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Abstract: This narrative review explores texture analysis as a valuable technique in dentomaxillofa-
cial diagnosis, providing an advanced method for quantification and characterization of different
image modalities. The traditional imaging techniques rely primarily on visual assessment, which
may overlook subtle variations in tissue structure. In contrast, texture analysis uses sophisticated
algorithms to extract quantitative information from imaging data, thus offering deeper insights
into the spatial distribution and relationships of pixel intensities. This process identifies unique
“texture signatures”, serving as markers for accurately characterizing tissue changes or pathological
processes. The synergy between texture analysis and radiomics allows radiologists to transcend tradi-
tional size-based or semantic descriptors, offering a comprehensive understanding of imaging data.
This method enhances diagnostic accuracy, particularly for the assessment of oral and maxillofacial
pathologies. The integration of texture analysis with radiomics expands the potential for precise tissue
characterization by moving beyond the limitations of human eye evaluations. This article reviews the
current trends and methodologies in texture analysis within the field of dentomaxillofacial imaging,
highlights its practical applications, and discusses future directions for research and dental clinical
practice.

Keywords: computer-assisted diagnosis; cone-beam computed tomography; feature extraction;
magnetic resonance imaging; radiomics

1. Introduction

Texture analysis has gained prominence in dentomaxillofacial imaging modalities by
offering new perspectives on how oral and medical radiologists interpret and use imaging
data. This advanced technique provides additional methods to assess radiographic images,
thus complementing the traditional visual assessments. By leveraging sophisticated image
processing algorithms, texture analysis enables the non-invasive extraction of quantitative
information from medical images [1], which enhances diagnostic accuracy and treatment
planning in oral and maxillofacial pathology [2,3].

In the realm of medical and dental imaging, texture analysis serves as a quantitative
method to evaluate the distribution and relationship of pixel or voxel intensities within
a specified region of interest (ROI) or volume of interest (VOI) [4,5]. For instance, a
rough-textured image has a high rate of change in pixel intensity compared to a smooth-
textured one. This technique allows for detailed characterization of images by providing
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valuable insights into tissue structures and pathologies which may not be apparent through
traditional visual inspection [1,6].

By analyzing the patterns of gray-level transitions in medical images, a unique set
of textural characteristics can be identified, often described as a “texture signature.” This
texture signature may serve as a distinctive marker for accurately characterizing specific
pathological processes [7].

Radiomics is a technique in the field of medical imaging that focuses on extracting a
large number of quantitative features from medical images [8,9]. These features, known
as “radiomic features”, can include measures of texture, shape, intensity, and more, and
are used to create detailed profiles of tissue characteristics [9,10]. Radiomics goes beyond
traditional visual analysis by enabling the identification of complex and subtle patterns
that may be associated with different pathological states [5,11,12]. By integrating this infor-
mation with clinical and genomic data, radiomics has the potential to significantly enhance
diagnostic accuracy, treatment personalization, and therapeutic response monitoring across
various medical fields, including oral and maxillofacial conditions [8,11,13].

The relationship between texture analysis and radiomics is synergistic. Although
radiomics encompasses a broader range of quantitative features, texture analysis focuses
specifically on spatial relationships and patterns within the image data [4,12]. Together, they
enable radiologists to go beyond size-based or human eye-dependent semantic descriptors,
offering a more comprehensive understanding of imaging data [4,5,11].

The application of texture analysis in head and neck imaging has seen significant ad-
vancements in recent years, particularly the widespread adoption of cone-beam computed
tomography (CBCT) scanners. This narrative review explores the current landscape of
texture analysis in dentomaxillofacial radiology by examining its practical applications in
various oral and maxillofacial conditions, including evaluation of oral mucosa. Further-
more, this article delves into cutting-edge methodologies of texture analysis, discusses
standardization efforts for quality assurance, and offers insights into future directions
promising to further enhance tissue characterization and treatment monitoring in the field
of oral radiology.

2. Search Strategy and Methodology

To ensure a comprehensive and up-to-date review of texture analysis and radiomics in
dentomaxillofacial imaging, we conducted a systematic literature search across multiple
databases. It serves as a basis for discussing current trends and potential advancements
in the field. The following electronic databases were queried: Google Scholar; PubMed;
Scopus; and Web of Science.

Our search strategy employed a combination of relevant keywords to capture the
breadth of research in this field. The primary search terms included the following:

• “texture analysis AND (dentomaxillofacial OR oral OR maxillofacial)”;
• “radiomics AND (dentomaxillofacial OR oral OR maxillofacial)”;
• “(CT OR MRI OR CBCT) AND texture analysis AND dentomaxillofacial”.

Additionally, we conducted a supplementary search to identify key articles defining
and explaining the concepts of texture analysis and radiomics in medical imaging. This
supplementary search used terms such as the following:

• “texture analysis definition AND medical imaging”;
• “radiomics principles”;
• “medical image feature extraction fundamentals”.

These foundational articles were included regardless of their specific application area,
as they provide essential context and methodological background for the review.

To capture a wide range of the relevant literature, we also used variations and com-
binations of these terms. The search was limited to English-language articles published
in peer-reviewed journals. We focused on the literature from the past five years to ensure
the review reflects the most current advancements in the field, although seminal papers
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from earlier years were also included when deemed essential to the understanding of
fundamental concepts.

2.1. Inclusion and Exclusion Criteria

Inclusion criteria:

• Studies focusing on texture analysis or radiomics in dentomaxillofacial imaging;
• Original research articles, systematic reviews, and meta-analyses;
• Articles exploring texture analysis applications in related fields with potential rele-

vance to dentomaxillofacial imaging;
• Studies published in English.

Exclusion criteria:

• Case reports and conference abstracts;
• Articles without full-text availability;
• Studies using non-sectional imaging modalities (e.g., panoramic radiographs);
• Articles lacking substantial discussion or application of texture analysis techniques in

medical imaging contexts.

2.2. Study Selection Process

The study selection process involved the following steps:

(a) Initial screening of titles and abstracts to identify potentially relevant articles;
(b) Full-text review of selected articles to determine eligibility based on the inclusion and

exclusion criteria;
(c) Reference list screening of included articles to identify additional relevant studies.

Two authors (E.D.B. and A.L.F.C.) independently performed the selection process,
with any disagreements resolved through discussion or consultation with a third author
(S.L.P.d.C.L).

Our initial search yielded a total of 16,747 potentially relevant articles across the
databases:

Google Scholar: 15,364 articles;
PubMed, Scopus, and Web of Science combined: 1383 articles.
These articles underwent a screening process based on our inclusion and exclusion

criteria. After thorough evaluation of titles, abstracts, and full texts where necessary,
we selected 57 articles for inclusion in the final review. The majority of these studies
were in vivo human studies, focusing on clinical applications of texture analysis. We
also included a limited number of in vitro studies that provided valuable methodological
insights or validation of techniques applicable to clinical settings. No animal studies were
included in this review.

2.3. Data Extraction and Synthesis

For each included study, we extracted key information such as study design, sample
size, imaging modalities used, texture analysis or radiomic features examined, and main
findings. The extracted data were synthesized narratively, focusing on emerging trends,
methodological advancements, and clinical applications in dentomaxillofacial radiology.

3. Historical Perspective of Texture Analysis in Radiology
3.1. Texture Analysis Methods

Texture analysis in radiology has its roots in the fundamental concept of image texture,
which refers to the spatial variation in pixel intensity levels within an image [14]. This
technique emerged as a mathematical method to evaluate the grayscale and its relationships
with adjacent ones, helping to characterize the tissue under study [6].

In its early stages, texture analysis included various models to assess image char-
acteristics accurately. These models can be broadly categorized into three main types:
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statistical-based, model-based, and transform-based methods [6,15]. Among these, the
statistical-based method has become the most common approach in texture analysis [6].

Statistical methods of texture analysis are further divided into different orders of
measure parameters as follows [1,16,17]:

(a) First-order statistics: it analyzes the frequency distribution in the region of interest
through histogram. First-order statistics do not consider pixels around the ROI and
measure parameters such as intensity, standard deviation, skewness, and kurtosis;

(b) Second-order statistics: it uses a gray-level co-occurrence matrix (GLCM) to explore
how often pairs of pre-determined pixel values occur within a spatial range in the
image, representing the joint probability density function of intensity levels occurring
in a certain direction at specified distances;

(c) Higher-order statistics: it examines the overall differences between pixels or voxels
within the context of the entire region of interest. Higher-order statistics often use
neighborhood gray-tone-difference matrices to obtain metrics such as variations
within the image and the spatial rate of gray-level change.

3.2. Evolution of Imaging Modalities

As imaging technologies advanced, so did the application of texture analysis in
radiology. The technique has been successfully applied to various imaging modalities,
including computed tomography (CT) and magnetic resonance imaging (MRI) [1,6,14].

CT and MRI cross-sectional imaging techniques provided a non-invasive method
to identify and characterize tumors by using texture analysis [7,18,19]. The application
of texture analysis to CT and MRI in oncology represents a significant advancement in
quantitative imaging, offering a more comprehensive assessment of tumors beyond the
traditional visual interpretation [20]. As research in this field continues to grow, texture
analysis is increasingly being integrated into clinical decision-making processes, enhancing
the role of radiology in personalized cancer care [21].

The advancement of imaging modalities has allowed texture analysis to be applied to
several medical fields. For instance, it has been used to evaluate changes in ischemic stroke,
osteoarthritis, and osteoporosis [22–24]. In the realm of internal medicine, texture analysis
has been used to better characterize hepatic fibrosis, emphysema, and liver cirrhosis,
although this research is still in the experimental phase [6,25].

4. Milestones in Dentomaxillofacial Applications

In dentistry, texture analysis has made significant strides, particularly in the field of
oral radiology. Some key milestones in its application include the following (Figure 1):

• In periodontal health assessment: Goncalves et al. [26] demonstrated a significant
advancement in furcal lesion detection using texture analysis (TA) of CBCT images.
Their study revealed statistically significant differences (p < 0.05) in almost all texture
parameters when comparing lesion areas (with intermediate areas and control areas);

• In evaluation of the stability of dental implants: Costa et al. [27] investigated the
use of texture analysis on CBCT images to evaluate dental implant stability. Their
study found significant correlations between texture parameters and implant insertion
torque. Higher contrast in the peri-implant bone was associated with higher insertion
torque (p < 0.001), while higher entropy in the implant bone site (position S1.0) cor-
related with lower torque (p = 0.006). These findings suggest that texture analysis of
CBCT images could potentially predict implant stability, offering valuable insights for
treatment planning in dental implantology;

• In bone graft evaluation: Azimzadeh et al. [28] studied texture analysis of CBCT
images following sinus lift surgery using allograft and xenograft materials. The
study involved 42 patients and analyzed 11 texture parameters. Results showed no
significant differences in primary outcomes between xenograft and allograft groups.
However, the allograft group displayed statistically higher average gray-level values;
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• In oral cancer assessment: de Oliveira et al. [29] conducted a study on texture analysis
of multi-slice spiral computed tomography images in head and neck squamous cell
carcinoma (HNSCC) with 46 patients. The study analyzed eleven GLCM parameters
to assess tumor differentiation grades and showed significant correlations between
texture parameters and histopathological grades of tumor differentiation. The findings
suggest that texture analysis could serve as an age-independent biomarker for HNSCC;

• In bone analysis in the medication-related osteonecrosis of the jaw (MRONJ): Queiroz
et al. [30] analyzed CBCT images of 16 MRONJ patients using texture analysis. They
found significant differences (p < 0.05) in texture parameters among active osteonecro-
sis, intermediate tissue, and healthy tissue areas. Intermediate and active osteonecrosis
areas showed higher values in contrast, entropy, and secondary angular momentum
compared to healthy tissue, indicating greater tissue disorder. This suggests texture
analysis could improve accuracy in determining MRONJ extent, potentially aiding
treatment planning.
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application to dentomaxillofacial images; (b) predictive study on the stability of dental implants;
(c) study on sinus-lift grafts; (d) characterization of malign lesions; and (e) study on osseous lesions
due to medication-related necrosis.

One of the significant advantages of texture analysis in dentomaxillofacial applications
is its ability to provide detailed information about bone involvement in border regions
between pathologically affected areas and healthy ones. This has been particularly useful
in cases of MRONJ as texture analysis has revealed that visually unaffected areas may
show altered behavior due to osteonecrosis [30] or even underscoring the sensitivity in
identifying subtle changes in mandibular bone marrow that precede clinical symptoms,
potentially allowing for earlier intervention and improved patient outcomes [31].

As the field continues to evolve, researchers are exploring the potential of texture
analysis for early diagnosis of various oral and maxillofacial conditions. This application
is already being used by neurologists for the early diagnosis of ischemic stroke and for
quantifying the real extent of the affected area [32].

Recent studies have further expanded the applications of texture analysis in dental
imaging. Bayat et al. [33] conducted a randomized clinical trial evaluating radiographic
texture analysis in the context of socket preservation using allograft and xenograft materials.
Their findings highlighted significant changes in hard tissue texture following dental
implantation procedures, emphasizing the potential of texture analysis in monitoring
post-operative bone healing and integration.

In another study, Muraoka et al. [34] explored the use of MRI texture analysis for the
quantitative evaluation of acute osteomyelitis in the mandibular bone. This research demon-
strated that texture analysis could effectively quantify inflammatory changes, offering a
non-invasive tool for early diagnosis and management of osteomyelitis [2].
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Moreover, Muraoka et al. [35] assessed the diagnostic efficacy of combining apparent
diffusion coefficient (ADC) values with texture features in differentiating odontogenic cysts
and tumors. This approach enhanced diagnostic accuracy, suggesting that texture analysis,
when combined with other imaging metrics, can significantly improve the differential
diagnosis of complex maxillofacial lesions.

De Rosa et al. [3] and Yomtako et al. [36] both explored the differentiation of periapical
granulomas from radicular cysts using texture analysis, albeit with different CT modalities.
De Rosa et al. [3] utilized CBCT to analyze texture features, demonstrating its effectiveness
in distinguishing these lesions based on their textural characteristics. Similarly, Yomtako
et al. [36] applied texture analysis to multi-CT images, achieving comparable differentiation
between radicular cysts and granulomas.

These studies collectively demonstrate the expanding role of texture analysis in dental
radiology, providing valuable insights into tissue characterization and enhancing diagnostic
precision across various conditions and imaging modalities.

5. Image Acquisition Protocols for Texture Analysis

Image acquisition plays a key role in the radiomics workflow, particularly regard-
ing the texture analysis. The consistency of acquisition and reconstruction protocols is
essential for obtaining reliable and reproducible results, especially in multicenter stud-
ies [14]. This section explores the key considerations for different imaging modalities used
in dentomaxillofacial radiology.

5.1. CT Imaging Parameters for Texture Analysis

CT has been widely used for texture analysis in various medical applications. How-
ever, variations in acquisition and reconstruction parameters can lead to inconsistent
findings between different datasets [14]. Phantom studies have shown that interscanner
and intrascanner differences in radiomic metrics can be significant. For instance, Mackin
et al. [37] demonstrated that the variability in radiomic metrics extracted from CT images
of a phantom was comparable to that observed in non-small-cell lung carcinoma tumors.

To ensure the quality and repeatability of radiomic studies using CT, it is essential
to maintain consistency in image acquisition and reconstruction protocols. This includes
standardizing parameters such as slice thickness, field of view (FOV), and reconstruction
algorithms across different scanners and institutions.

5.2. MRI Sequences for Texture Analysis

MRI offers excellent soft-tissue contrast and the ability to enhance different types of
tissues using various acquisition protocols [38]. However, the choice of MRI sequence for
texture analysis depends on the specific application and the tissues being studied [39].

MRI-based texture analysis involves several key considerations that significantly im-
pact the quality and reliability of results. Sequence selection is decisive, as different MRI
sequences produce varying texture patterns. For instance, contrast-enhanced T1-weighted
images are often preferred for brain tumor assessment, although diffusion-weighted images
have shown efficacy in tumor classification. Image resolution, determined by slice thick-
ness, FOV, and matrix size, plays a vital role in texture analysis sensitivity. Higher spatial
resolution images tend to be more susceptible to variations in acquisition parameters. The
signal-to-noise ratio (SNR) is another critical factor, with higher levels improving texture
discrimination. Scanners with higher field strength, such as 3T, provide an increased SNR,
potentially leading to enhanced texture-based discrimination. Preprocessing steps are
essential for optimal results, with ROI normalization and correction of non-uniformity
artifacts being recommended procedures. Finally, the quantization of gray-levels is funda-
mental for texture analysis methods based on matrix computation. These considerations,
as outlined in the literature, form the foundation for effective MRI-based texture analysis,
ensuring that the resulting data are both accurate and clinically relevant [38].
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5.3. CBCT Parameters for Texture Analysis

CBCT has become a valuable tool in dentomaxillofacial radiology, offering detailed
three-dimensional (3D) images of oral and maxillofacial structures. When employing
CBCT for texture analysis, several critical factors must be considered to ensure reliable and
accurate results.

Image quality is a primary concern in CBCT-based texture analysis: understanding
texture analysis techniques and their applications in radiology is decisive for effective
implementation [14]. Despite the potential for increased noise and lower image quality
compared to conventional CT, research has demonstrated that select radiomic metrics
show robustness in CBCT images when consistent imaging protocols are used. Studies
have revealed that radiomic features can be reproducibly measured from CBCT images,
underscoring the importance of standardized imaging protocols in mitigating the impact
of noise and enhancing the reliability of texture metrics [40].

Motion artifacts present another challenge in CBCT imaging: research has addressed
this issue, finding that limited breathing-related motion has a reasonable impact on ra-
diomic metrics [40]. This highlights the need to account for patient movement during
image acquisition to maintain the integrity of radiomic data. Consideration of motion
artifacts is necessary for ensuring the reproducibility and reliability of texture analysis
results.

The selection of the ROI and the segmentation process are vital steps in ensuring
accurate texture analysis: recent initiatives in image biomarker standardization stress
the importance of standardized quantitative radiomics for high-throughput image-based
phenotyping [41]. This research emphasizes the need for meticulous attention to detail and
consistency in ROI selection and segmentation to produce reliable results across different
studies and patient populations.

Software considerations play a significant role in CBCT texture analysis. Specialized
software can be employed to analyze CBCT images effectively. The choice of software is
particularly important given the unique challenges posed by CBCT data, including noise
and resolution differences. Studies have demonstrated the reproducibility of radiomic
features, highlighting the necessity of using reliable software tools that can adequately
handle these specific challenges [40].

6. Image Segmentation

Image segmentation, a critical first step in texture analysis and radiomics, involves
delineating the ROI in two-dimensional (2D) or VOI in 3D approaches. This process defines
the specific area from which radiomic features will be extracted and calculated [4,10].

Image segmentation in radiomics can be approached through three main methods,
each with its own advantages and limitations. Manual segmentation, often considered the
gold standard, involves experts meticulously delineating regions of interest. Although this
method provides high-quality results, it is time-consuming and susceptible to both intra-
and inter-observer variability. Studies employing manual segmentation should assess the
reproducibility of derived radiomic features and exclude those that prove non-reproducible
from further analyses. Semi-automatic segmentation offers a middle ground, utilizing
standard image segmentation algorithms such as region-growing or thresholding, followed
by manual corrections. This approach is faster than fully manual segmentation but still
introduces some level of observer bias. Automatic segmentation, a rapidly evolving field,
employs advanced techniques including deep learning algorithms, often utilizing a U-Net
architecture. This method’s primary advantage lies in its ability to eliminate intra- and
inter-observer variability. However, a significant challenge remains in ensuring the general-
izability of trained algorithms across diverse datasets. Each of these approaches plays a
decisive role in radiomics research, with the choice depending on the specific requirements
of the study, available resources, and the need for reproducibility and efficiency [4,10].

Various software solutions, both open-source and commercial, are available for image
segmentation including the following [10]:
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• 3D Slicer (https://www.slicer.org/);
• ImageJ (https://imagej.net/);
• Invesalius (https://invesalius.github.io/);
• LifEx (https://www.lifexsoft.org/);
• MeVisLab (https://www.mevislab.de/de/);
• MITK (https://helmholtz.software/software/mitk);
• ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php);
• OsiriX (https://www.osirix-viewer.com/).

The choice of segmentation method significantly impacts the results of a radiomics
study. Although automatic or semi-automatic segmentation improves reproducibility,
it may be less accurate due to artifacts and noise. Deep learning techniques and neural
networks have found extensive application in automated segmentation, as well as in feature
extraction and selection [4,9].

Importantly, the decision on what to segment (e.g., 3D image, 2D image, multiple
levels on a single slice, ROI, and VOI) can lead to variability in study outcomes. Semi-
automatic techniques involving automatic segmentation with secondary reading by a
radiologist can improve reproducibility but may be more time-consuming than manual
segmentation [4,42].

As research progresses, efforts are being directed towards developing robust and
generalizable algorithms for automated segmentation to overcome current limitations and
enhance the reliability of texture analysis methodologies [4].

7. Texture Analysis: Feature Extraction and Selection Methods

In the earlier sections of this article, we introduced the main approaches to texture
analysis in dental and medical imaging. This section aims to provide a more comprehensive
and in-depth exploration of the methodologies used for feature extraction and selection. As
previously mentioned, texture analysis uses statistical methods to examine and describe the
relationships between gray-level values in an image by typically using commercial software
or custom-built tools. Here, we will delve deeper into the three primary approaches: first-
order statistical texture analysis, second-order statistical texture analysis, and higher-order
statistical texture analysis.

7.1. First-Order Statistical Texture Analysis

Bulleted first-order statistical texture analysis focuses on the statistical properties
of individual pixel values, without considering their spatial relationships. This method
computes various statistics from the histogram of pixel intensities in the ROI [1]. Common
first-order features include the following [17]:

• Mean: average intensity value;
• Variance: measure of the intensity distribution;
• Skewness: asymmetry of the intensity distribution;
• Kurtosis: peakedness of the intensity distribution;
• Energy: sum of squared elements in the histogram;
• Entropy: measure of the randomness in pixel intensities.

These features provide a basic characterization of the texture but do not capture spatial
relationships between pixels.

7.2. Second-Order Statistical Texture Analysis

All second-order statistical texture analysis considers the spatial relationships between
pairs of pixels [14]. The most common approach in this category is based on the GLCM, as
described by Haralick et al. [43].

GLCM uses second-order statistics to assess the gray level distribution of pairs of
pixels in the ROI. Each element (i, j) of this matrix shows how many times gray level i
co-occurs with gray level j for a given distance d (usually d = 1, 2, 3, 4, or 5 pixels) and
direction θ (θ = 0◦, 45◦, 90◦, or 135◦) [3].

https://www.slicer.org/
https://imagej.net/
https://invesalius.github.io/
https://www.lifexsoft.org/
https://www.mevislab.de/de/
https://helmholtz.software/software/mitk
http://www.itksnap.org/pmwiki/pmwiki.php
https://www.osirix-viewer.com/
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From the GLCM, several texture descriptors can be computed. These features provide
more detailed information about texture patterns and are often more discriminative than
first-order statistics, including the following [3]:

• Contrast: measure of local variations;
• Correlation: linear dependency of gray levels on neighboring pixels;
• Energy: sum of squared elements in the GLCM;
• Homogeneity: closeness of the distribution of elements to GLCM diagonal;
• Entropy: measure of randomness in pixel pair distributions.

7.3. Higher-Order Statistical Texture Analysis

Higher-order statistical texture analysis methods consider relationships between three
or more pixels. These techniques can capture more complex texture patterns not detectable
with first- or second-order methods [14]. However, they may also be more computationally
intensive and result in a larger number of features [1].

Higher-order statistical and transform-based methods offer advanced approaches
to texture analysis in dentomaxillofacial imaging. The Gray Level Run Length Matrix
(GLRLM) analyzes pixels with the same gray level in a specific direction, effectively captur-
ing coarse textures. Local Binary Patterns (LBPs) consider the relationship between a central
pixel and its neighbors, creating a binary code that describes local texture patterns. Gabor
filters provide multi-resolution representation of texture features by analyzing textures at
different scales and orientations. Similarly, wavelet transforms decompose the image into
different frequency bands, enabling multi-scale texture analysis. Fractal-based approaches
analyze the self-similarity of textures across different scales, which can be particularly
useful for natural textures such as those found in bone structures. These methods, while
computationally more complex, offer deeper insights into texture characteristics, poten-
tially revealing subtle tissue changes not visible to the human eye or captured with simpler
methods [1,14].

7.4. Strengths and Limitations of Texture Analysis Techniques

The comparison of texture analysis methods reveals a spectrum of approaches, each
with its own strengths and limitations. First-order statistical methods offer simplicity and
computational efficiency, providing a basic characterization of overall image intensity distri-
bution [1,4]. Although useful for initial assessment of tissue homogeneity, they are limited
in capturing spatial relationships between pixels and may miss subtle texture patterns
important for detecting early-stage pathologies [1,4]. In contrast, second-order statistical
methods, particularly those based on GLCM, capture spatial relationships between pixel
pairs, making them more sensitive to subtle texture changes and effective in characterizing
tissue heterogeneity [1,3]. However, these methods are more computationally intensive
and sensitive to image noise and artifacts [1,4].

Higher-order statistical methods excel at capturing complex texture patterns beyond
pixel pairs, detecting subtle tissue changes not visible to the human eye [1,2]. They are
particularly useful for analyzing heterogeneous structures but come with the highest
computational complexity and may produce a large number of features requiring careful
selection [5,6]. Model-based methods, such as fractal analysis, offer unique advantages in
capturing scale-invariant texture properties, proving useful for analyzing structures with
self-similarity like trabecular bone [23,24]. Although less sensitive to image noise, they may
oversimplify complex biological structures and have limitations in capturing directional
texture information [23,25].

Transform-based methods, exemplified by the wavelet transform, provide the ability to
analyze textures at multiple scales, capturing both spatial and frequency information [7,14].
They are effective in detecting localized texture changes but can be challenging in terms of
choosing the appropriate wavelet basis and interpreting results clinically [7,14,15]. Each
method finds its niche in dentomaxillofacial imaging applications. First-order methods are
suitable for quick assessment of bone density variations, although second-order methods
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excel in differentiating periapical lesions and assessing trabecular bone structure [3,26].
Higher-order methods prove valuable in detailed analysis of bone microarchitecture for
implant planning and advanced characterization of TMJ disorders [2,29]. Model-based
methods are particularly useful in analyzing bone quality for dental implant placement and
evaluating craniofacial growth patterns [27,28]. Transform-based methods find applications
in detecting subtle enamel defects and analyzing periodontal ligament space [30,31].

The choice of texture analysis method in dentomaxillofacial imaging ultimately de-
pends on the specific clinical application, image characteristics, and available computational
resources [8–10]. A combination of methods often yields optimal results, with first-order
methods used for initial screening followed by more advanced techniques for detailed anal-
ysis of regions of interest [11–13]. The integration of multiple texture analysis approaches,
along with clinical context and other imaging biomarkers, significantly enhances diagnostic
accuracy and treatment planning in dentomaxillofacial radiology [12,13].

7.5. Approaches to Feature Selection and Extraction

Feature selection and extraction techniques are often used after texture analysis to
reduce dimensionality and select the most relevant features for a given task. Common
approaches include principal component analysis (PCA), linear discriminant analysis
(LDA), and various machine-learning-based feature selection methods [44]. By combining
these different approaches to texture analysis and applying appropriate feature selection
techniques, researchers can develop robust and effective methods for characterizing and
analyzing textures in various applications, such as medical imaging, remote sensing, and
material science [45].

8. Interpretation of Extracted Features

Haralick et al. [43] proposed a comprehensive set of texture descriptors which are
foundational in the field of image analysis, particularly in the context of GLCM-based
methods. These descriptors are designed to capture various texture features in an image,
thus providing insights into the spatial relationships and intensity variations among pixel
pairs so that information about underlying tissue structures, pathologies, or anatomical
variations can be obtained. These texture features are described below:

(a) Contrast: this feature measures the intensity variation between pixels. High contrast
values often indicate heterogeneity within a ROI, which may correspond to patho-
logical conditions. For instance, increased contrast has been observed in malignant
lesions, such as squamous-cell carcinoma, where the tissue heterogeneity is more
pronounced due to irregular cell arrangements;

(b) Inverse difference moment: this feature assesses the uniformity of pixel pairs. A
higher homogeneity value suggests that the ROI has similar pixel intensities, which
could be indicative of benign conditions or healthy tissue. For example, benign
odontogenic tumors may exhibit higher homogeneity compared to malignant tumors
due to their more uniform tissue structure;

(c) Angular second moment: this feature represents the uniformity of the texture and
is often associated with smooth textures. Higher energy values can indicate more
regular or homogenous structures, as seen in healthy bone or dental tissues, where
the pixel intensities are more consistent across the ROI;

(d) Correlation: this feature measures the linear dependency of gray levels on those of
neighboring pixels. A high correlation may reflect organized structures, such as the
layered organization seen in dental enamel or the regular patterns in compact bone.
In contrast, lower correlation might be associated with disorganized tissue structures,
such as those seen in inflammatory conditions;

(e) Sum of squares: variance measures the distribution of gray-levels within the ROI. A
higher variance might suggest a more complex texture, which could correlate with
pathological changes. For instance, higher variance has been reported in cases of
periodontitis where the bone structure becomes irregular due to disease progression;
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(f) Entropy: entropy measures the randomness in the texture. Higher entropy values
suggest a more complex and disordered texture, which may be seen in malignant or
inflamed tissues where the cellular architecture is disrupted. For example, lesions
with high cellular atypia or necrotic areas, such as those found in aggressive tumors,
often present higher entropy;

(g) Sum average, sum variance, and sum Entropy: these features further analyze the
distribution of pixel values. Higher values of sum entropy, for example, are associated
with greater disorder within the tissue, which can be seen in advanced stages of
malignancies. On the other hand, sum variance might increase in cases where the
texture becomes more heterogeneous, as observed in the progression of dental caries;

(h) Difference of variance and difference of entropy: these features capture the variations
and entropy differences within the ROI. Significant differences may indicate transi-
tions between different tissue types or the presence of pathological processes altering
the tissue architecture, such as in fibrous dysplasia or cystic lesions.

These examples highlight how specific GLCM features can be linked to pathological
conditions, enhancing the diagnostic capability of dentomaxillofacial radiology. By inte-
grating these features into diagnostic workflows, clinicians can better differentiate between
healthy and pathological tissues, improving treatment outcomes.

Figure 2 summarizes the steps of the texture analysis process in images.
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9. Practical Application of Texture Analysis in Advanced Dentomaxillofacial Imaging

Texture analysis has become an innovation in dentomaxillofacial radiology, with the
potential to greatly improve diagnostic precision and enhance patient outcomes. However,
interpreting texture analysis can be challenging due to the complexity of the data and the
need for specialized expertise. Despite these challenges, its incorporation into imaging
reports can provide invaluable insights that improve clinical decision-making.

One of the primary applications of texture analysis in dentomaxillofacial imaging is
in the assessment of bone quality and changes. For instance, studies have demonstrated
its utility in evaluating hard tissue changes post socket preservation, providing detailed
insights that are fundamental for dental implant planning [33]. This capability allows for a
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more precise assessment of bone healing and quality, which can lead to improved surgical
outcomes and patient satisfaction.

In the context of temporomandibular joint (TMJ) disorders and other maxillofacial
pathologies, texture analysis offers a non-invasive method to detect subtle changes in
bone and soft tissue. This method is particularly valuable in assessing the TMJ disc and
surrounding structures, where traditional imaging may not fully capture the complexity of
pathological changes.

Recent studies have highlighted the utility of texture analysis in TMJ disorders. For
instance, Girondi et al. [46] demonstrated that texture analysis of MRI images can effectively
identify disc changes associated with effusion in the TMJ. This approach provides detailed
insights into the structural alterations of the joint, which are decisive for accurate diagnosis
and management of TMJ disorders [1]. Similarly, Luo et al. [47]. explored the application of
MRI-based texture analysis in evaluating the lateral pterygoid muscle in young patients
with temporomandibular disorders. Their study revealed that texture analysis could detect
fasciculation and other subtle muscle changes, which are often indicative of underlying
dysfunction. These findings underscore the potential of texture analysis to enhance the un-
derstanding of muscle involvement in TMJ disorders, facilitating more targeted therapeutic
interventions.

Furthermore, texture analysis has shown promise in the monitoring and evaluation
of periodontal disease and other chronic conditions. By providing quantitative data on
bone density and structural changes, it supports clinicians in tracking disease progression
and response to treatment over time. This ongoing assessment is necessary for managing
chronic conditions effectively and preventing complications.

In the context of salivary gland imaging, texture analysis offers a formidable tool
for enhancing diagnostic precision. Nardi et al. [48] showed that MR diffusion-weighted
imaging combined with texture analysis can effectively differentiate parotid gland lesions,
providing critical insights beyond conventional imaging. Similarly, Jiang et al. [49] utilized
CT-based texture analysis to distinguish between benign and malignant salivary gland
lesions, aiding in early and accurate diagnosis. Additionally, Ito et al. [50] showed that tex-
ture analysis could assess parotid sialadenitis, enabling better monitoring of inflammatory
changes.

As highlighted in the medical radiology literature, there is a need for standardized pro-
tocols in image acquisition and processing to ensure the reliability of textural features [51].

10. Critical Evaluation

Texture analysis in dentomaxillofacial radiology stands at a critical juncture, poised
between promising advancements and significant challenges. This section critically evalu-
ates the current landscape, dissecting the strengths, weaknesses, and significant gaps in
existing research.

10.1. Limitations and Challenges

Radiomics faces several significant challenges that impact its widespread adoption
and reliability in clinical settings. These challenges can be categorized into three main areas:
lack of standardization, complex data interpretation, and limited large-scale validation.

Complex data interpretation is another substantial challenge. Lambin et al. [51] de-
scribed the extraction of over 200 quantitative features from medical images, including
intensity, shape, and texture characteristics. This high-dimensional nature of texture fea-
tures makes interpretation challenging, especially for clinicians not specialized in advanced
image analysis.

Regarding the lack of standardization, Kumar et al. [52] highlight significant variations
in imaging parameters. Their study of 74 patients revealed slice thickness variations from
1 mm to 5 mm and pixel size differences from 0.59 mm to 0.98 mm. These inconsistencies
affect the information extracted with image feature algorithms, which in turn impacts
classifier performance.
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Gillies et al. [8] discussed the challenges in quantitative imaging, particularly in PET-
CT. They emphasize that quantitative imaging requires not only calibration of the scanner
and standardization of the scan protocol but also strict adherence to patient protocols. This
further underscores the complexity of standardization in radiomics.

The limited availability of large-scale, multi-center validation studies hinders the
generalizability of radiomics findings. Aerts et al. [12] emphasize the importance of external
validation in their study on gene-expression analysis for survival prediction in lung cancer.
They stress that without proper validation, the risk of overfitting increases, potentially
leading to overoptimistic results.

Parmar et al. [42] conducted a study comparing various feature selection and classi-
fication methods in radiomics. They found that the choice of classification method is the
most dominant source of performance variation, highlighting the need for standardized
approaches in radiomics analysis.

10.2. Research Gaps and Opportunities for Advancement

More research is needed to assess the value of texture analysis in monitoring dis-
ease progression and treatment response over time. Current studies primarily focus on
single time point imaging, limiting the understanding of how radiomic features evolve
throughout the course of treatment [53]. The concept of delta-radiomics, which involves
extracting quantitative features from image sets acquired at multiple time points during
treatment, shows promise in improving diagnosis, prognosis, and assessment of therapeutic
response [54].

The integration of radiomics results with clinical and histopathological data for com-
prehensive patient assessment remains limited [8]. Although some studies have explored
the combination of radiomic features with genomic data, there is a need for more extensive
research integrating radiomics with other clinical parameters. This integration could lead to
more robust and clinically relevant prediction models, potentially enhancing personalized
treatment strategies [8].

A significant challenge in radiomics is the standardization of imaging protocols and
feature extraction methods. This standardization is necessary to ensure reproducibility and
comparability across studies. Efforts should be made to develop large, multi-institutional
databases to facilitate external validation of radiomic models and improve their generaliz-
ability [55].

The integration of artificial intelligence, particularly deep learning algorithms, with
texture analysis holds promise for more robust and automated analysis [56]. Nurzynska
et al. [57] conducted a study comparing texture analysis with deep learning approaches for
differentiating age and sex in vertebral body CT scans. Their research demonstrates the
potential of integrating advanced machine learning techniques with radiomics to enhance
the analysis of medical images, particularly in the context of bone structure evaluation.

11. Conclusions and Outlook

The integration of texture analysis into dentomaxillofacial radiology marks a signif-
icant stride towards personalized dental care. This review highlights key insights and
outlines strategic directions for advancing research and clinical applications in this field.
The development of quantitative imaging biomarkers through texture analysis shows great
promise, necessitating validation through large-scale, multi-center clinical trials to establish
their reliability and clinical utility. This detailed image analysis enables more individual-
ized treatment planning, and future efforts should focus on integrating these results into
decision-making algorithms and treatment protocols to optimize therapeutic interventions.

However, the widespread adoption of texture analysis faces challenges, primarily the
lack of standardized protocols in image acquisition and processing. To address this, we
recommend establishing international working groups to develop and implement stan-
dardized guidelines. Bridging the gap between research and clinical practice requires the
development of user-friendly software tools that seamlessly integrate texture analysis into
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existing radiological workflows, alongside educational programs to train dentomaxillofa-
cial radiologists in effectively interpreting and utilizing texture analysis data.

A fundamental aspect of clinical integration is the incorporation of texture analysis
interpretations into imaging reports. General practitioner dentists, who may lack special-
ized training in advanced image analysis techniques, often find it challenging to interpret
raw texture data. By including expert interpretations of texture analysis results in standard
imaging reports, radiologists can provide general dentists with understandings derived
from these advanced techniques. This approach ensures that the valuable information
obtained through texture analysis is effectively communicated and utilized in clinical
decision-making, bridging the gap between advanced imaging technology and practical
patient care.

In conclusion, although texture analysis in dentomaxillofacial radiology faces chal-
lenges in standardization and clinical integration, its potential to enhance diagnostic capa-
bilities and support personalized patient care is significant. By addressing these challenges
through focused research, education, and interdisciplinary collaboration, the field can
move towards realizing the full benefits of texture analysis in routine clinical practice.
This progression will not only improve the quality of dental and maxillofacial healthcare,
but also pave the way for more precise, personalized, and effective patient management
strategies in the future.

Author Contributions: Conceptualization, A.L.F.C. and S.L.P.d.C.L.; methodology, E.D.B., S.L.P.d.C.L.
and A.L.F.C.; writing—original draft preparations: C.L.Y., P.R.S. and A.L.F.C.; writing—review and
editing, E.D.B., S.L.P.d.C.L., P.R.S., C.L.Y. and A.L.F.C.; supervision, A.L.F.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Castellano, G.; Bonilha, L.; Li, L.M.; Cendes, F. Texture analysis of medical images. Clin. Radiol. 2004, 59, 1061–1069. [CrossRef]

[PubMed]
2. Gomes, J.P.P.; Ogawa, C.M.; Silveira, R.V.; Castellano, G.; De Rosa, C.S.; Yasuda, C.L.; Rocha, A.C.; Hasseus, B.; Orhan, K.;

Braz-Silva, P.H.; et al. Magnetic resonance imaging texture analysis to differentiate ameloblastoma from odontogenic keratocyst.
Sci. Rep. 2022, 12, 20047. [CrossRef]

3. De Rosa, C.S.; Bergamini, M.L.; Palmieri, M.; Sarmento, D.J.S.; de Carvalho, M.O.; Ricardo, A.L.F.; Hasseus, B.; Jonasson, P.;
Braz-Silva, P.H.; Ferreira Costa, A.L. Differentiation of periapical granuloma from radicular cyst using cone beam computed
tomography images texture analysis. Heliyon 2020, 6, e05194. [CrossRef] [PubMed]

4. Corrias, G.; Micheletti, G.; Barberini, L.; Suri, J.S.; Saba, L. Texture analysis imaging “what a clinical radiologist needs to know”.
Eur. J. Radiol. 2022, 146, 110055. [CrossRef] [PubMed]

5. Litvin, A.A.; Burkin, D.A.; Kropinov, A.A.; Paramzin, F.N. Radiomics and Digital Image Texture Analysis in Oncology (Review).
Sovrem. Tekhnologii Med. 2021, 13, 97–104. [CrossRef]

6. Lubner, M.G.; Smith, A.D.; Sandrasegaran, K.; Sahani, D.V.; Pickhardt, P.J. CT Texture Analysis: Definitions, Applications, Biologic
Correlates, and Challenges. Radiographics 2017, 37, 1483–1503. [CrossRef]

7. Kassner, A.; Thornhill, R.E. Texture analysis: A review of neurologic MR imaging applications. AJNR Am. J. Neuroradiol. 2010, 31,
809–816. [CrossRef]

8. Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577.
[CrossRef]

9. Zhang, W.; Guo, Y.; Jin, Q. Radiomics and Its Feature Selection: A Review. Symmetry 2023, 15, 1834. [CrossRef]
10. van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging-”how-to” guide and

critical reflection. Insights Imaging 2020, 11, 91. [CrossRef]
11. Santos, G.N.M.; da Silva, H.E.C.; Ossege, F.E.L.; Figueiredo, P.T.S.; Melo, N.S.; Stefani, C.M.; Leite, A.F. Radiomics in bone

pathology of the jaws. Dentomaxillofac. Radiol. 2023, 52, 20220225. [CrossRef] [PubMed]

https://doi.org/10.1016/j.crad.2004.07.008
https://www.ncbi.nlm.nih.gov/pubmed/15556588
https://doi.org/10.1038/s41598-022-20802-7
https://doi.org/10.1016/j.heliyon.2020.e05194
https://www.ncbi.nlm.nih.gov/pubmed/33088959
https://doi.org/10.1016/j.ejrad.2021.110055
https://www.ncbi.nlm.nih.gov/pubmed/34902669
https://doi.org/10.17691/stm2021.13.2.11
https://doi.org/10.1148/rg.2017170056
https://doi.org/10.3174/ajnr.A2061
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.3390/sym15101834
https://doi.org/10.1186/s13244-020-00887-2
https://doi.org/10.1259/dmfr.20220225
https://www.ncbi.nlm.nih.gov/pubmed/36416666


J. Imaging 2024, 10, 263 15 of 16

12. Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.;
Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun.
2014, 5, 4006. [CrossRef] [PubMed]

13. Mayerhoefer, M.E.; Materka, A.; Langs, G.; Haggstrom, I.; Szczypinski, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl.
Med. 2020, 61, 488–495. [CrossRef]

14. Varghese, B.A.; Cen, S.Y.; Hwang, D.H.; Duddalwar, V.A. Texture Analysis of Imaging: What Radiologists Need to Know. AJR
Am. J. Roentgenol. 2019, 212, 520–528. [CrossRef]

15. Davnall, F.; Yip, C.S.; Ljungqvist, G.; Selmi, M.; Ng, F.; Sanghera, B.; Ganeshan, B.; Miles, K.A.; Cook, G.J.; Goh, V. Assessment of
tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imaging 2012, 3, 573–589. [CrossRef]

16. Alobaidli, S.; McQuaid, S.; South, C.; Prakash, V.; Evans, P.; Nisbet, A. The role of texture analysis in imaging as an outcome
predictor and potential tool in radiotherapy treatment planning. Br. J. Radiol. 2014, 87, 20140369. [CrossRef]

17. Phillips, I.; Ajaz, M.; Ezhil, V.; Prakash, V.; Alobaidli, S.; McQuaid, S.J.; South, C.; Scuffham, J.; Nisbet, A.; Evans, P. Clinical
applications of textural analysis in non-small cell lung cancer. Br. J. Radiol. 2018, 91, 20170267. [CrossRef]

18. Herlidou-Meme, S.; Constans, J.M.; Carsin, B.; Olivie, D.; Eliat, P.A.; Nadal-Desbarats, L.; Gondry, C.; Le Rumeur, E.; Idy-Peretti,
I.; de Certaines, J.D. MRI texture analysis on texture test objects, normal brain and intracranial tumors. Magn. Reson. Imaging 2003,
21, 989–993. [CrossRef] [PubMed]

19. Kuno, H.; Qureshi, M.M.; Chapman, M.N.; Li, B.; Andreu-Arasa, V.C.; Onoue, K.; Truong, M.T.; Sakai, O. CT Texture Analysis
Potentially Predicts Local Failure in Head and Neck Squamous Cell Carcinoma Treated with Chemoradiotherapy. AJNR Am. J.
Neuroradiol. 2017, 38, 2334–2340. [CrossRef]

20. De Cecco, C.N.; Ganeshan, B.; Ciolina, M.; Rengo, M.; Meinel, F.G.; Musio, D.; De Felice, F.; Raffetto, N.; Tombolini, V.; Laghi, A.
Texture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied
with 3-T magnetic resonance. Investig. Radiol. 2015, 50, 239–245. [CrossRef]

21. Wermelskirchen, S.; Leonhardi, J.; Hohn, A.K.; Osterhoff, G.; Schopow, N.; Zimmermann, S.; Ebel, S.; Prasse, G.; Henkelmann, J.;
Denecke, T.; et al. Impact of quantitative CT texture analysis on the outcome of CT-guided bone biopsy. J. Bone Oncol. 2024, 47,
100616. [CrossRef] [PubMed]

22. Sun, Y.; Zhuang, Y.; Zhu, J.; Song, B.; Wang, H. Texture analysis of apparent diffusion coefficient maps in predicting the clinical
functional outcomes of acute ischemic stroke. Front. Neurol. 2023, 14, 1132318. [CrossRef]

23. Lowitz, T.; Museyko, O.; Bousson, V.; Kalender, W.A.; Laredo, J.D.; Engelke, K. Characterization of knee osteoarthritis-related
changes in trabecular bone using texture parameters at various levels of spatial resolution-a simulation study. Bonekey Rep. 2014,
3, 615. [CrossRef] [PubMed]

24. Kawashima, Y.; Fujita, A.; Buch, K.; Li, B.; Qureshi, M.M.; Chapman, M.N.; Sakai, O. Using texture analysis of head CT images to
differentiate osteoporosis from normal bone density. Eur. J. Radiol. 2019, 116, 212–218. [CrossRef]

25. Lubner, M.G.; Malecki, K.; Kloke, J.; Ganeshan, B.; Pickhardt, P.J. Texture analysis of the liver at MDCT for assessing hepatic
fibrosis. Abdom. Radiol. 2017, 42, 2069–2078. [CrossRef]

26. Goncalves, B.C.; de Araujo, E.C.; Nussi, A.D.; Bechara, N.; Sarmento, D.; Oliveira, M.S.; Santamaria, M.P.; Costa, A.L.F.; Lopes,
S. Texture analysis of cone-beam computed tomography images assists the detection of furcal lesion. J. Periodontol. 2020, 91,
1159–1166. [CrossRef]

27. Costa, A.L.F.; de Souza Carreira, B.; Fardim, K.A.C.; Nussi, A.D.; da Silva Lima, V.C.; Miguel, M.M.V.; Jardini, M.A.N.; Santamaria,
M.P.; de Castro Lopes, S.L.P. Texture analysis of cone beam computed tomography images reveals dental implant stability. Int. J.
Oral. Maxillofac. Surg. 2021, 50, 1609–1616. [CrossRef]

28. Mohammad, A.; Esmaeili, F.; Bayat, N.; Rahimipour, K.; Tolouei, A.E. Texture Analysis of Hard Tissue Changes after Sinus Lift
Surgery with Allograft and Xenograft. J. Oral. Health Craniofac. Sci. 2024, 1, 019–022. [CrossRef]

29. de Oliveira, L.A.P.; Lopes, D.L.G.; Gomes, J.P.P.; da Silveira, R.V.; Nozaki, D.V.A.; Santos, L.F.; Castellano, G.; de Castro Lopes,
S.L.P.; Costa, A.L.F. Enhanced Diagnostic Precision: Assessing Tumor Differentiation in Head and Neck Squamous Cell Carcinoma
Using Multi-Slice Spiral CT Texture Analysis. J. Clin. Med. 2024, 13, 4038. [CrossRef]

30. Queiroz, P.M.; Fardim, K.C.; Costa, A.L.F.; Matheus, R.A.; Lopes, S. Texture analysis in cone-beam computed tomographic images
of medication-related osteonecrosis of the jaw. Imaging Sci. Dent. 2023, 53, 109–115. [CrossRef]

31. Ito, K.; Muraoka, H.; Hirahara, N.; Sawada, E.; Hirohata, S.; Otsuka, K.; Okada, S.; Kaneda, T. Quantitative assessment of
mandibular bone marrow using computed tomography texture analysis for detect stage 0 medication-related osteonecrosis of the
jaw. Eur. J. Radiol. 2021, 145, 110030. [CrossRef]

32. Zhang, Y.; Zhuang, Y.; Ge, Y.; Wu, P.Y.; Zhao, J.; Wang, H.; Song, B. MRI whole-lesion texture analysis on ADC maps for the
prognostic assessment of ischemic stroke. BMC Med. Imaging 2022, 22, 115. [CrossRef]

33. Bayat, N.; Ghavimi, M.A.; Rahimipour, K.; Razi, S.; Esmaeili, F. Radiographic texture analysis of the hard tissue changes following
socket preservation with allograft and xenograft materials for dental implantation: A randomized clinical trial. Oral. Maxillofac.
Surg. 2024, 28, 705–713. [CrossRef] [PubMed]

34. Muraoka, H.; Ito, K.; Hirahara, N.; Ichiki, S.; Kondo, T.; Kaneda, T. Magnetic resonance imaging texture analysis in the quantitative
evaluation of acute osteomyelitis of the mandibular bone. Dentomaxillofac. Radiol. 2022, 51, 20210321. [CrossRef]

https://doi.org/10.1038/ncomms5006
https://www.ncbi.nlm.nih.gov/pubmed/24892406
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.2214/AJR.18.20624
https://doi.org/10.1007/s13244-012-0196-6
https://doi.org/10.1259/bjr.20140369
https://doi.org/10.1259/bjr.20170267
https://doi.org/10.1016/S0730-725X(03)00212-1
https://www.ncbi.nlm.nih.gov/pubmed/14684201
https://doi.org/10.3174/ajnr.A5407
https://doi.org/10.1097/RLI.0000000000000116
https://doi.org/10.1016/j.jbo.2024.100616
https://www.ncbi.nlm.nih.gov/pubmed/39015297
https://doi.org/10.3389/fneur.2023.1132318
https://doi.org/10.1038/bonekey.2014.110
https://www.ncbi.nlm.nih.gov/pubmed/25512855
https://doi.org/10.1016/j.ejrad.2019.05.009
https://doi.org/10.1007/s00261-017-1096-5
https://doi.org/10.1002/JPER.19-0477
https://doi.org/10.1016/j.ijom.2021.04.009
https://doi.org/10.29328/journal.johcs.1001049
https://doi.org/10.3390/jcm13144038
https://doi.org/10.5624/isd.20220202
https://doi.org/10.1016/j.ejrad.2021.110030
https://doi.org/10.1186/s12880-022-00845-y
https://doi.org/10.1007/s10006-023-01193-z
https://www.ncbi.nlm.nih.gov/pubmed/37981622
https://doi.org/10.1259/dmfr.20210321


J. Imaging 2024, 10, 263 16 of 16

35. Muraoka, H.; Kaneda, T.; Kondo, T.; Sawada, E.; Tokunaga, S. Diagnostic efficacy of apparent diffusion coefficient, texture
features, and their combination for differential diagnosis of odontogenic cysts and tumors. Oral. Surg. Oral. Med. Oral. Pathol.
Oral. Radiol. 2023, 135, 928–933. [CrossRef] [PubMed]

36. Yomtako, S.; Watanabe, H.; Kuribayashi, A.; Sakamoto, J.; Miura, M. Differentiation of radicular cysts and radicular granulomas
via texture analysis of multi-slice computed tomography images. Dentomaxillofac. Radiol. 2024, 53, 281–288. [CrossRef] [PubMed]

37. Mackin, D.; Fave, X.; Zhang, L.; Fried, D.; Yang, J.; Taylor, B.; Rodriguez-Rivera, E.; Dodge, C.; Jones, A.K.; Court, L. Measuring
Computed Tomography Scanner Variability of Radiomics Features. Investig. Radiol. 2015, 50, 757–765. [CrossRef]

38. Larroza, A.; Bodí, V.; Moratal, D. Texture Analysis in Magnetic Resonance Imaging: Review and Considerations for Future
Applications. In Assessment of Cellular and Organ Function and Dysfunction Using Direct and Derived MRI Methodologies; InTech:
Vienna, Austria, 2016.

39. Mayerhoefer, M.E.; Szomolanyi, P.; Jirak, D.; Materka, A.; Trattnig, S. Effects of MRI acquisition parameter variations and protocol
heterogeneity on the results of texture analysis and pattern discrimination: An application-oriented study. Med. Phys. 2009, 36,
1236–1243. [CrossRef] [PubMed]

40. Fave, X.; Mackin, D.; Yang, J.; Zhang, J.; Fried, D.; Balter, P.; Followill, D.; Gomez, D.; Jones, A.K.; Stingo, F.; et al. Can radiomics
features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med. Phys. 2015, 42,
6784–6797. [CrossRef]

41. Zwanenburg, A.; Vallieres, M.; Abdalah, M.A.; Aerts, H.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.;
Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput
Image-based Phenotyping. Radiology 2020, 295, 328–338. [CrossRef]

42. Parmar, C.; Rios Velazquez, E.; Leijenaar, R.; Jermoumi, M.; Carvalho, S.; Mak, R.H.; Mitra, S.; Shankar, B.U.; Kikinis, R.;
Haibe-Kains, B.; et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE 2014, 9,
e102107. [CrossRef] [PubMed]

43. Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 3,
610–621. [CrossRef]

44. Tang, J.; Alelyani, S.; Liu, H. Feature Selection for Classification: A Review. In Data Classification: Algorithms and Applications;
Elsevier: Amsterdam, The Netherlands, 2014; pp. 37–64.

45. Ghalati, M.K.; Nunes, A.; Ferreira, H.; Serranho, P.; Bernardes, R. Texture Analysis and Its Applications in Biomedical Imaging: A
Survey. IEEE Rev. Biomed. Eng. 2022, 15, 222–246. [CrossRef] [PubMed]

46. Girondi, C.M.; de Castro Lopes, S.L.P.; Ogawa, C.M.; Braz-Silva, P.H.; Costa, A.L.F. Texture Analysis of Temporomandibular Joint
Disc Changes Associated with Effusion Using Magnetic Resonance Images. Dent. J. 2024, 12, 82. [CrossRef]

47. Luo, D.; Qiu, C.; Zhou, R.; Shan, T.; Yan, W.; Yang, J. Clinical study of magnetic resonance imaging-based texture analysis and
fasciculation of the lateral pterygoid muscle in young patients with temporomandibular disorder. Oral. Surg. Oral. Med. Oral.
Pathol. Oral. Radiol. 2023, 136, 382–393. [CrossRef]

48. Nardi, C.; Tomei, M.; Pietragalla, M.; Calistri, L.; Landini, N.; Bonomo, P.; Mannelli, G.; Mungai, F.; Bonasera, L.; Colagrande, S.
Texture analysis in the characterization of parotid salivary gland lesions: A study on MR diffusion weighted imaging. Eur. J.
Radiol. 2021, 136, 109529. [CrossRef]

49. Jiang, S.; Su, Y.; Liu, Y.; Zhou, Z.; Li, M.; Qiu, S.; Zhou, J. Use of Computed Tomography-Based Texture Analysis to Differentiate
Benign From Malignant Salivary Gland Lesions. J. Comput. Assist. Tomogr. 2024, 48, 491–497. [CrossRef] [PubMed]

50. Ito, K.; Muraoka, H.; Hirahara, N.; Sawada, E.; Tokunaga, S.; Kaneda, T. Quantitative assessment of the parotid gland using
computed tomography texture analysis to detect parotid sialadenitis. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2022, 133,
574–581. [CrossRef]

51. Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard, R.;
Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer
2012, 48, 441–446. [CrossRef]

52. Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, H.J.; Dekker, A.; Fenstermacher, D.;
et al. Radiomics: The process and the challenges. Magn. Reson. Imaging 2012, 30, 1234–1248. [CrossRef]

53. Yip, S.S.; Aerts, H.J. Applications and limitations of radiomics. Phys. Med. Biol. 2016, 61, R150–R166. [CrossRef] [PubMed]
54. Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int. J.

Radiat. Oncol. Biol. Phys. 2018, 102, 1143–1158. [CrossRef] [PubMed]
55. Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.; Even, A.J.G.;

Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14,
749–762. [CrossRef] [PubMed]

56. Avanzo, M.; Stancanello, J.; El Naqa, I. Beyond imaging: The promise of radiomics. Phys. Med. 2017, 38, 122–139. [CrossRef]
57. Nurzynska, K.; Piórkowski, A.; Strzelecki, M.; Kociołek, M.; Banys, R.P.; Obuchowicz, R. Differentiating age and sex in vertebral

body CT scans—Texture analysis versus deep learning approach. Biocybern. Biomed. Eng. 2024, 44, 20–30. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.oooo.2023.01.008
https://www.ncbi.nlm.nih.gov/pubmed/36878835
https://doi.org/10.1093/dmfr/twae011
https://www.ncbi.nlm.nih.gov/pubmed/38565278
https://doi.org/10.1097/RLI.0000000000000180
https://doi.org/10.1118/1.3081408
https://www.ncbi.nlm.nih.gov/pubmed/19472631
https://doi.org/10.1118/1.4934826
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1371/journal.pone.0102107
https://www.ncbi.nlm.nih.gov/pubmed/25025374
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/RBME.2021.3115703
https://www.ncbi.nlm.nih.gov/pubmed/34570709
https://doi.org/10.3390/dj12030082
https://doi.org/10.1016/j.oooo.2023.05.002
https://doi.org/10.1016/j.ejrad.2021.109529
https://doi.org/10.1097/RCT.0000000000001578
https://www.ncbi.nlm.nih.gov/pubmed/38157266
https://doi.org/10.1016/j.oooo.2021.10.022
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1088/0031-9155/61/13/R150
https://www.ncbi.nlm.nih.gov/pubmed/27269645
https://doi.org/10.1016/j.ijrobp.2018.05.053
https://www.ncbi.nlm.nih.gov/pubmed/30170872
https://doi.org/10.1038/nrclinonc.2017.141
https://www.ncbi.nlm.nih.gov/pubmed/28975929
https://doi.org/10.1016/j.ejmp.2017.05.071
https://doi.org/10.1016/j.bbe.2023.11.002

	Introduction 
	Search Strategy and Methodology 
	Inclusion and Exclusion Criteria 
	Study Selection Process 
	Data Extraction and Synthesis 

	Historical Perspective of Texture Analysis in Radiology 
	Texture Analysis Methods 
	Evolution of Imaging Modalities 

	Milestones in Dentomaxillofacial Applications 
	Image Acquisition Protocols for Texture Analysis 
	CT Imaging Parameters for Texture Analysis 
	MRI Sequences for Texture Analysis 
	CBCT Parameters for Texture Analysis 

	Image Segmentation 
	Texture Analysis: Feature Extraction and Selection Methods 
	First-Order Statistical Texture Analysis 
	Second-Order Statistical Texture Analysis 
	Higher-Order Statistical Texture Analysis 
	Strengths and Limitations of Texture Analysis Techniques 
	Approaches to Feature Selection and Extraction 

	Interpretation of Extracted Features 
	Practical Application of Texture Analysis in Advanced Dentomaxillofacial Imaging 
	Critical Evaluation 
	Limitations and Challenges 
	Research Gaps and Opportunities for Advancement 

	Conclusions and Outlook 
	References

