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Abstract: In this paper, we propose a global modelling for vector field approximation from a given
finite set of vectors (corresponding to the wind velocity field or marine currents). In the modelling,
we propose using the minimization on a Hilbert space of an energy functional that includes a fidelity
criterion to the data and a smoothing term. We discretize the continuous problem using a finite
elements method. We then propose taking into account the topographic effects on the wind velocity
field, and visualization using a free library is also proposed, which constitutes an added value
compared to other vector field approximation models.

Keywords: vector flow visualization; current/wind velocity field approximation; wind velocity
field modelling

1. Introduction

Vector field approximation has many applications, such as to predict wind turbine
production; in oceanography, to study marine currents; and more generally in a computer
sciences framework. As introduced in [1], in order to approximate a vector field, several
approaches have been developed: a finite element method interpolation (see [2]), PDE-
based methods, kriging methods, a Lagrange interpolation method and spline and Rational
Basis Function (RBF) approximations (see [3–8]). These approaches have drawbacks,
particularly when a small number of data are available and the approximation’s result is
qualitatively insufficient. In this work, we are precisely in a case where the number of data
from anemometers is considered low in comparison to the large study area. It is, therefore,
necessary to propose a mathematical model allowing for this type of data to be processed
via a robust energy functional minimization. The major methodological contribution of
this work consists in the modelling using Dm splines, as well as the contribution of adding
the topography effect into the numerical results; most of the methods proposed in the
literature do not integrate this important aspect, but because there are little available data, it
is important to include as much information in the model as possible to generate a realistic
wind field, and taking the topography into account is quite simple and brings significant
added value. Other methods (like [3–5]) only focus on the modelling and the mathematical
aspects of the approximation without adding more information than the input dataset. To
our knowledge, our approach is the first to offer such a global framework.

In this paper, we first give the considered vector field approximation model, using a
Dm spline operator, rigorously introduced in [1,7,9–11]. The dataset consists of a finite set
of vectors (xi, yi, wi)i, where (xi, yi) locates the point in 2D and wi = (Ui, Vi) ∈ R2 gives the
direction and speed of the wind at location (xi, yi). A minimization problem is introduced,
leading to a variational problem whose solution is the searched for wind vector field. We
give the discretization using a classic finite element method. We then give details on how
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to integrate into the model the effect of the topography on the obtained wind velocity field;
this last part greatly improves upon previous models (given in [1]), where topographic
effects are not taken into account. We show the effects of this topographic influence on
the synthetic dataset given by an explicit function. We then give numerical examples for a
real dataset, including a specific tool for visualization. A global review of this complete
approximation framework is given in Figure 1.

J. Imaging 2024, 10, x FOR PEER REVIEW 3 of 21 
 

 

 

Figure 1. Global view of the approximation framework. 

  

Architecture of the data approximation program 

Input—Vector field (xi, yi, Ui, Vi) i 
Lagrange-type dataset giving speed and direction of wind 

at a point (xi, yi) i 

Definition of the studied  
domain Ω as a rectangle such that all 

points (xi, yi)i belong to Ω 

MESHING of Ω: Triangulation of Ω with 

rectangles (or triangles) 

GMSH or 
interactive 
tool 

Dm SPLINE APPROXIMATION 
Discretization of the problem  

on a finite dimensional space Vh 
 

Output: EVALUATION  
of the approximation on a regular grid 

VISUALIZATION using Paraview and Matplotlib 

-  choice of smoothing 

parameter 

-  defining basis functions 

(finite element method) 

-  matrix construction 

-  linear system 

-  resolution of the linear 

system (Choleski/or Gauss) 

Taking into account 

topography effect on 

wind velocity field. 

Figure 1. Global view of the approximation framework.



J. Imaging 2024, 10, 285 3 of 18

2. Mathematical Modelling

The mathematical modelling of our approximation problem is constructed using a
Dm spline operator as follows: For all v ∈ Hm+1(Ω), we introduce the energy functional
consisting of two terms. The first one is the data fidelity criterion, while the second one is
the smoothing parameter:

Jε(v) = ⟨ρ(v − w)⟩2 + ε|v|2m+1,Ω,R (1)

where Ω is an open subset corresponding to the studied zone. w = (w1, w2, . . ., wN) ∈
(

R2
)N

is the vector field dataset, ρ is a linear operator linked to the dataset, |•|2m+1,Ω,IR is the
usual semi-norm of the usual Sobolev space Hm+1(Ω) as defined in [1], ⟨•⟩ is the Euclidean
norm in R2 and ε is a smoothing parameter generally equal to 10−6 in many applications
(see [1,4,7,8] for more details). We recall that Hm+1(Ω) is a space of functions belonging to
L2(Ω) and their (m + 1) derivatives. We also introduce an ordered set of N points (xi)i of Ω,
where we suppose as known the value of the wind velocity field. The linear operator ρ is

given by ρ(v) = (v(x1), v(x2), . . . v(xN)) ∈
(

R2
)N

. We use the Dm spline (see Gout et al. [1]
and Arcangéli et al. [7] for a complete study of this approximation operator) approximation
framework to solve this problem. We call σd

ε the smoothing spline on Ω relative to ρ, which
is the unique solution of the minimization problem:{

find σε ∈ Hm+1
(

Ω), such that for any v ∈ Hm+1(Ω) :
Jε(σε) ≤ Jε(v).

(2)

We can use the Lax–Milgram theorem to establish the uniqueness of this minimization
problem, since the solution σd

ε of this minimization problem is the solution of the following
variational problemfind σε ∈ Hm+1

(
Ω), such that for any v ∈ Hm+1(Ω) :〈

ρσd
ε , ρv

〉
+ ε
(

σd
ε , v
)

m+1,Ω,R
= ⟨w, ρv⟩.

(3)

where (•, •)m+1,Ω,R denotes the semi-norm of Hm+1(Ω). To apply the Lax–Milgram the-
orem, we recall that all the hypotheses of this theorem are satisfied, since Hm+1(Ω) is a
Hilbert space, and we also have as follows:

• a(u, v) = ⟨ρu, ρv⟩+ ε(u, v)m+1,Ω,R is a bilinear form, being the sum of scalar products.

• a(u,v) is continuous on
(

Hm+1(Ω)
)2

because |a(u, v|) ≤ max(1, ε)∥u∥m+1,Ω∥v∥m+1,Ω,
using the Cauchy–Schwarz inequality and the norm equivalence between(
⟨ρv, ρv⟩+ (v, v)m+1,Ω,R

)1/2
and ∥v∥m+1,Ω.

• a(v,v) is elliptic on Hm+1(Ω) since a(v, v) ≥ min(1, ε)∥v∥2m + 1, Ω.
• ⟨w, ρv⟩ is a continuous linear form.

We now propose a discretization of the variational problem using a finite element
discretization (see [1,9,12] for more details on such a discretization). We recall that the
main idea of the finite element method is to replace the (Hilbert) space Hm+1(Ω) used to
define the variational Equation (3) by a finite dimensional subspace Vh. Of course, we
have Vh ⊂ Hm+1(Ω). The functions belonging to Vh. are piecewise polynomials, and the
bases of the functions for the space Vh are constructed such that they have small support.
For any real h > 0, let Th be a triangulation of Ω by n-simplices or n-rectangles K with
diameter hK ≤ h. We classically approximate the space Hm+1(Ω) by the space Vh,, a finite
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dimensional space included in Hm+1(Ω) and admitting a polynomial basis of polynomial
functions

(
Φj
)

j. We write the solution of σd
ε,h on the basis of Vh as

σd
ε,h =

dimVh

∑
j=1

β jΦj : β j ∈ R. (4)

Note that the polynomials
(
Φj
)

j are given, since they are computed following the
chosen generic finite element. The generic finite element we choose here is the Bogner–Fox–
Schmit (BFS) rectangle of class C1, where a function of Vh. is completely determined by its
four values (value, values of the two first derivatives and value of the twist derivative) at a
nodal point (see Appendix A). The choice of the BFS finite element is due to their capability
to easily tessellate rectangular domains and to guarantee a final approximation of class C1.

From (4), we have to find
(

β j
)

j in order to find the solution σd
ε,h of our approximation

problem. We can now give the discretization of problem (3) using (4):

Find
(

β j
)

j ∈ RdimVh such that ∀k = 1, . . . , dimVh,
N
∑

i=1

〈
dimVh

∑
j=1

β j.Φj, vh(xi)

〉
+ ε

(
dimVh

∑
j=1

β j.Φj, vh

)
m+1,Ω,Rn

=
N
∑

i=1
⟨wi, vh(xi)⟩.

(5)

Equation (5) leads to the following linear system, taking as the test function vh all the
basis functions Φk: k = 1,. . ., dim Vh

N

∑
i=1

dimVh

∑
j=1

β j.Φj, Φk(xi) + ε
dimVh

∑
j=1

β j.
(
Φj, Φk

)
m+1,Ω,Rn =

N

∑
i=1

⟨wi, Φk(xi)⟩. (6)

We finally have to solve the following linear system to find the unknown real values
(
βj
)

j:(
(A)T A + εR

)
β = (A)Tw,with A =

[
Φj(xi)

]
1≤i≤N,1≤j≤dimVh

and R =
[
(Φj, Φj)m+1,Ω,R

]
1≤i,j≤dimVh

. (7)

For the numerical simulation, we take m = 1, and we use the Bogner–Fox–Schmit
finite element with the basis function as a polynomial of degree 3 (see [7] for more details).
The modelling we have introduced in this section permits the approximation of a wind
velocity field on all Ω from a finite set of data given, for instance, by several anemometers
(as illustrated in the numerical section of this work—Figure 10 and Figure 11).

3. Taking into Account the Topography

In Section 2, we proposed a framework to approximate a wind velocity field from a
finite set of measures. It is, of course, well known that the topography plays an important
role in wind field velocity variations. Obstacles modify air flows due to pressure forces (see
Figure 2). The wind slows down upstream of an obstacle, and accelerates downstream of it.
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Figure 2. Horizontally, we consider that air streams begin to rise upstream of an obstacle at a distance
such that d = h × cot(a/2), with h being the height of the obstacle and a the angle of the slope.

Since the approach introduced in Section 2 does not take into account physical con-
siderations, we propose here a way to approximate the topography’s influence by post
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processing the approximated wind field obtained from the model given in Section 2. More
precisely, let us consider a wind vector field on N points as

W’ = (w’1,. . ., w’N),

where each wind vector w’i belongs to R x R, with given coordinates (xi, yi) for each w’i,
according to the topographic configuration around it as follows: W’i = ci(θ) wi, where W’i is the
adjusted wind vector and ci(θ) is the coefficient computed from the topographic configuration
at point (xi, yi), depending on the wind direction θ. This approximation holds for local
topographic effects. It cannot take into account large-scale effects, such as Venturi effects in
valleys or straits. To compute the topographic coefficient ci for a given wind direction θ at
point (xi, yi), we used the formulas given in parts 1–4 of [13], depending on the slope Φ

1, Φ < 0.05
1 + 2sΦ, 0.05 < Φ < 0.3
1 + 0.6s, Φ > 0.3

(8)

where s is the characteristic coefficient of the obstacle, depending on its features (see Table 1
and Figure 3).

Table 1. Features used to compute the characteristic coefficient s of an obstacle (source: [13]).

Variables Definition

s Orographic location factor

Φ Upwind slope H/Lu in the wind direction (see Figure 3)

Le Effective length of the upwind side

Lu Length of the upwind side

Ld Length of the downwind side

H Effective height of the obstacle

x Horizontal distance between point (x,y) and the top of the obstacle

z Height of the considered point (x,y)
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The effective length Le is computed as follows (type of slope Φ = H/Lu):

Le =

{
Lu, 0.05 < Φ < 0.3

H
0.3 , Φ > 0.3.

(9)

We also have to compute the value of the orographic location factor s used in (8). As
shown in [13], the value of s is related to the ratio H/Le. More precisely, for an upwind
section, for ranges −1.5 ≤ x

Lu
≤ 0 and 0 ≤ z

Le
≤ 2 we take s = A exp

(
B x

Lu

)
, where

A = 0.1552
(

z
Le

)4
− 0.8575

(
z
Le

)3
+ 1.8133

(
z
Le

)2
− 1.9115

(
z
Le

)
+ 1.0124,

and B = 0.3542
(

z
Le

)2
− 1.0577

(
z
Le

)
+ 2.6456. Note that when x

Lu
≤ −1.5 or 2 ≤ z

Le
we

take s = 0.
For a downwind section, as shown in [13], we take s = A

(
log x

Le

)2
+ B log x

Le
+ C, with

A = −1.342
(

log
z
Le

)3
− 0.822

(
log

z
Le

)2
+ 0.4609 log

z
Le

− 0.0791,

B = −1.0196
(

log
z
Le

)3
− 0.891

(
log

z
Le

)2
+ 0.5343 log

z
Le

− 0.1156,

and C = 0.803
(

log
z
Le

)3
+ 0.4236

(
log

z
Le

)2
− 0.5738 log

z
Le

+ 0.1606.

To compute the topographic coefficients of a domain D = [0, 1]2 × R2, we consider a
regular grid Dh of D of step h. Then, for each point (xi, yi) = (ih, jh) in Dh, we compute a
coefficient for each wind direction θ. We split up the compass wind into eight directions θj
from 0 to 360◦, by steps of 45 degrees (see Figure 4).
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Figure 4. Usual examples of compass wind and wind rose.

Once the collection of topographic coefficients is computed using (8), we use it to
adjust the approximated wind field, selecting coefficients according to the direction of each
wind vector and using them on the obtained approximating wind velocity field.

4. Numerical Examples

In this section, we give several numerical examples, including the computation of the
topographic coefficients (using a given function f ) and the approximation of a vector field
from a finite set of vectors giving the direction and speed of the wind.
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4.1. Computation of the Topographic Coefficients

In order to illustrate the proposed methodology on synthetic data given by an explicit
given function f, we simulate an obstacle (hills) in domain D using the basic 2D function f
defined as follows:

f (x, y) = 3
4 exp

(
− 1

4 (−9x − 2)2 − 1
4 (9y − 2)2

)
+ 3

4 exp
(
− 1

49 (−9x + 1)2 − 1
4 (9y + 1)2

)
+ 1

2 exp
(
− 1

4 (−9x − 7)2 − 1
4 (9y − 3)2

)
− 1

5 exp
(
− 1

4 (−9x − 4)2 − 1
4 (9y − 7)2

) (10)

We define the discretized domain as Dh, with h = 1/n. The obstacle is obtained by
computing f for every couple point (xi, yi), where i, j = 0, . . ., n. For n = 40, we obtain the
following obstacle (see Figure 5), and we give on this image the computed topographic
coefficients obtained using (10) (considering an arbitrary wind direction indicated by the
red arrow).
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Figure 5. Example of an obstacle given by the function f in (10); the arrow gives the considered wind
direction (eastern wind). We also give the colormap of the topographic coefficients associated with
the east wind direction.

The simulated topographical data given by the function f in (10) are then used to
compute the topographic coefficients as described in the previous subsection. For each
of the eight wind directions, we can plot the color map of the computed topographic
coefficients on the obstacle. The associated colors go from dark, for zones where the
topography slows down the wind flow (c < 1), to white, for zones where the topography
accelerates the wind flow (c > 1). For instance, we have plotted color maps for situations
where the wind comes from the northeast (see Figure 6), west (see Figure 7) and southeast
(see Figure 8). For each figure, the arrow indicates the direction of the wind.
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Note that the function given in (10) permits illustrating the topographic effect in cases
where we consider hills and ridges (as in Figure 3). We have tested the topographic effect
on more vertical hills and the results were satisfying. For the case of cliffs or escarpments
(Figure 9), the computation is slightly different but the reasoning is analogous, and the
values of the corresponding orographic parameters are given in Figure 10. An improvement
could be to propose calculations to take into account the influence of buildings (vertical
walls of buildings with a rectangular plan, the influence of the angle of roofs, etc.) or of
vegetation (trees, etc.), especially if we want to reconstruct the wind on a micro-scale.
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Beauvais, Abbeville and Le Touquet were selected.

We now give several numerical experiments on real datasets. The experiments are
performed on a 2.21 GHz Athlon with 1.00 GB of RAM.

We focus on the data for wind vector fields acquired in northwest France; the dataset
takes into account eight weather stations (Meteo France, Figures 10–12).



J. Imaging 2024, 10, 285 10 of 18

J. Imaging 2024, 10, x FOR PEER REVIEW 11 of 21 
 

 

 

 
Figure 10. Studied zone (northwest France). Anemometers located in Caen, Octeville, Rouen, Beau-
vais, Abbeville and Le Touquet were selected. 

We now give several numerical experiments on real datasets. The experiments are 
performed on a 2.21 GHz Athlon with 1.00 GB of RAM. 

We focus on the data for wind vector fields acquired in northwest France; the dataset 
takes into account eight weather stations (Meteo France, Figures 10–12). 

 
Figure 11. Example of a wind dataset for a given time step. The location is northwest France; the 
data are from anemometers located at six different airports. 

 

Figure 11. Example of a wind dataset for a given time step. The location is northwest France; the
data are from anemometers located at six different airports.

J. Imaging 2024, 10, x FOR PEER REVIEW 12 of 21 
 

 

 

 
Figure 12. We give two different approximations using the model given in Section 2 of the wind 
velocity field using a 4 × 4 finite element grid (a) and a 3 × 3 finite element grid (b). Colors indicate 
wind speed (same colormap as on Figure 11). 

4.2. Numerical Simulations of the Global Algorithm 
In this subsection, from a set of six velocity wind data, we give the approximation 

obtained by the method in Section 2, and we then compute the topographic coefficients of 
the studied zone using the method given in Section 3. 

Here is some information about the numerical examples: 
• Dataset: six anemometers located at six airports giving the direction and speed of the 

wind, see Figures 10 and 11; 
• Parameter ε  = 0.000001; 
• Generic finite element: Bogner–Fox–Schmit of class C1 (See Appendix A); 
• Studied domain: [3500, 6000] × [2.44, 2.62]; 
• Meshing: 4 × 4 rectangles and 3 × 3 rectangles. The results are given in Figure 12. 

The choice of the finite element meshing is crucial, and it must be linked to the num-
ber of data we have in the input. For a grid of 3 × 3 rectangles, we have 9 rectangles, 16 
nodes and, as we have four basis functions per node with the BFS finite element of class 
C1, the dimension of the space Vh is equal to 64 (while it is 100 with a 4 × 4 meshing, leading 
to 16 rectangles and 25 nodes). As we do not have a large amount of data, we choose a low 
number of rectangles in our mesh. If we choose a finer grid, the approximation error in-
creases. 

We compute the quadratic error given by the following quotient 

,
)(

_

2/1

1

2
2

2

21
,




















−

=





=

=
N

i
i

N

i
ii

d
h

w

wa
ErrorQuad

εσ
 

where 
2•  denotes the Euclidean scalar norm. In all our different tests, the quadratic 

errors is of 10−3 and 10−4 orders, which is considered as very good in the context of vector 
field approximation. We then compute this obtained approximation using the topography 
of the considered zone (see Figures 7 and 13 for the result). 
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4.2. Numerical Simulations of the Global Algorithm

In this subsection, from a set of six velocity wind data, we give the approximation
obtained by the method in Section 2, and we then compute the topographic coefficients of
the studied zone using the method given in Section 3.

Here is some information about the numerical examples:

• Dataset: six anemometers located at six airports giving the direction and speed of the
wind, see Figures 10 and 11;

• Parameter ε = 0.000001;
• Generic finite element: Bogner–Fox–Schmit of class C1 (See Appendix A);
• Studied domain: [3500, 6000] × [2.44, 2.62];
• Meshing: 4 × 4 rectangles and 3 × 3 rectangles. The results are given in Figure 12.
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The choice of the finite element meshing is crucial, and it must be linked to the number of
data we have in the input. For a grid of 3 × 3 rectangles, we have 9 rectangles, 16 nodes and,
as we have four basis functions per node with the BFS finite element of class C1, the dimension
of the space Vh is equal to 64 (while it is 100 with a 4 × 4 meshing, leading to 16 rectangles and
25 nodes). As we do not have a large amount of data, we choose a low number of rectangles in
our mesh. If we choose a finer grid, the approximation error increases.

We compute the quadratic error given by the following quotient

Quad_Error =


N
∑

i=1

〈
σd

ε,h(ai)− wi

〉2

2
N
∑

i=1
⟨wi⟩2

2


1/2

,

where ⟨•⟩2 denotes the Euclidean scalar norm. In all our different tests, the quadratic errors
is of 10−3 and 10−4 orders, which is considered as very good in the context of vector field
approximation. We then compute this obtained approximation using the topography of the
considered zone (see Figures 7 and 13 for the result).
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Figure 13. Topographic map of the studied zone (Normandy Region, France) (a). Wind vector field
(approximated from the six different Meteo France locations at airports) on the topographic map (b).

In order to show this method on more complicated datasets, we consider the wind
conditions over 90 h; we have the value of the wind vector field at each Meteo France
station every 3 h (total of 30 datasets). We apply the previous method for each time step.
We then obtain the approximated wind velocity field over the 90 h. We have to propose a
way to visualize such datasets.

5. Visualization

To obtain a simulation on time using a free library, we first propose using Matplotlib
using Python. The following code was developed at INSA Rouen Normandie by the
authors (and thanks to H. Merelle from the Applied Math. Department for his help). The
main advantage of this code is that it gives a complete framework from the input (dataset)
to the numerical simulation, including the approximation using the spline functions, finite
element methods and the topography influence.

Algorithm for visualization using Matplolib [14].
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Here is the list of files necessary for correct processing and the different steps of the
proposed method linked to the flowcharts given in Figure 1:

- Initial Input: dataset (xi, yi, (Ui, Vi))i.
- Definition of Ω—meshing of Ω with rectangles (as we use rectangular finite elements):

the number of subdivisions is linked to the number of data; in the examples here, it is
3 × 3 or 4 × 4 subdivisions in x and y.

- Dm spline approximation: the output is the evaluation of the vector field on each point
of a fine grid of Ω.

- Computation of topography effect on the vector field: output.txt file.
- Script_visualization.py
- The “output.txt” file (in the same folder).

The purpose of the program is to visualize a vector flow from text files, with the
possibility of adding a background (topography, etc.).

Data conditions:

- For an animation:

• The “output.txt” file is of the form

X1 Y1 U1_1 V1_1 U1_2 V1_2. . .

X2 Y2 U2_1 V2_1 U2_2 V2_2. . .

with X1 and Y1 being the first coordinates, followed by U1_1 V1_1 U1_2 V1_2. . .; the
different sizes of the vectors are a function of time.

• To execute in a terminal under Ubuntu, we use the Python script_visualization.py,
with the following instructions:

# The title: it represents the file name (when exporting) and the title of the figure.
# The size of the vector arrows: the bigger they are, the smaller the vectors appear.
# The number of images: if your output file is of the form “Animation”, in this

case you will have the following question, “Enter the number of frames per second”;
it determines the frame rate per second.

# For the background: “O” for accept or “N” otherwise.
# For the name of the image you must give the file extension: here is a non-

exhaustive list of usable formats: [name].png, [name].jpg, [name].jpeg and
[name].gif.

# To display the result: This command is only used to show you the result. The
result is still saved even if you do not display it.

# Data output: For an animation, you can find the animation in the folder in the
form [title].gif, and for a fixed image, you can find the rendering in the folder
in the form [title].png.

In order to show a numerical simulation, we give a simulation for all of the Normandy
region (wind velocity field using the Meteo France dataset) using this Python script and
using Matplotlib.

Examples of the obtained visualizations on a sequence (time) of an approximated
velocity vector field (test in the Normandy region, France) and marine current (Seine River
at Rouen, France) are given in Figures 14 and 15.
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6. Discussion and Future Directions

About the approximation method using Dm splines, note that a theoretical study
of the error in the approximation method following the used finite element mesh is a
work in progress. To do that, we use previous results obtained from smoothing spline
approximations from a finite set of points, as performed in [10,11]. Another development,
linked to the approximation part, will be to propose an automatic meshing of the domain
and different choices for the used generic finite element (based on triangles, etc.).

Another goal consists in improving both the modelling and visualization. About the
modelling, the goal will be to include new kind of datasets; nowadays, it is possible to
obtain wind datasets from Lidar located on wind turbines (see Figure 16). This dataset gives
the wind velocity field with a specific geometry: along a spiral. It makes the computation
much more difficult because it requires a specific finite elements meshing, which makes the
process much less automatic.
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Figure 16. Example of the location of data in a Lidar dataset.

We also plan to add a smooth visualization based on texture using the Matplotlib
library. Another crucial point consists in the effect of using a smooth visualization of
the flow using streamlines. Vector field data are produced by scientific experiments and
numerical simulations, which are now widely used to study complex dynamic phenomena,
using a robust method to visualize steady flow field with both line representations and
textures. In [15], the authors specify that “a streamline is a line tangential to the vector field
at any point. Covering an image with a set of streamlines is a very good way to visualize
the flow features” (see Figure 17 and [15] for more details).

In order to show this method on more complicated datasets, we considered the wind
conditions over 90 h. We have the value of the wind vector field at each Meteo France
station every 3 h (total of 30 datasets equivalent to the one we show in Section 4).

We then computed the obtained vector field using the modelling proposed in this work
with the help of B. Jobard [15], and we obtained the movie given in [16]. This result is smooth
and promising. But improvements have to be made to propose a tool able to treat the whole
process with the same software, and to maybe try other approximation methods (like the one
in [17], and to mix this approximation/visualization tool with an image processing framework,
or the one in [18–20], using radial basis functions; this is ongoing work). Moreover, it is also
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crucial to develop an algorithm with which to approximate more complex datasets, like Lidar
ones (instead of anemometers) to compute wind velocity fields.
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algorithm” of [15]).

7. Conclusions

In this work, we successfully proposed a global tool, from vector field approximation
to visualization. We proposed a method to obtain a visualization of a vector field from a
sparse dataset, after computing its numerical approximation using a mathematical model
using energy minimization and finite elements for the discretization. Note that we also
integrated the topography effect into the modelling of a wind velocity field approximation
method. To our knowledge, this is the first global approach for such numerical simulations
from a dataset with few data.

As stressed in Section 6, several developments should occur in the future in order
to improve this global approach. Many potential applications exist, from velocity wind
approximation for wind turbine energy modelling, current simulation for modelling the
morphodynamics of coastal zones and control theory for vehicle navigation (cars, sub-
marines, etc.).
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Appendix A. Bogner–Fox–Schmit Finite (BFS) Element of Class C1

We give some results here about the BFS finite element, keeping the usual notations
introduced in this field (see [21,22] for more details). We introduce the BFS of class C1 we
use in this work. We consider a rectangle K, a set of polynomial functions P and a set of
degrees of freedom ∑ defined as

- K is the rectangle defined by the four points (xi,yi), (xi+1,yi), (xi,yi+1) and (xi+1,yi+1)
(see Figure A1).

- P = Q3(R2) =

{
q(x, y) = ∑

0≤i,j≤3
αijxiyj, αij ∈ R

}
.

- Σ =
{

ϕkl : p 7→ p(xk, yl); ϕ
(1)
kl : p 7→ ∂p

∂x (xk, yl); ϕ
(2)
kl : p 7→ ∂p

∂y (xk, yl), ϕ
(3)
kl : p 7→ ∂2p

∂x∂y(xk, yl)
}

.

It easy to check that dim P = card ∑ = 16 and that ∑ is P-unisolvant. Thus, the triplet
(K, ∑, P) defines a finite element. The 16 elements of ∑ are called the “degrees of freedom”
of the considered finite element.
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We now have to define the basis function of (K, ∑, P). To do that, we first work on a
reference finite element corresponding to the rectangle K = [0, 1] × [0, 1]. Then, an affine
transformation gives all the basis functions for all the degrees of freedom of the meshing.

Each basis function is a polynomial belonging to P, with a value of 1 for one of the
16 degrees of freedom, and value of 0 for the 15 others.

For example, on the rectangle of reference [0, 1] × [0, 1], the four basis functions at
point (0, 0) are

ϕ00(x, y) = (2x + 1)(x − 1)2(2y − 1)(y − 1)2.
ϕ
(1)
00 (x, y) = (2x + 1)(x − 1)2y(y − 1)2.

ϕ
(2)
00 (x, y) = x(x − 1)2(2y + 1)(y − 1)2.

ϕ
(3)
00 (x, y) = x(x − 1)2y(y − 1)2.

(A1)

We find the 16 basis functions for the 12 other degrees of freedom.
The finite element method then uses the basis function of the “reference” finite element

to compute all the basis functions corresponding to the finite element mesh, with four basis
functions for each node of the meshing. To do that, we just have to apply a diagonal affine
mapping W, such that W([0, 1] × [0, 1]) = K, transforming each vertex of the reference
element into one vertex of K (Figure A2). Then, the basis functions of K are trivially
obtained using the mapping W and the basis function of the element of reference (see p. 57
of [22] for example).
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transformation gives all the basis functions for all the degrees of freedom of the meshing. 

Each basis function is a polynomial belonging to P, with a value of 1 for one of the 16 
degrees of freedom, and value of 0 for the 15 others. 

For example, on the rectangle of reference [0, 1] × [0, 1], the four basis functions at 
point (0, 0) are 
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We find the 16 basis functions for the 12 other degrees of freedom. 
The finite element method then uses the basis function of the “reference” finite ele-

ment to compute all the basis functions corresponding to the finite element mesh, with 
four basis functions for each node of the meshing. To do that, we just have to apply a 
diagonal affine mapping W, such that W([0, 1] × [0, 1]) = K, transforming each vertex of 
the reference element into one vertex of K (Figure A2). Then, the basis functions of K are 
trivially obtained using the mapping W and the basis function of the element of reference 
(see p. 57 of [22] for example). 

 
Figure A2. Affine transformation to compute the basis function of any point using the basis function
of the reference finite element.

One of the main advantages of a finite element basis is that these basis functions have a
very small support; thus, the matrix of the linear system we obtain is sparse (diagonal and
positive definite!). A global introduction to the finite element method can be found in [23].
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