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Abstract: Disorders affecting the neurological and musculoskeletal systems represent international
health priorities. A significant impediment to progress in trials of new therapies is the absence of
responsive, objective, and valid outcome measures sensitive to early disease changes. A key finding
in individuals with neuromuscular and musculoskeletal disorders is the compositional changes to
muscles, evinced by the expression of fatty infiltrates. Quantification of skeletal muscle composition
by MRI has emerged as a sensitive marker for the severity of these disorders; however, little is
known about the composition of healthy muscles across the lifespan. Knowledge of what is ‘typical’
age-related muscle composition is essential to accurately identify and evaluate what is ‘atypical’.
This innovative project, known as the MuscleMap, will achieve the first important steps towards
establishing a world-first, normative reference MRI dataset of skeletal muscle composition with the
potential to provide valuable insights into various diseases and disorders, ultimately improving
patient care and advancing research in the field.

Keywords: artificial intelligence; neural networks; machine learning; MR imaging; muscle fat
infiltration; public datasets; normative reference data

1. Introduction

Many common diseases and disorders, including, but not limited to, cancer, diabetes,
Parkinsons, cardiovascular, neuromuscular and musculoskeletal conditions, chronic fatigue
syndrome, osteoarthritis, and frailty, lead to progressive muscle weakness that hinders daily
activities. The slow progression of these conditions makes it difficult to assess therapeutic
interventions because the impact of disease progression often gets masked by age-related
changes. In order to develop and implement robust outcome measures capable of accurately
assessing the impact of change in muscle composition, the confounding influence of normal
age-related changes needs to be comprehensively accounted for. While there are age-related
reference values or models of muscle composition (e.g., fat infiltrates) specific to certain
muscle groups, they lack generalizability beyond the populations being studied and lack
representation across sex and ethnicity [1–4]. Knowledge of what is ‘typical’ is essential to
accurately identify, effectively evaluate, and subsequently treat what is ‘atypical’. Therefore,
it is vital to develop reference values for demographic and anthropometric-related muscle
composition across the lifespan.

Skeletal muscle composition and morphometry are receiving more attention as ad-
vances in machine learning (i.e., supervised deep learning segmentation models) permit
improved visualisation and rapid quantification of muscle size and composition in clinically
indicated computed tomography (CT) and magnetic resonance imaging (MRI) scans [5,6].
CT and MRI represent routes to potential imaging biomarkers of muscle health. MRI is
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commonly preferred for quantifying muscle size and composition due to superior soft
tissue contrast and lack of ionizing radiation [7,8]. A biomarker that can be measured across
the lifespan and benchmarked with normative values would have a profound impact on
the field for many neuromuscular and musculoskeletal disorders. They appear to be useful
and accurate for measuring the magnitude, distribution, and clinical course of skeletal
muscle deterioration [9,10], are independent of patient effort and assessor variability, and
can be benchmarked against normative values [11,12]. However, there are no age-related
reference values against which to measure relative changes in skeletal muscle over time
or in response to therapy. Studies to date are limited to specific muscle groups in age-
limited patient populations, are reported using laborious manual data analytics, and lack
easily accessible normative reference values to understand the presence, magnitude, and
distribution of muscle pathology according to age [11–13].

Our primary goal is to establish MuscleMap, an open-source, community-supported
consortium for whole-body quantitative MRI of muscle. MuscleMap aims to provide stan-
dardised norms for muscle composition and morphometry, incorporating demographic and
anthropometric variables through state-of-the-art medical imaging and machine learning
technologies. By doing so we aim to provide comprehensive, well-characterised biomarkers
of muscle composition that can detect abnormalities early, monitor disease progression,
and evaluate therapeutic effectiveness. MuscleMap will enable more rapid, diverse, and
equitable advancement in research on many chronic health conditions.

Our commitment to this goal is underscored by (1) what has already been completed,
(2) what is currently in progress, (3) what is planned, and (4) the exploration of new
directions, spanning diverse body regions and disciplines, encompassing wellbeing and
the prediction of optimal health outcomes.

The objectives of MuscleMap are as follows:

(1) Develop a standardized acquisition protocol for whole-body quantitative MRI of mus-
cle for the most common MR manufacturers (General Electric, Siemens, and Philips).

(2) Generate a large (n ≥ 1000) open-source annotated multi-site, multi-racial, and multi-
ethnic heterogenous whole-body muscle MRI dataset across the lifespan using Mus-
cleMap’s standardized acquisition protocol.

(3) Create an open-source toolbox for the analysis of whole-body muscle morphometry
and composition using the MuscleMap whole-body muscle MRI dataset.

(4) Develop normative models for whole-body human skeletal muscle morphometry and
composition with respect to age, sex, gender, site, race, ethnicity, and body habitus
using the MuscleMap database.

(5) Identify and quantify changes in skeletal muscle morphometry and composition
associated with diseases and disorders, compared to MuscleMap normative models.

(6) Establish the necessary regulatory and data informatics infrastructure for the imple-
mentation of the MuscleMap toolbox and normative models into clinical workflows.

2. Why Is MuscleMap Needed?

Large muscle imaging datasets are needed to provide insights into what changes
in muscle morphology occur with age. MuscleMap, which will be built from a large
heterogenous MRI dataset, will provide this information and will deliver it open-source.
These normative reference values will be used to (1) diagnose pathology, (2) evaluate the
efficacy of interventions, (3) monitor disease severity and progression, and (4) assist in the
development of responsive outcome measures for disease-modifying therapeutic trials.

There is a pressing need for an acquisition protocol to ensure high-quality and stan-
dardized muscle imaging across the body as the quantification of muscle size and intra-
muscular fat appears to be dependent on the methodology [14]. Whole-body quantification
of muscle composition and size with MRI is challenging due to between-subject variability
(e.g., varying size and shape of muscles and people), the need to standardize imaging for
each body region (e.g., positioning, field-of-view, image resolution, and shimming), and
variability in acquisition protocols (e.g., field strength, imaging parameters, and hardware).
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For example, differences in imaging techniques (T2-weighted versus Dixon fat–water MRI)
and positioning of the field-of-view (intramuscular fat varies spatially) affect the mea-
sures of muscle health [14,15]. As shown in the spinal cord imaging field [16], a generic
acquisition protocol will (a) reduce the resources needed for beginning quantitative muscle
MRI and (b) reduce the variability (or increase standardization) in imaging parameters for
multi-site and multi-manufacturer studies, improving accuracy and reliability.

Contemporary techniques to quantify muscle composition rely on manual muscle
segmentation, which is laborious and precludes large-scale examinations. MuscleMap
solves this by curating a large heterogenous open-source dataset of whole-body muscle
MRI that will be used to develop generalizable computer-vision models (CVMs) and
machine learning algorithms. Similarly, the recent availability of open-source datasets,
such as MedicalDecathlon [17], Amos [18], and Chaos [19] is opening avenues for build-
ing generalizable machine learning networks that cover wide patient, manufacturer, and
demographic (i.e., age, sex, ethnicity etc.) variabilities. One such example of existing
large datasets for muscle MRI is the UK Biobank—the world’s largest biomedical research
dataset of whole-body MRI and dual-energy X-ray absorptiometry (DEXA) images [20].
However, whilst the UK Biobank is a large prospective cohort study with imaging on over
50,000 males and females, it is limited to ages 40–69 years and includes only people from
the United Kingdom who live within 25 miles (40 km) of 22 assessment centres, impacting
its generalizability globally [21]. Additionally, the UK Biobank’s imaging protocols were
designed to broadly assess muscle and fat across body regions, not within individual mus-
cles, reducing its utility in studying conditions affecting specific muscles. The MuscleMap
dataset will provide the global research community with an opportunity to develop a
toolbox to accurately, reliably, and rapidly measure muscle composition with sufficient res-
olution to study muscle-specific ageing and disease processes. Combining the standardized
acquisition and analysis methods with a large heterogenous dataset in healthy subjects,
MuscleMap will open avenues for normative modelling approaches. This will provide the
opportunity to expand the breadth and depth of our knowledge of muscle health across
childhood, adolescence, adulthood, senescence, sex, gender, race, and ethnicity so that
researchers and clinicians can better interpret and identify deviations that may indicate
potential health issues. Normative modelling—quantifying how an individual’s muscle
measurements deviate from normative values—will allow for precise and personalized
assessments by translating raw data into a meaningful context relative to a reference popu-
lation. Consequently, normative modelling enhances the ability to detect subtle changes in
muscle health, tailor interventions, and track progress over time, ultimately contributing to
patient-tailored treatments [22,23]. In the subsequent sections, we provide a non-systematic
narrative overview of existing knowledge underpinning the development and completion
of the emerging MuscleMap, region by region, starting with the cervical spine and ending
with the lower extremity.

3. Regional Anatomy and Musculature
3.1. Cervical Spine

To provide historical context, MuscleMap started after nearly 10 years of investigation
into clinical observations of muscle morphometry (size/shape) and muscle composition
(muscle fat infiltration (MFI)) using MRI in patients with chronic pain following whiplash
injury from motor vehicle collision [24]. Specifically, we sought to understand the rele-
vance of these observations to the whiplash condition, which might better underpin the
assessment and management of these patients.

Using manual methods, MFI can be quantified from conventional (T1- and T2-weighted)
and advanced (Dixon and proton density fat fraction) MRIs and CTs [24–26] and has now
been consistently observed and reported in patients with idiopathic neck pain, degen-
erative cervical myelopathy (DCM), and traumatic spinal cord injury [27–29]. Despite
the multifactorial aetiology of these conditions, there is a characteristic pattern of MFI
whereby deep muscular layers of the cervical extensors and cervical flexors [25,30] have
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the greatest magnitude of MFI and reductions in cross-sectional area in people with chronic
post-traumatic neck pain. MFI is also a significant predictor of poor functional recovery
and either directly involved in, or associated with, the biological mechanisms underlying
persistent neck-related disability, making it a potential target for treatment. Therefore,
assessing the magnitude of MFI could alter management and potentially improve rates of
recovery from persistent spinal disorders [31].

Manual segmentation of spinal muscles is not routinely performed clinically, thus
limiting its use in research environments. Accordingly, we originally trained a deep learning
CVM to perform segmentation of a single muscle group (multifidus and semispinalis
cervicis) [32], and later multiple muscles [5], in participants with varying levels of neck
pain and disability. Research in the area also demonstrates that MRI-based changes in
muscle morphology and composition can inform management. In one study, people with
idiopathic neck pain were observed to have a significantly smaller cross-sectional area
(CSA), suggesting atrophy, in 8 of 14 muscle regions examined compared to controls,
signalling potentially important targets for interventions to target muscle hypertrophy in
the management of neck disorders [33,34].

Our success in automatically segmenting the muscles traversing the cervical spine,
with its architecturally complex anatomy, indicates that effectively extending these methods
to other body regions is possible and warranted. Building on the success of our studies on
the cervical spine, we have also received several imaging datasets from other consortium
members to complete the buildout of automatic segmentation algorithms for the muscles
traversing the lumbar spine, and efforts are underway for muscles involved in deglutition,
as well as foot, leg, hip, shoulder, and pelvic floor muscles using both CT and MRI.
The automatic segmentation of skeletal muscles using CVMs solves the long-standing
problem of time-dependent manual techniques, permitting rapid and accurate quantitative
comprehensive assessment of the cervical spine [5] [see Figure 1A,B] and other muscles
throughout the human body at near-human accuracy.
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Figure 1. (A) Axial cervical spine muscle segmentations at the C4 vertebral level from manual
segmentation and an automated computer-vision model overlaid over a water image from Dixon
fat–water MRI. (B) Three-dimensional renderings of cervical spine muscle segmentations. The muscle
groups segmented include the multifidus and semispinalis cervicis (left = light pink, right = aqua),
longus colli and longus capitis (left = light green, right = gold), semispinalis capitis (left = orange,
right = yellow), splenius capitis (left = dark pink, right = light blue), levator scapula (left = indigo,
right = dark green), sternocleidomastoid (left = blue, right = red), and trapezius (left = brown,
right = magenta). L = left, R = right, A = anterior, P = posterior, S = superior, I = inferior. Adapted
from Weber et al., 2021 [5].
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3.2. Muscles Involved in Deglutition

Previous MRI research has investigated the biomechanics of normal and age-related
swallowing [35] and quantified changes in muscles in the pharynx, larynx, and oral cavity
in clinical populations such as head and neck cancers [36,37] and whiplash-associated
disorders [38]. To date, research has been largely retrospective, single-site studies involving
manual contouring of swallowing muscles/structures. This is time-intensive and depen-
dent on requisite skills and the rigour of local quality assurance processes [39], limiting their
generalizability and clinical utility. Early work demonstrated the feasibility of developing
deep learning-based models for auto-segmentation of swallowing-related structures based
on CT images [40]; however, this process has yet to be applied to clinically available MRIs.
Similar to MFI, markers of impaired swallowing may aid clinical care, identifying specific
patients who would benefit from further assessment and/or rehabilitation to optimise oral
intake and preserve nutrition.

3.3. Shoulder

Shoulder pain is the third most common form of musculoskeletal disorder, with the
two most common conditions being rotator cuff (RC) tears and glenohumeral osteoarthritis.
The prevalences of both RC and glenohumeral osteoarthritis are increasing, with symp-
tomatic RC tears in ~20% of the population [41] and the lifetime risk of glenohumeral
osteoarthritis surgery doubling since 2007 [42]. Coupled with a concerning six-fold increase
in RC surgery rates [43], the annual cost of RC-related surgeries in an ageing population
across Australia has increased by more than 200% over the past two decades [44], with
similar figures reported in the United States [45] and the UK [46]. An ageing population
suggests this problem will only continue to rise.

Skeletal muscle composition is a strong predictor of failure rates following RC repair [47].
MFI also serves as a critically important biomarker in the functional recovery of people
living with glenohumeral osteoarthritis after surgery [48,49]. However, describing associa-
tions between muscle composition and patient outcomes is complex because normative
data for shoulder muscle composition across the lifespan has not been well characterized
and often confounds comparative and longitudinal analysis of disease progression [50].
Variations in demographic characteristics (age, sex, ethnicity, and co-morbidities) [51] also
hinder the interpretation and application of this research. Deep learning techniques to
automate the quantification of shoulder MFI will facilitate the development of machine
learning models while training to predict patient outcome and recovery and relieve the
RC and glenohumeral osteoarthritis burden of disease in our healthcare systems. Work is
currently underway to establish a shoulder CVM for muscles of the rotator cuff.

3.4. Lumbar Spine

Low back pain (LBP) is the leading cause of years lived with disability and its vast
financial cost and global impact on population health drives the study of the lumbar
spine [52]. Activity-limiting LBP affected 619 million people globally in 2020 and is pro-
jected to increase by over a third in 2050, largely driven by ageing and detrimental lifestyle
factors (i.e., lack of physical activity, smoking, and larger body habitus) [53]. Around
90% of LBP is non-specific, where salient structural pathology that relates to clinical
symptoms is elusive [54]. Improved imaging and machine learning analysis methods
for lumbar paraspinal muscles [55,56] reveal promising distinctions between people with
spinal disorders [6,57] (Figure 2).

Typical morphological ageing of the lumbar spine muscles has not been well
characterized [58], with a paucity of longitudinal data [59,60] or reports factoring estab-
lished confounders like age, sex, BMI, and ethnicity [12,61,62]. The spatial distribution of
lumbar MFI appears influential, with higher fat content in the lower lumbar levels [61]
in the deeper multifidus fibres abutting bone (versus erector spinae or psoas) [60] and in
relation to the lumbar centre of motion [63].
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Figure 2. (A) Axial lumbar spine muscle segmentations at the L4 vertebral level from manual
segmentation and an automated computer-vision model overlaid over a spin-echo T2-weighted
image. (B) Three-dimensional renderings of the lumbar spine muscle segmentations. The muscle
groups segmented include the multifidus (left = light orange, right = dark orange), erector spinae
(left = light blue, right = dark blue), and psoas major (left = light green, right = dark green). L = left,
R = right, A = anterior, P = posterior, S = superior, I = inferior. Adapted from Wesselink et al., 2022 [6].

Attracting mounting interest is the clinical importance of lumbar paravertebral muscle
morphology and whether a decline in muscle composition is reversible with physical
activity. Important research examining the influence of spaceflight, micro-gravity, or
bedrest on muscle morphology is contributing to the mechanistic understanding of lumbar
muscle function. For example, multifidus responded inhomogeneously to 60 days of
bed rest in healthy volunteers and may indicate a susceptibility specific to the shortest
multifidus fibres [60]. Observing and reliably measuring the temporal change in lumbar
paraspinal muscles is a complex and challenging endeavour. While in its relative infancy,
efforts are being excitingly enabled by ever-evolving imaging and analysis technologies
and global collaboration like MuscleMap.

3.5. Pelvic Floor

Conventional imaging techniques have limited ability to distinguish between the
contractile and non-contractile components of individual muscles in the pelvic floor. This
information is essential to improve our understanding of how normal muscle composition
is impacted in patients with pelvic floor dysfunction. Environmental factors such as age
and injury (e.g., birth trauma to the pelvic floor muscles), and genetic factors such as
polymorphisms in collagen (e.g., COL3A1) and matrix metalloproteinase (e.g., MMP1)
genes [64] that lead to a loss of pelvic floor muscle function are associated with increased
risk of disorders, including urinary incontinence, faecal incontinence, sexual dysfunction,
and pelvic organ prolapse. The development of a CVM for the pelvic floor will provide
a reference for clinicians, with an improved understanding of age-related changes and
ethnographic factors so as to ultimately improve clinical reasoning and choice of therapeutic
interventions. The ability to evaluate pelvic floor architecture rapidly and accurately
in looking at physiological age-related changes as well as determining the success of
therapeutic interventions will be important.
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3.6. Gluteal Muscles

The relationship between hip muscle size and osteoarthritis of the hip has been shown
to be related to activity and clinical severity of the clinical course [65,66]. As in other areas
of the body, challenges towards untangling the causes of, or contributors to, muscular
changes observed in those with hip pathology, remain. Results of a recent 60-day bedrest
study involving healthy participants may shed some light on this issue [67] as reductions
in muscle volumes of the gluteus maximus (~10%), gluteus medius (8%), and gluteus
minimus (10.5%) were observed.

Members of our team recently performed a scoping review of hip muscle segmentation
and identified that research in the field is growing exponentially [68]. We also identified
up to seven different anatomical landmarks that have been reported on and used for
measurement of the cross-sectional area or MFI of the hip muscles. We encourage authors
of future work to be consistent with these landmarks to better build consistent automatic
segmentation models for clinical use. Figure 3A,B detail the developing CVM for the
gluteal muscles.
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(B) Three-dimensional renderings of the hip muscle segmentations. The muscle groups segmented
include the gluteus maximus (blue), gluteus medius (green), and gluteus minimus (red). Adapted
from Perraton et al., 2024 [69].

3.7. Thigh and Leg Musculature

Muscle volume and MFI of the thigh and leg musculature continue to be investigated
for their potential association with health outcomes such as insulin resistance, metabolic
abnormalities, cardiovascular disease, knee osteoarthritis, frailty, and mortality [70–72].
Anti-gravity muscles of the lower extremity, including the quadriceps femoris and gas-
trocnemius, regulate posture and gait. Their function is often impaired by ageing and
neuromuscular disorders such as Duchenne muscular dystrophy (DMD), Charcot–Marie–
Tooth disease (CMT) [73,74], and spinal muscular atrophy (SMA) [75]. Quantitative MRI
studies show significant infiltration of the thigh and leg in CMT1A patients and a com-
bination of atrophy and infiltration of the thigh in SMA 2 and 3 patients. Such studies
primarily rely on manual segmentation methods and small cohorts, which, as stated, are
not time-efficient and are limited to the research landscape.

3.8. Foot and Ankle

Foot and ankle muscle dysfunction has been linked to a variety of common clinical
conditions. Imaging methods have been used to demonstrate foot muscle morphology
changes in people with progressive neuromuscular conditions such as CMT [76], diabetic
neuropathy [77], plantar heel pain [78], ankle instability, and hallux valgus [79]. The
relationship between foot muscle morphology and chronic conditions supports a need to
identify changes in foot muscle structure and composition over time.

However, the 6–7 h required to manually segment the individual intrinsic foot muscles
on MRI has limited any capacity to leverage advancing acquisition techniques at higher field
strengths and implement measurement into clinical practice (Figure 4). Progress towards
overcoming these time-consuming demands has been made by manually measuring every
tenth slice, reducing the segmentation time to ~30 min without sacrificing accuracy [80].
While this method provided substantial time savings, it does not overcome the demands for
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large samples, time challenges for a busy radiology practice, or the assessment of multiple
muscle groups. Accordingly, we are working to expand our MuscleMap efforts to develop a
deep learning CVM to automate the segmentation of the intrinsic foot muscles. Preliminary
results show a reduction in the time required for segmentation of the intrinsic foot muscles
to less than 30 s, representing a remarkable improvement in efficiency, feasibility, and
implementation.
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Figure 4. Three-dimensional renderings of the intrinsic foot muscles from Dixon fat–water imaging.
The muscle groups segmented included the abductor hallucis (plum), quadratus plantae (light blue),
flexor digitorum brevis (fuchsia), abductor digiti minimi (orange), lumbricals (yellow), extensor
digitorum brevis (pink), flexor hallucis brevis medial head (red), flexor hallucis brevis lateral head
(salmon), adductor hallucis (dark blue), flexor digiti minimi (purple), and plantar and dorsal interossei
(green). Adapted from Franettovich et al., 2021 [80].

4. Conditions and Disorders
4.1. Spinal Cord Injury

Imaging has long been used to quantify skeletal muscle morphology in people with
spinal cord injury [81]. As an expected consequence of reduced volitional muscle activation
caudal to the level of injury, MRI and CT markers of muscle atrophy such as MFI have
been reported [28,82,83]. While atrophy and MFI progress after the initial injury [82],
community ambulators tend to have larger muscles with less MFI compared to users of a
wheelchair [83,84]. In the spinal cord injury population, interventions such as resistance
training, locomotor training, and neuromuscular electrical stimulation attenuate lower
extremity skeletal muscle atrophy [85]. Semi-automated segmentation using a threshold
approach as well as more automated CVM approaches have been explored in this pop-
ulation, reducing the time required to quantify and monitor the composition, size, and
shape of skeletal muscle [86,87]. MuscleMap expands this work, providing an automated
tool for quantitative measurement of impairment, monitoring progression over time and
evaluating the effects of new treatments in clinical trials of those with spinal cord injury.

4.2. Sarcopenia and Frailty

Progressive loss of muscle mass accompanied by a decline in muscle function are
cardinal features of sarcopenia; however, key features remain unclear and our understand-
ing of precisely how this disease progresses is incomplete. Contemporary investigations
into the biological mechanisms responsible for sarcopenia have identified drivers such
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as decreases in motor neuron numbers possibly driven by loss of nuclear envelope in-
tegrity [88]. However, how these alterations relate to normal lifespan alterations in muscle
volume and function remains largely unclear. Studies of muscle fibre function, volume,
and spatial distribution [89] highlight the technical difficulties in generating data that
allow meaningful analysis of age-related changes in skeletal muscle in small samples or
individual muscle groups.

There is a high prevalence of sarcopenia in frailty, which contributes to a state of
vulnerability and loss of systemic homeostasis to external stressors [90]. The loss of home-
ostasis is related to reduced physiologic reserve in a range of systems (e.g., neurological,
endocrine, immune, muscle, cardiovascular, respiratory, renal, and bone), which increases
with age [90]. This is related to ageing physiology, frailty physiology, reduced physical
activity, increased prevalence of multi-morbidity, and high medication use with side effects
that directly impair muscle and those that indirectly impair muscle by reducing physical
activity or nutrition.

Current best practices for the management of frailty include identification of frailty,
prescription of exercise, dietary interventions, and medication review. The emerging field of
geroscience [91] is developing interventions that target the ageing process itself and could
prevent or reduce age-related chronic diseases and frailty. Quantitative MRI measurements
in small samples correlate frailty and muscle function across different age groups [72]
and MuscleMap will permit the detection of responses to interventions targeting ageing
and frailty.

Degenerative Cervical Myelopathy

Recent studies conducted by members of our team have investigated the cervical
musculature in patients with DCM and reported associations between poor muscle quality,
clinical outcomes, and muscle function [27,31,92]. Improving our current knowledge
regarding the characteristics and implications of cervical muscle morphology in DCM
and other cervical disorders may provide useful insights for more effective and informed
rehabilitation approaches. The tedious and rater-dependent nature of manual segmentation
methods for the assessment of cervical muscle morphology and composition provides
the impetus for MuscleMap, which will allow for open-access automated segmentation of
cervical muscles from commonly used CT and MRI sequences.

4.3. Osteoarthritis

In 2019, the global burden of disease reported osteoarthritis as the most common form
of arthritis, affecting about 6% of the global population or more than 500 million people
worldwide. It is ranked as the 15th highest cause of years lived with disability, and most
commonly affects the knee [93]. The muscles of the thigh are crucial to the biomechanical
stability and load distribution of the knee, so it follows that the structural changes and/or
weaknesses of these muscles have long been associated with the development [94] and
progression of osteoarthritis [95,96]. Despite the important role that muscle structure and
function play in osteoarthritis, little is known about the changes in muscle composition
that occur over the disease course; however, decreases in quadriceps CSA and increases in
MFI have been shown to be associated with downstream worsening of knee osteoarthritis
symptoms and greater risk of future knee replacement surgery [97]. This area of research
is still in its infancy and MuscleMap will help to address important knowledge gaps
pertaining to the structure of muscles across the disease course compared with age-related
normative data and may identify new avenues for muscle-directed disease-modifying
interventions for osteoarthritis of the knee and other joints such as the hip, hand, shoulder,
foot, ankle, and spine.

4.4. Diabetes

Over half a billion people live with diabetes worldwide [98]. Both type 1 and type 2
diabetes are associated with relatively lower lean muscle mass to total body weight ratios
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compared to the general population [99]. Hyperglycaemia, peripheral insulin resistance,
dyslipidaemia, hypertension, and obesity are common to both forms of diabetes, and these
factors have detrimental effects on the skeletal muscle, causing changes in muscle fibre
composition, metabolism, insulin sensitivity, ATPase activity, and mitochondrial func-
tion. Furthermore, type 2 diabetes can directly result from skeletal muscle abnormalities,
indicating a bidirectional relationship [100].

Diabetes can directly affect muscle integrity and strength, as evidenced by diabetic
amyotrophy, myopathy, and peripheral neuropathy. Furthermore, conditions such as
frozen shoulder, osteoarthritis, diffuse idiopathic skeletal hyperostosis, and Duputryen’s
contractures are more common in people with diabetes [101]. Long-term muscular, joint and
nerve-related syndromes can lead to chronic pain and disuse, further exacerbating muscle
wasting and contributing to sarcopenia. While these conditions are well characterised by
advanced imaging techniques, there remain a number of questions that MuscleMap will
aim to answer. These include, but are not limited to, the identification of features on MRI
that can predict the development of diabetes-related muscle disorders or the chronicity of
pain-related syndromes and whether anti-diabetic glucose-lowering therapy is superior to
glucagon-like peptide 1 receptor agonists at protecting/restoring muscle mass.

4.5. Cancer

Cachexia is not unique to, but is a common syndrome associated with, more than half
of patients diagnosed with cancer and up to 80% of patients with advanced disease [102].
The hallmarks of cachexia include systemic inflammation, altered metabolism, reduced
nutrition, and muscle wasting [93] and are particularly prevalent in pancreatic and gastroin-
testinal cancers. The introduction of surgery and chemotherapy to patients who are already
cachexic amplifies the problem and is associated with worse survival outcomes [103].

Although it can be difficult to predict which patients will suffer from cachexia, diagno-
sis and early intervention are critical due to its known association with poor prognosis [101].
Whilst measurements of albumin and inflammatory markers in cancer patients are useful
as indicators of the degree of nutrition and inflammation, respectively, they do not provide
quantitative data on muscle volume or compositional changes. MuscleMap will be criti-
cal for identifying baseline muscle composition and changes that occur during treatment
for cancer. Through the incorporation of these muscle markers with routine biological
markers, we have the potential to not only provide important prognostic information but
also to identify patients in whom early intervention may result in clinically meaningful
survival outcomes.

4.6. Incontinence

Pelvic floor muscle and connective tissue decline play a role in the development of
urinary, faecal, and double incontinence as well as sexual dysfunction and pelvic organ
prolapse. The prevalence of urinary incontinence is high and increases with age. A total of
2.3 million global citizens verbally report lower urinary tract symptoms, with nearly 50%
being males [104]. Conservative treatment of urinary incontinence focuses on strengthening
the pelvic floor muscles to support the bladder and bowel (and uterus). There is strong
evidence that exercise can positively influence symptoms and improve the quality of life in
all types of urinary incontinence. However, if muscle decline is irreversible, other treatment
strategies, including surgery, may be indicated. Hence, the status of muscle composition
with respect to ageing and sex, in comparison to normative values, would help clinicians
make informed decisions on appropriate therapeutic interventions.

Faecal incontinence is a distressing condition that affects nearly 10% of adults in
community settings [105]. The prevalence of faecal incontinence increases with age and
affects women and men equally [106]. Pelvic floor injury is a well-recognised risk factor for
faecal incontinence, with the most common cause being obstetric trauma damage to the
anal sphincters, particularly associated with instrumental vaginal delivery. Anal surgery,
which involves sphincter division, and perineal or pelvic trauma can also result in faecal
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incontinence. Pelvic organ prolapse is a common condition in which the pelvic organs
prolapse into the vagina, impacting sexual, urinary, and defecatory functions and quality of
life [107]. Whilst MRI is used clinically to identify structural issues in pelvic organ prolapse,
the assessment of pelvic floor muscle parameters in patients with faecal incontinence or
urinary incontinence has been underexplored [108].

5. Conclusions

MuscleMap will overcome the current difficulty of detecting atypical changes in
muscle health and provide comprehensive, well-characterized biomarkers of muscle com-
position and size across the lifespan. This objective, unbiased measure may (1) facilitate
elucidating changes earlier than commonly used clinical outcome measures, (2) be corre-
lated with clinical endpoints, (3) provide a clinically applicable screening tool for at-risk
populations, and (4) control for sociodemographic modulators. This is likely to result in
substantial breakthroughs in the understanding and availability of promising new therapies
for devastating and debilitating diseases and disorders that affect muscle health.

Similar to the Human Genome Project [109], MuscleMap is another example of ap-
plied systems design in biology, leading to new multidisciplinary collaborative ways of
examining the linkages and interactions between disparate multimodal datasets. This is
only possible through a project of this scale whereby the extraction of large amounts of
representative image-derived features of muscle has the potential to uncover disease or
disorder characteristics that fail to be captured with current assessment techniques.

The integration of automatic segmentation post-processing computer-vision models
into both the conventional standard-of-care clinical workflow and images already in a
patient’s medical record is relatively straightforward, and in the not-too-distant future,
these methods should provide clinicians, patients, and researchers with quantitative met-
rics of muscle health. These muscle-related measures would complement examination
and standard imaging findings and may provide increased diagnostic, prognostic, and
predictive information to better inform the assessment and management of individuals
with a wide variety of diseases/disorders.

MuscleMap adopts a data-driven open-sourced methodology to iteratively enhance
the efficacy of computer-vision models tailored for the analysis of MRI across MR man-
ufacturers. In particular, a multi-disciplinary/institutional collaboration for processing
annotated image datasets will badge the future generalizability and efficiency of computer-
vision models for unseen datasets. The standardized MuscleMap acquisition protocol
and toolbox, aimed at simplifying the use of muscle segmentation software, will be
made readily accessible to facilitate the application of these models, freely accessed here
https://github.com/MuscleMap/MuscleMap URL (accessed on 17 October 2024) with
details on how the MRI community can contribute. It is anticipated that the process will
evolve and updates will occur on a frequent and well-communicated basis.
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