Texture Analysis in Volumetric Imaging for Dentomaxillofacial Radiology: Transforming Diagnostic Approaches and Future Directions
Abstract
:1. Introduction
2. Search Strategy and Methodology
- “texture analysis AND (dentomaxillofacial OR oral OR maxillofacial)”;
- “radiomics AND (dentomaxillofacial OR oral OR maxillofacial)”;
- “(CT OR MRI OR CBCT) AND texture analysis AND dentomaxillofacial”.
- “texture analysis definition AND medical imaging”;
- “radiomics principles”;
- “medical image feature extraction fundamentals”.
2.1. Inclusion and Exclusion Criteria
- Studies focusing on texture analysis or radiomics in dentomaxillofacial imaging;
- Original research articles, systematic reviews, and meta-analyses;
- Articles exploring texture analysis applications in related fields with potential relevance to dentomaxillofacial imaging;
- Studies published in English.
- Case reports and conference abstracts;
- Articles without full-text availability;
- Studies using non-sectional imaging modalities (e.g., panoramic radiographs);
- Articles lacking substantial discussion or application of texture analysis techniques in medical imaging contexts.
2.2. Study Selection Process
- (a)
- Initial screening of titles and abstracts to identify potentially relevant articles;
- (b)
- Full-text review of selected articles to determine eligibility based on the inclusion and exclusion criteria;
- (c)
- Reference list screening of included articles to identify additional relevant studies.
2.3. Data Extraction and Synthesis
3. Historical Perspective of Texture Analysis in Radiology
3.1. Texture Analysis Methods
- (a)
- First-order statistics: it analyzes the frequency distribution in the region of interest through histogram. First-order statistics do not consider pixels around the ROI and measure parameters such as intensity, standard deviation, skewness, and kurtosis;
- (b)
- Second-order statistics: it uses a gray-level co-occurrence matrix (GLCM) to explore how often pairs of pre-determined pixel values occur within a spatial range in the image, representing the joint probability density function of intensity levels occurring in a certain direction at specified distances;
- (c)
- Higher-order statistics: it examines the overall differences between pixels or voxels within the context of the entire region of interest. Higher-order statistics often use neighborhood gray-tone-difference matrices to obtain metrics such as variations within the image and the spatial rate of gray-level change.
3.2. Evolution of Imaging Modalities
4. Milestones in Dentomaxillofacial Applications
- In periodontal health assessment: Goncalves et al. [26] demonstrated a significant advancement in furcal lesion detection using texture analysis (TA) of CBCT images. Their study revealed statistically significant differences (p < 0.05) in almost all texture parameters when comparing lesion areas (with intermediate areas and control areas);
- In evaluation of the stability of dental implants: Costa et al. [27] investigated the use of texture analysis on CBCT images to evaluate dental implant stability. Their study found significant correlations between texture parameters and implant insertion torque. Higher contrast in the peri-implant bone was associated with higher insertion torque (p < 0.001), while higher entropy in the implant bone site (position S1.0) correlated with lower torque (p = 0.006). These findings suggest that texture analysis of CBCT images could potentially predict implant stability, offering valuable insights for treatment planning in dental implantology;
- In bone graft evaluation: Azimzadeh et al. [28] studied texture analysis of CBCT images following sinus lift surgery using allograft and xenograft materials. The study involved 42 patients and analyzed 11 texture parameters. Results showed no significant differences in primary outcomes between xenograft and allograft groups. However, the allograft group displayed statistically higher average gray-level values;
- In oral cancer assessment: de Oliveira et al. [29] conducted a study on texture analysis of multi-slice spiral computed tomography images in head and neck squamous cell carcinoma (HNSCC) with 46 patients. The study analyzed eleven GLCM parameters to assess tumor differentiation grades and showed significant correlations between texture parameters and histopathological grades of tumor differentiation. The findings suggest that texture analysis could serve as an age-independent biomarker for HNSCC;
- In bone analysis in the medication-related osteonecrosis of the jaw (MRONJ): Queiroz et al. [30] analyzed CBCT images of 16 MRONJ patients using texture analysis. They found significant differences (p < 0.05) in texture parameters among active osteonecrosis, intermediate tissue, and healthy tissue areas. Intermediate and active osteonecrosis areas showed higher values in contrast, entropy, and secondary angular momentum compared to healthy tissue, indicating greater tissue disorder. This suggests texture analysis could improve accuracy in determining MRONJ extent, potentially aiding treatment planning.
5. Image Acquisition Protocols for Texture Analysis
5.1. CT Imaging Parameters for Texture Analysis
5.2. MRI Sequences for Texture Analysis
5.3. CBCT Parameters for Texture Analysis
6. Image Segmentation
- 3D Slicer (https://www.slicer.org/);
- ImageJ (https://imagej.net/);
- Invesalius (https://invesalius.github.io/);
- LifEx (https://www.lifexsoft.org/);
- MeVisLab (https://www.mevislab.de/de/);
- ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php);
- OsiriX (https://www.osirix-viewer.com/).
7. Texture Analysis: Feature Extraction and Selection Methods
7.1. First-Order Statistical Texture Analysis
- Mean: average intensity value;
- Variance: measure of the intensity distribution;
- Skewness: asymmetry of the intensity distribution;
- Kurtosis: peakedness of the intensity distribution;
- Energy: sum of squared elements in the histogram;
- Entropy: measure of the randomness in pixel intensities.
7.2. Second-Order Statistical Texture Analysis
- Contrast: measure of local variations;
- Correlation: linear dependency of gray levels on neighboring pixels;
- Energy: sum of squared elements in the GLCM;
- Homogeneity: closeness of the distribution of elements to GLCM diagonal;
- Entropy: measure of randomness in pixel pair distributions.
7.3. Higher-Order Statistical Texture Analysis
7.4. Strengths and Limitations of Texture Analysis Techniques
7.5. Approaches to Feature Selection and Extraction
8. Interpretation of Extracted Features
- (a)
- Contrast: this feature measures the intensity variation between pixels. High contrast values often indicate heterogeneity within a ROI, which may correspond to pathological conditions. For instance, increased contrast has been observed in malignant lesions, such as squamous-cell carcinoma, where the tissue heterogeneity is more pronounced due to irregular cell arrangements;
- (b)
- Inverse difference moment: this feature assesses the uniformity of pixel pairs. A higher homogeneity value suggests that the ROI has similar pixel intensities, which could be indicative of benign conditions or healthy tissue. For example, benign odontogenic tumors may exhibit higher homogeneity compared to malignant tumors due to their more uniform tissue structure;
- (c)
- Angular second moment: this feature represents the uniformity of the texture and is often associated with smooth textures. Higher energy values can indicate more regular or homogenous structures, as seen in healthy bone or dental tissues, where the pixel intensities are more consistent across the ROI;
- (d)
- Correlation: this feature measures the linear dependency of gray levels on those of neighboring pixels. A high correlation may reflect organized structures, such as the layered organization seen in dental enamel or the regular patterns in compact bone. In contrast, lower correlation might be associated with disorganized tissue structures, such as those seen in inflammatory conditions;
- (e)
- Sum of squares: variance measures the distribution of gray-levels within the ROI. A higher variance might suggest a more complex texture, which could correlate with pathological changes. For instance, higher variance has been reported in cases of periodontitis where the bone structure becomes irregular due to disease progression;
- (f)
- Entropy: entropy measures the randomness in the texture. Higher entropy values suggest a more complex and disordered texture, which may be seen in malignant or inflamed tissues where the cellular architecture is disrupted. For example, lesions with high cellular atypia or necrotic areas, such as those found in aggressive tumors, often present higher entropy;
- (g)
- Sum average, sum variance, and sum Entropy: these features further analyze the distribution of pixel values. Higher values of sum entropy, for example, are associated with greater disorder within the tissue, which can be seen in advanced stages of malignancies. On the other hand, sum variance might increase in cases where the texture becomes more heterogeneous, as observed in the progression of dental caries;
- (h)
- Difference of variance and difference of entropy: these features capture the variations and entropy differences within the ROI. Significant differences may indicate transitions between different tissue types or the presence of pathological processes altering the tissue architecture, such as in fibrous dysplasia or cystic lesions.
9. Practical Application of Texture Analysis in Advanced Dentomaxillofacial Imaging
10. Critical Evaluation
10.1. Limitations and Challenges
10.2. Research Gaps and Opportunities for Advancement
11. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castellano, G.; Bonilha, L.; Li, L.M.; Cendes, F. Texture analysis of medical images. Clin. Radiol. 2004, 59, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.P.P.; Ogawa, C.M.; Silveira, R.V.; Castellano, G.; De Rosa, C.S.; Yasuda, C.L.; Rocha, A.C.; Hasseus, B.; Orhan, K.; Braz-Silva, P.H.; et al. Magnetic resonance imaging texture analysis to differentiate ameloblastoma from odontogenic keratocyst. Sci. Rep. 2022, 12, 20047. [Google Scholar] [CrossRef]
- De Rosa, C.S.; Bergamini, M.L.; Palmieri, M.; Sarmento, D.J.S.; de Carvalho, M.O.; Ricardo, A.L.F.; Hasseus, B.; Jonasson, P.; Braz-Silva, P.H.; Ferreira Costa, A.L. Differentiation of periapical granuloma from radicular cyst using cone beam computed tomography images texture analysis. Heliyon 2020, 6, e05194. [Google Scholar] [CrossRef] [PubMed]
- Corrias, G.; Micheletti, G.; Barberini, L.; Suri, J.S.; Saba, L. Texture analysis imaging “what a clinical radiologist needs to know”. Eur. J. Radiol. 2022, 146, 110055. [Google Scholar] [CrossRef] [PubMed]
- Litvin, A.A.; Burkin, D.A.; Kropinov, A.A.; Paramzin, F.N. Radiomics and Digital Image Texture Analysis in Oncology (Review). Sovrem. Tekhnologii Med. 2021, 13, 97–104. [Google Scholar] [CrossRef]
- Lubner, M.G.; Smith, A.D.; Sandrasegaran, K.; Sahani, D.V.; Pickhardt, P.J. CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics 2017, 37, 1483–1503. [Google Scholar] [CrossRef]
- Kassner, A.; Thornhill, R.E. Texture analysis: A review of neurologic MR imaging applications. AJNR Am. J. Neuroradiol. 2010, 31, 809–816. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, Y.; Jin, Q. Radiomics and Its Feature Selection: A Review. Symmetry 2023, 15, 1834. [Google Scholar] [CrossRef]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging-”how-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef]
- Santos, G.N.M.; da Silva, H.E.C.; Ossege, F.E.L.; Figueiredo, P.T.S.; Melo, N.S.; Stefani, C.M.; Leite, A.F. Radiomics in bone pathology of the jaws. Dentomaxillofac. Radiol. 2023, 52, 20220225. [Google Scholar] [CrossRef] [PubMed]
- Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [PubMed]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Haggstrom, I.; Szczypinski, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- Varghese, B.A.; Cen, S.Y.; Hwang, D.H.; Duddalwar, V.A. Texture Analysis of Imaging: What Radiologists Need to Know. AJR Am. J. Roentgenol. 2019, 212, 520–528. [Google Scholar] [CrossRef]
- Davnall, F.; Yip, C.S.; Ljungqvist, G.; Selmi, M.; Ng, F.; Sanghera, B.; Ganeshan, B.; Miles, K.A.; Cook, G.J.; Goh, V. Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imaging 2012, 3, 573–589. [Google Scholar] [CrossRef]
- Alobaidli, S.; McQuaid, S.; South, C.; Prakash, V.; Evans, P.; Nisbet, A. The role of texture analysis in imaging as an outcome predictor and potential tool in radiotherapy treatment planning. Br. J. Radiol. 2014, 87, 20140369. [Google Scholar] [CrossRef]
- Phillips, I.; Ajaz, M.; Ezhil, V.; Prakash, V.; Alobaidli, S.; McQuaid, S.J.; South, C.; Scuffham, J.; Nisbet, A.; Evans, P. Clinical applications of textural analysis in non-small cell lung cancer. Br. J. Radiol. 2018, 91, 20170267. [Google Scholar] [CrossRef]
- Herlidou-Meme, S.; Constans, J.M.; Carsin, B.; Olivie, D.; Eliat, P.A.; Nadal-Desbarats, L.; Gondry, C.; Le Rumeur, E.; Idy-Peretti, I.; de Certaines, J.D. MRI texture analysis on texture test objects, normal brain and intracranial tumors. Magn. Reson. Imaging 2003, 21, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Kuno, H.; Qureshi, M.M.; Chapman, M.N.; Li, B.; Andreu-Arasa, V.C.; Onoue, K.; Truong, M.T.; Sakai, O. CT Texture Analysis Potentially Predicts Local Failure in Head and Neck Squamous Cell Carcinoma Treated with Chemoradiotherapy. AJNR Am. J. Neuroradiol. 2017, 38, 2334–2340. [Google Scholar] [CrossRef]
- De Cecco, C.N.; Ganeshan, B.; Ciolina, M.; Rengo, M.; Meinel, F.G.; Musio, D.; De Felice, F.; Raffetto, N.; Tombolini, V.; Laghi, A. Texture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance. Investig. Radiol. 2015, 50, 239–245. [Google Scholar] [CrossRef]
- Wermelskirchen, S.; Leonhardi, J.; Hohn, A.K.; Osterhoff, G.; Schopow, N.; Zimmermann, S.; Ebel, S.; Prasse, G.; Henkelmann, J.; Denecke, T.; et al. Impact of quantitative CT texture analysis on the outcome of CT-guided bone biopsy. J. Bone Oncol. 2024, 47, 100616. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhuang, Y.; Zhu, J.; Song, B.; Wang, H. Texture analysis of apparent diffusion coefficient maps in predicting the clinical functional outcomes of acute ischemic stroke. Front. Neurol. 2023, 14, 1132318. [Google Scholar] [CrossRef]
- Lowitz, T.; Museyko, O.; Bousson, V.; Kalender, W.A.; Laredo, J.D.; Engelke, K. Characterization of knee osteoarthritis-related changes in trabecular bone using texture parameters at various levels of spatial resolution-a simulation study. Bonekey Rep. 2014, 3, 615. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, Y.; Fujita, A.; Buch, K.; Li, B.; Qureshi, M.M.; Chapman, M.N.; Sakai, O. Using texture analysis of head CT images to differentiate osteoporosis from normal bone density. Eur. J. Radiol. 2019, 116, 212–218. [Google Scholar] [CrossRef]
- Lubner, M.G.; Malecki, K.; Kloke, J.; Ganeshan, B.; Pickhardt, P.J. Texture analysis of the liver at MDCT for assessing hepatic fibrosis. Abdom. Radiol. 2017, 42, 2069–2078. [Google Scholar] [CrossRef]
- Goncalves, B.C.; de Araujo, E.C.; Nussi, A.D.; Bechara, N.; Sarmento, D.; Oliveira, M.S.; Santamaria, M.P.; Costa, A.L.F.; Lopes, S. Texture analysis of cone-beam computed tomography images assists the detection of furcal lesion. J. Periodontol. 2020, 91, 1159–1166. [Google Scholar] [CrossRef]
- Costa, A.L.F.; de Souza Carreira, B.; Fardim, K.A.C.; Nussi, A.D.; da Silva Lima, V.C.; Miguel, M.M.V.; Jardini, M.A.N.; Santamaria, M.P.; de Castro Lopes, S.L.P. Texture analysis of cone beam computed tomography images reveals dental implant stability. Int. J. Oral. Maxillofac. Surg. 2021, 50, 1609–1616. [Google Scholar] [CrossRef]
- Mohammad, A.; Esmaeili, F.; Bayat, N.; Rahimipour, K.; Tolouei, A.E. Texture Analysis of Hard Tissue Changes after Sinus Lift Surgery with Allograft and Xenograft. J. Oral. Health Craniofac. Sci. 2024, 1, 019–022. [Google Scholar] [CrossRef]
- de Oliveira, L.A.P.; Lopes, D.L.G.; Gomes, J.P.P.; da Silveira, R.V.; Nozaki, D.V.A.; Santos, L.F.; Castellano, G.; de Castro Lopes, S.L.P.; Costa, A.L.F. Enhanced Diagnostic Precision: Assessing Tumor Differentiation in Head and Neck Squamous Cell Carcinoma Using Multi-Slice Spiral CT Texture Analysis. J. Clin. Med. 2024, 13, 4038. [Google Scholar] [CrossRef]
- Queiroz, P.M.; Fardim, K.C.; Costa, A.L.F.; Matheus, R.A.; Lopes, S. Texture analysis in cone-beam computed tomographic images of medication-related osteonecrosis of the jaw. Imaging Sci. Dent. 2023, 53, 109–115. [Google Scholar] [CrossRef]
- Ito, K.; Muraoka, H.; Hirahara, N.; Sawada, E.; Hirohata, S.; Otsuka, K.; Okada, S.; Kaneda, T. Quantitative assessment of mandibular bone marrow using computed tomography texture analysis for detect stage 0 medication-related osteonecrosis of the jaw. Eur. J. Radiol. 2021, 145, 110030. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, Y.; Ge, Y.; Wu, P.Y.; Zhao, J.; Wang, H.; Song, B. MRI whole-lesion texture analysis on ADC maps for the prognostic assessment of ischemic stroke. BMC Med. Imaging 2022, 22, 115. [Google Scholar] [CrossRef]
- Bayat, N.; Ghavimi, M.A.; Rahimipour, K.; Razi, S.; Esmaeili, F. Radiographic texture analysis of the hard tissue changes following socket preservation with allograft and xenograft materials for dental implantation: A randomized clinical trial. Oral. Maxillofac. Surg. 2024, 28, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Muraoka, H.; Ito, K.; Hirahara, N.; Ichiki, S.; Kondo, T.; Kaneda, T. Magnetic resonance imaging texture analysis in the quantitative evaluation of acute osteomyelitis of the mandibular bone. Dentomaxillofac. Radiol. 2022, 51, 20210321. [Google Scholar] [CrossRef]
- Muraoka, H.; Kaneda, T.; Kondo, T.; Sawada, E.; Tokunaga, S. Diagnostic efficacy of apparent diffusion coefficient, texture features, and their combination for differential diagnosis of odontogenic cysts and tumors. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2023, 135, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Yomtako, S.; Watanabe, H.; Kuribayashi, A.; Sakamoto, J.; Miura, M. Differentiation of radicular cysts and radicular granulomas via texture analysis of multi-slice computed tomography images. Dentomaxillofac. Radiol. 2024, 53, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Mackin, D.; Fave, X.; Zhang, L.; Fried, D.; Yang, J.; Taylor, B.; Rodriguez-Rivera, E.; Dodge, C.; Jones, A.K.; Court, L. Measuring Computed Tomography Scanner Variability of Radiomics Features. Investig. Radiol. 2015, 50, 757–765. [Google Scholar] [CrossRef]
- Larroza, A.; Bodí, V.; Moratal, D. Texture Analysis in Magnetic Resonance Imaging: Review and Considerations for Future Applications. In Assessment of Cellular and Organ Function and Dysfunction Using Direct and Derived MRI Methodologies; InTech: Vienna, Austria, 2016. [Google Scholar]
- Mayerhoefer, M.E.; Szomolanyi, P.; Jirak, D.; Materka, A.; Trattnig, S. Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: An application-oriented study. Med. Phys. 2009, 36, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Fave, X.; Mackin, D.; Yang, J.; Zhang, J.; Fried, D.; Balter, P.; Followill, D.; Gomez, D.; Jones, A.K.; Stingo, F.; et al. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med. Phys. 2015, 42, 6784–6797. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallieres, M.; Abdalah, M.A.; Aerts, H.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Parmar, C.; Rios Velazquez, E.; Leijenaar, R.; Jermoumi, M.; Carvalho, S.; Mak, R.H.; Mitra, S.; Shankar, B.U.; Kikinis, R.; Haibe-Kains, B.; et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE 2014, 9, e102107. [Google Scholar] [CrossRef] [PubMed]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Tang, J.; Alelyani, S.; Liu, H. Feature Selection for Classification: A Review. In Data Classification: Algorithms and Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 37–64. [Google Scholar]
- Ghalati, M.K.; Nunes, A.; Ferreira, H.; Serranho, P.; Bernardes, R. Texture Analysis and Its Applications in Biomedical Imaging: A Survey. IEEE Rev. Biomed. Eng. 2022, 15, 222–246. [Google Scholar] [CrossRef] [PubMed]
- Girondi, C.M.; de Castro Lopes, S.L.P.; Ogawa, C.M.; Braz-Silva, P.H.; Costa, A.L.F. Texture Analysis of Temporomandibular Joint Disc Changes Associated with Effusion Using Magnetic Resonance Images. Dent. J. 2024, 12, 82. [Google Scholar] [CrossRef]
- Luo, D.; Qiu, C.; Zhou, R.; Shan, T.; Yan, W.; Yang, J. Clinical study of magnetic resonance imaging-based texture analysis and fasciculation of the lateral pterygoid muscle in young patients with temporomandibular disorder. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2023, 136, 382–393. [Google Scholar] [CrossRef]
- Nardi, C.; Tomei, M.; Pietragalla, M.; Calistri, L.; Landini, N.; Bonomo, P.; Mannelli, G.; Mungai, F.; Bonasera, L.; Colagrande, S. Texture analysis in the characterization of parotid salivary gland lesions: A study on MR diffusion weighted imaging. Eur. J. Radiol. 2021, 136, 109529. [Google Scholar] [CrossRef]
- Jiang, S.; Su, Y.; Liu, Y.; Zhou, Z.; Li, M.; Qiu, S.; Zhou, J. Use of Computed Tomography-Based Texture Analysis to Differentiate Benign From Malignant Salivary Gland Lesions. J. Comput. Assist. Tomogr. 2024, 48, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Muraoka, H.; Hirahara, N.; Sawada, E.; Tokunaga, S.; Kaneda, T. Quantitative assessment of the parotid gland using computed tomography texture analysis to detect parotid sialadenitis. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2022, 133, 574–581. [Google Scholar] [CrossRef]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, H.J.; Dekker, A.; Fenstermacher, D.; et al. Radiomics: The process and the challenges. Magn. Reson. Imaging 2012, 30, 1234–1248. [Google Scholar] [CrossRef]
- Yip, S.S.; Aerts, H.J. Applications and limitations of radiomics. Phys. Med. Biol. 2016, 61, R150–R166. [Google Scholar] [CrossRef] [PubMed]
- Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1143–1158. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Avanzo, M.; Stancanello, J.; El Naqa, I. Beyond imaging: The promise of radiomics. Phys. Med. 2017, 38, 122–139. [Google Scholar] [CrossRef]
- Nurzynska, K.; Piórkowski, A.; Strzelecki, M.; Kociołek, M.; Banys, R.P.; Obuchowicz, R. Differentiating age and sex in vertebral body CT scans—Texture analysis versus deep learning approach. Biocybern. Biomed. Eng. 2024, 44, 20–30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barioni, E.D.; Lopes, S.L.P.d.C.; Silvestre, P.R.; Yasuda, C.L.; Costa, A.L.F. Texture Analysis in Volumetric Imaging for Dentomaxillofacial Radiology: Transforming Diagnostic Approaches and Future Directions. J. Imaging 2024, 10, 263. https://doi.org/10.3390/jimaging10110263
Barioni ED, Lopes SLPdC, Silvestre PR, Yasuda CL, Costa ALF. Texture Analysis in Volumetric Imaging for Dentomaxillofacial Radiology: Transforming Diagnostic Approaches and Future Directions. Journal of Imaging. 2024; 10(11):263. https://doi.org/10.3390/jimaging10110263
Chicago/Turabian StyleBarioni, Elaine Dinardi, Sérgio Lúcio Pereira de Castro Lopes, Pedro Ribeiro Silvestre, Clarissa Lin Yasuda, and Andre Luiz Ferreira Costa. 2024. "Texture Analysis in Volumetric Imaging for Dentomaxillofacial Radiology: Transforming Diagnostic Approaches and Future Directions" Journal of Imaging 10, no. 11: 263. https://doi.org/10.3390/jimaging10110263
APA StyleBarioni, E. D., Lopes, S. L. P. d. C., Silvestre, P. R., Yasuda, C. L., & Costa, A. L. F. (2024). Texture Analysis in Volumetric Imaging for Dentomaxillofacial Radiology: Transforming Diagnostic Approaches and Future Directions. Journal of Imaging, 10(11), 263. https://doi.org/10.3390/jimaging10110263