manure).

Six grams of fresh and composted manure was collected to analyse the moisture
content percentage and organic matter percentage. These samples were then subjected to
24 h of drying in an oven set at 70 ◦C, after which the final weight was recorded. Subse-
quently, the oven-dried samples were transferred to a desiccator before being combusted in
a furnace at 550 ◦C for another 24 h. The final weight was again recorded using a calibrated
analytical balance. The moisture content and organic matter content were calculated based
on the wet weight of the samples using Equations (1) and (2), respectively [45].

Moisture content (% w/w wet basis) =
ma − mo

ma
× 100 (1)

Organic matter content (% w/w wet basis) =
mo − m f

ma
× 100 (2)

Abbreviations used in the formulas: “ma” for the mass of air-dried soil samples, “mo”
for the mass of oven-dried soil samples, and “mf” for the mass of combusted soil samples.

The pH and electrical conductivity of the organic materials were assessed using
a 1:2 solid-to-water ratio, following a previous report [46]. The total organic nitrogen
concentrations were determined using a complete nitrification analyser (VarioMax CNS
macro-element analyser, Elementar Analytical Systems GmbH, Hanau, Germany). For the
determination of total potassium and total phosphorus, the organic material underwent
digestion in a 2:1 HNO3:HClO4 mixture at 360 ◦C. Subsequently, the total nitrogen and total
phosphorus contents were measured using an inductively coupled plasma optical emission
spectrometer (ICP-OES) in radial view configuration in digests obtained by boiling 1 g of
the sample in 20 mL HNO3 and 5 mL HCl [47]. The digestion with a 2:1 HNO3/HClO4
mixture allowed the determination of calcium and magnesium through atomic absorption
spectrometry [48]. The experiments were repeated 3 times for each manure.

4.4. The Ability of Composted Dog and Cat Manure to Support Plant Growth

Composted manure was mixed with soil as a growth medium for sweet corn culti-
vation. As a widely grown crop that responds noticeably to environmental factors and
nutrient levels, sweet corn serves as an ideal model for assessing how compost impacts plant
development. The experiment was conducted in a greenhouse (geographic coordinates:
8.637818786780855, 99.8831329291851), where water was manually regulated, while light
and humidity remained natural. The plant growth period spanned from February to March
2024, with a 12:12 h day–night cycle. The average air temperature was 32.33 ± 1.15 ◦C
during the day and 24.33 ± 0.66 ◦C at night, and the average humidity was 64.92 ± 6.60%.
In each of the 60 pots (30 × 22 cm), 3 seeds were planted using 1 kg of soil per pot. The pots
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were watered twice a day, and after 3 days, the weaker plants (smaller ones) were removed,
leaving only the strongest plant in each pot. Thirty-five pots with growing plants were
randomly selected for the experiment, with each group including five pots. The experiment
comprised 7 groups, including cat compost, dog compost, hen compost, pig compost, cattle
compost, rice bran/husk compost, and no compost.

On day 7 and day 14, 300 g of each compost type was added to the pots, with each
compost type used in 5 pots. Three weeks (on day 21) after sowing, the growth of the sweet
corn was assessed. The growth characteristics, including the number and length of leaves,
length of the trunk, and length of the root, were examined across various animal compost
types and control groups. The number of leaves was counted, and an average per plant
was calculated. The length of each leaf was measured from the leaf stalk to the leaf apex
using a ruler. The average length of leaves was calculated for each pot. Plant height was
measured with a measuring tape, determining the distance from the soil surface at the base
of the stem to the apex of the stem. For root growth measurement (radicle roots), soil was
carefully washed away to avoid cutting fine roots, and the roots were subsequently washed
with running water more than three times to remove soil from the root surface.

4.5. Statistical Analysis

Statistical analysis was performed using Jamovi 1.6.12 [49]. All parameters, except
for odour, were represented as the mean ± standard deviation (SD). One-way analysis
of variance (ANOVA) tests were employed to examine statistical differences between the
manure samples, with post hoc Tukey tests applied for multiple comparisons. A p value
less than 0.05 was considered a statistically significant difference.

5. Conclusions

This study represents the first evidence that composted dog and cat manure can
be utilised to enhance plant growth, yielding higher nutrient concentrations (including
nitrogen, calcium, phosphorus, and sulphur) and promoting the accelerated development
of plant leaves and trunks when compared to livestock manure. The proposed protocol
involves a 14-day composting process in which dog or cat manure is combined with rice
bran, rice husk, and probiotics. These findings highlight the potential of composted pet
waste as an alternative fertiliser, offering a promising solution to global waste management
challenges. However, the potential contamination of pet faeces with pathogens, particularly
Toxoplasma spp. from cats, raises significant biosafety concerns. Further investigations are
necessary to ensure the safety of composted dog and cat manure, including the development
of effective protocols to eliminate pathogens while preserving optimal nutrient content.
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