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Abstract: Central Nervous System (CNS) tumors represent a significant public health concern due
to their high morbidity and mortality rates. Magnetic Resonance Imaging (MRI) has emerged as a
critical non-invasive modality for the detection, diagnosis, and management of brain tumors, offering
high-resolution visualization of anatomical structures. Recent advancements in deep learning,
particularly convolutional neural networks (CNNs), have shown potential in augmenting MRI-based
diagnostic accuracy for brain tumor detection. In this study, we evaluate the diagnostic performance
of six fundamental MRI sequences in detecting tumor-involved brain slices using four distinct CNN
architectures enhanced with transfer learning techniques. Our dataset comprises 1646 MRI slices
from the examinations of 62 patients, encompassing both tumor-bearing and normal findings. With
our approach, we achieved a classification accuracy of 98.6%, underscoring the high potential of
CNN-based models in this context. Additionally, we assessed the performance of each MRI sequence
across the different CNN models, identifying optimal combinations of MRI modalities and neural
networks to meet radiologists’ screening requirements effectively. This study offers critical insights
into the integration of deep learning with MRI for brain tumor detection, with implications for
improving diagnostic workflows in clinical settings.

Keywords: brain tumors; central nervous system (CNS) tumors; MRI; transfer learning; convolutional
neural networks (CNNs)

1. Introduction

A brain tumor, or brain cancer, is an abnormal and uncontrolled proliferation of
brain cells, often associated with high morbidity and mortality rates. According to the
World Health Organization (WHO), brain cancer accounts for approximately 2% of all
human cancers [1,2]. Thus, early and accurate diagnosis of brain lesions is essential for
selecting optimal treatment strategies, which can either directly treat the condition, prolong
survival, or improve quality of life [3]. Magnetic Resonance Imaging (MRI) has become
central to the accurate diagnosis of various brain abnormalities [4]. As a non-invasive
and radiation-free imaging modality, MRI enables the detection and characterization of
brain tissue abnormalities by differentiating tissues on the basis of their distinct magnetic
properties, visualized through various grayscale contrasts depending on the imaging
technique used [5]. However, the sensitivity and specificity of different MRI techniques
vary across brain lesions.

Standard clinical brain MRI protocols leverage multiple sequences, each serving
unique diagnostic purposes due to their sensitivity to different tissue characteristics. T2-
weighted (T2) images are commonly used to highlight areas of high water content. FLAIR
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(T2-weighted with fluid-attenuated inversion recovery) further enhances this by suppress-
ing signals from cerebrospinal fluid, which improves the visibility of periventricular lesions.
Diffusion-weighted imaging (DWI) and the apparent diffusion coefficient (ADC) map are
essential for assessing the movement of water molecules within tissues by highlighting
regions of restricted diffusion. T1-weighted (T1) sequences provide clear anatomical details
and are frequently combined with gadolinium contrast (T1+C) to identify disruptions in
the blood-brain barrier, which is valuable for detecting tumors, inflammation, and areas
of active disease (Figures 1 and 2) [6]. Additionally, advanced MRI techniques, such as
perfusion imaging, magnetic resonance spectroscopy, diffusion tensor imaging, and amide
proton transfer (APT) weighted imaging, are incorporated into oncological brain imaging
to improve diagnostic accuracy in tissue characterization [7]. Each sequence contributes
distinct information, and together, they offer a comprehensive view of brain pathology by
capitalizing on the varied signal properties across tissue types and disease states.
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Inevitably, the increasing demand for MRI scans, particularly for brain evaluation,
has led to a substantial workload for radiologists, who must often analyze and interpret
numerous images manually. As a result, radiologists are required to visually examine
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thousands of images daily, which can make the diagnostic process both time-consuming
and prone to error. Manual assessment can introduce subjectivity, which may impact
diagnostic consistency and accuracy. However, while manual interpretation carries the
risk of human error, CNN-based computer-aided diagnosis systems also introduce their
own sources of error, primarily due to model limitations, biases in training data, and
potential misclassifications. Compared to manual assessments, errors from CNNs tend
to be systematic, often reflecting the model’s exposure to specific data patterns during
training. In this context, when radiologists understand and mitigate their error patterns,
computer-aided diagnosis systems could offer an opportunity to assist them, streamline
reporting times, and minimize the risk of diagnostic errors [8,9].

Over recent years, machine learning and deep learning approaches have demonstrated
significant promise in the automated detection of brain pathology [9–14]. For instance,
Amarnath et al. [15] achieved nearly 98% classification accuracy on brain MRI images using
transfer learning with the Xception model, without particular MRI sequence discrimination.
Similarly, Muhammed Talo et al. [16] reported 100% accuracy using a pre-trained ResNet34
model on T2-weighted MRIs. In both studies, the MRI sequences were considered particu-
larly suitable for lesion detection, though the datasets were not tumor-exclusive, lacked
extensive model comparisons, and did not incorporate the diagnostic value of multiple
MRI sequences. This underscores the need for a broader, comparative approach to evaluate
MRI sequence effectiveness across diverse model options.

In this study, we investigate and benchmark six commonly used MRI sequences in
conjunction with four deep learning convolutional neural networks (CNNs) to evaluate
the clinical value and diagnostic impact of each sequence in developing an automated
screening system. This system aims to accurately classify 2D MRI slices as either “normal”
or “tumorous”, which could support more efficient and accurate radiological workflows.

To the best of our knowledge, this is among the first studies to comprehensively assess
the precision, accuracy, specificity, and sensitivity of six distinct MRI sequences through
various deep learning models and transfer learning methods using a balanced, tumor-
specific dataset. This approach hopes to provide a focused evaluation of different MRI
modalities within a dedicated tumor imaging context, and thus offering insights beyond
those in studies involving broader or mixed-pathology datasets. Our findings aim to delve
deeper into the future development of reliable, automated screening tools with the potential
to reduce diagnostic workloads and enhance clinical accuracy.

2. Materials and Methods
2.1. Dataset Collection and Preparation

Sixty-two brain MRI studies with tumor findings were collected. Brain MRIs were
performed on a 3.0T Achieva TX Philips MRI system at Aiginiteio University Hospital,
Athens. The MRI system is equipped with an eight-channel head coil, while the brain imag-
ing protocol includes both conventional and advanced imaging techniques. T2 weighted
turbo spin echo and gradient echo sequences, T2 FLAIR, DWI, T1 weighted pre- and post-
contrast, T2* dynamic susceptibility imaging, diffusion tensor imaging, and single-voxel
and 2D Magnetic resonance spectroscopy sequences were applied in all the participants.
Experienced MR physicists visually inspected images for the presence of potential artifacts,
and experienced neuroradiologists evaluated and reported the studies. As mentioned, from
the above imaging data, we analyzed the T2, FLAIR, T1, T1+C, native DWI (Diffusion), and
diffusion-derived Apparent Coefficient map (ADC).

The dataset was divided into a training set of 52 patients and a testing set of 10 patients.
From each MRI sequence, multiple 2D axial slices containing both tumor and normal tissue
were extracted. The final distribution was achieved by excluding slices containing artifacts
and other pathologies that were seriously deformed due to surgeries or any other type of
therapy. Table 1 provides a detailed overview of the training and testing sets per sequence.
In total, seven subsets were created: one subset for each MRI sequence analyzed and an
additional subset containing the complete set of images for each class.
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Table 1. Overview of the training and testing sets categorized by MRI sequence. A total of seven
subsets were generated, including one for each analyzed MRI sequence and an additional subset
comprising the complete set of images for each class, distinguishing between tumor-containing and
normal samples.

52 Patients Train
10 Patients Test

Class

Tumour Normal Total

Train Test Train Test

Sequences

ADC 146 30 49 16 241

Diffusion 142 36 63 17 258

FLAIR 225 36 107 27 395

T1 78 28 62 20 188

T1+C 131 37 100 20 288

T2 155 32 66 23 276

Total 877 199 447 123 1646

2.2. Image Preprocessing

Image preprocessing and data augmentation are essential for effectively utilizing
CNNs in the medical field, as they significantly enhance performance, reduce data dimen-
sionality, lower computational complexity, and shorten processing time [17]. The MRI
images in the dataset underwent the following preprocessing steps: the 2D-pixel arrays
of the DICOM slices were retained, and most black pixels surrounding the brain were
cropped, aligning the skull’s borders with the image edges. All images were then resized
to dimensions of 224 × 224 × 1.

Normalization was performed on the images using the following equation:

pnormalized =
p − µ

σ
(1)

where the following is defined:

• p is the original pixel intensity value;
• µ is the mean of all pixel values in the image;
• σ is the standard deviation of all pixel values in the image.

Training images were augmented through horizontal and vertical flips, rotations
within a ±90◦ range, random zooming from 0% to 20%, and shuffling, presenting them to
the models as new samples. In contrast, the test sets were neither augmented nor shuffled.
Since the MRI images were grayscale and our models required three-channel input, the
grayscale values were replicated three times to achieve dimensions of 224 × 224 × 3 (Figure 3).
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2.3. CNN Models—Transfer Learning

Four distinct CNN models were trained and tested for the classification task of differ-
entiating between normal and tumor slices: VGG16 [18], MobileNetV2 [19], ResNet50 [20],
and InceptionV3 [21]. Each of these models has made significant contributions to the
deep learning field since their introduction, achieving state-of-the-art performance across
various computer vision tasks. They utilize characteristics of CNNs’ structures for MRI
deep learning applications [22], as can be depicted in Table 2.

Table 2. Overview of the CNN models utilized in this study for classifying normal and tumor MRI
slices. Each model has significantly impacted deep learning and exhibits state-of-the-art performance
in MRI applications [22].

Model Network
Depth Size (Mb) Parameters Characteristic

Structure
Top-1 %

Error at ImageNet

VGG16 23 528 138,357,544 Stacked Convolution Blocks 0.713

MobilenetV2 88 14 3,538,984 Inverted Residuals and
Linear Bottlenecks 0.713

Resnet50 50 98 25,636,712 Residual Layers 0.749

InceptionV3 159 92 23,851,784 Concatenated Different-Sized
Convolutional Filters 0.779

Training and tuning the above models from scratch could prove to be time and com-
puting power-consuming, especially with small datasets such as the ones of the medical
domain. Transfer learning was employed to solve this problem [23–28]. We initiated all
four models with pre-trained weights from the Large-Scale Visual Recognition Challenge
(ILSVRC), which uses a subset of ImageNet of almost 1.2 million natural training im-
ages [29]. Furthermore, for our classification task, we removed the top-classification layer
from all four models, and after a trial-and-error study for the parameter’s selection, we
added a home-build classifier, which sequentially consists of the following:

1. A global average pooling layer;
2. First Dense Layer with 96 neurons, RELU activation function and kernel regularizes

l1 = 0.3 and l2 = 0.3;
3. Dropout Layer with 40% random neuron rejection;
4. Batch normalization Layer;
5. Second Dense Layer with 96 neurons, RELU activation functions, and kernel regular-

izes l1 = 0.5 and l2 = 0.4;
6. Dropout Layer with 40% random neuron rejection;
7. Batch normalization Layer;
8. SoftMax Dense Layer with 2 classes of output.

All four CNNs were left to train under the hyper-parameters presented in Table 3.
For the training, testing, and overall implementation of the models, we used TensorFlow
with Keras API [30] and an NVIDIA GPU Quadro K2200 (NVIDIA Corporation, Santa
Clara, California, USA) with 4 GB RAM, along with an Intel Xeon E5-1630v3 @3.70Hz (Intel
Corporation, Santa Clara, California, USA) with 32GB RAM and Windows 11 (Microsoft
Corporation, Redmond, Washington, USA) operating system.
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Table 3. Summary of hyperparameters used for training the CNN models.

Image Size 224 × 224 × 3

Training Epochs 600

Batch Size 16

Loss Function Categorical Cross-Entropy

Optimizer Adam

Learning Rate 0.00001

Choosing
Criteria The model with the best test accuracy

2.4. Model’s Evaluation Metrics and Methods

We used various evaluation metrics to assess the results as described below:

• Precision = TP/(TP + TN)%;
• Sensitivity = TP/(TP + FN)%;
• Specificity = TN/(TN + FN)%;
• Accuracy = (TP + TN)/(TP + TN + FP + FN)%.

True Positive (TP) is the number of predicted tumorous images that are tumorous.
True Negative (TN) is the number of normal predicted images, and they are normal. False
Negative (FN) is the number of normal predicted cases while they are tumorous, and False
Positive (FP) is the number of tumorous predicted cases while they are normal. Finally, we
used the ROC curve and the AUC score as evaluation metrics for checking and comparing
the different classification model’s performance across the different MRI sequences.

3. Results

Seven different runs were performed per model: one for each sequence and one with
the total amount of images regardless of sequence. All classification metrics were measured
over the 199 tumorous and 123 normal images of the test set.

The results for accuracy ranged from 80 to 98.4% across the models depending on
the sequence. VGG16 presented accuracy levels of more than 96% at FLAIR and T1+C,
MobilenetV2 of more than 95% at ADC, and InceptionV3 at almost 94% at T1. On average,
the Resnet50 model had the most robust results across all sequences, and the Flair sequence
had the best accuracy performance across all models, as can be depicted in Table 4.

Table 4. Accuracy performance of the CNN models across different MRI sequences.

Accuracy FLAIR T1+C ADC T1 Diffusion T2 Avg/Sequence SD

VGG16 0.984 0.965 0.891 0.833 0.811 0.836 0.887 0.073

MobnetV2 0.921 0.930 0.957 0.896 0.830 0.800 0.889 0.061

Resnet50 0.968 0.947 0.891 0.833 0.887 0.836 0.894 0.056

InceptionV3 0.937 0.895 0.870 0.938 0.849 0.800 0.881 0.053

Avg/Model 0.952 0.934 0.902 0.875 0.844 0.818

SD 0.029 0.030 0.038 0.051 0.032 0.021

In the sensitivity analysis, T1 was the best sequence for detecting the tumorous slices
with a 100% ratio across all models. Meanwhile, all other sequences, apart from T2, had, on
average, sensitivity results above 93%. On average, the most sensitive models were VGG16
and Resnet50 (Table 5).
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Table 5. Sensitivity performance of the CNN models across different MRI sequences.

Sensitivity FLAIR T1+C ADC T1 Diffusion T2 Avg/Sequence SD

VGG16 0.972 0.946 1.000 1.000 0.972 0.781 0.945 0.083

MobilenetV2 0.944 0.919 0.967 1.000 0.917 0.750 0.916 0.087

Resnet50 1.000 1.000 0.900 1.000 0.944 0.813 0.943 0.076

InceptionV3 0.972 0.865 0.967 1.000 0.889 0.781 0.912 0.083

Avg/Model 0.972 0.932 0.958 1.000 0.931 0.781

SD 0.023 0.056 0.042 0 0.036 0.026

On the tradeoff metric of specificity and the ability to correctly detect the normal slices,
it was characteristic that only FLAIR and T1+C sequences performed above 90%. There
was a specificity drop for FLAIR, ADC, T1, and Diffusion, while only T2 and -marginally-
T1+C had better specificity than sensitivity performance. MobileNetV2 was the model with
the best average specificity across all sequences (Table 6).

Table 6. Specificity performance of the CNN models.

Specificity FLAIR T1+C ADC T1 Diffusion T2 Avg/Sequence SD

VGG16 1.000 1.000 0.688 0.600 0.471 0.913 0.779 0.224

MobilenetV2 0.889 0.950 0.938 0.750 0.647 0.870 0.841 0.118

Resnet50 0.926 0.850 0.875 0.600 0.765 0.870 0.814 0.117

InceptionV3 0.889 0.950 0.688 0.850 0.765 0.826 0.828 0.093

Avg/Model 0.926 0.938 0.797 0.700 0.662 0.870

SD 0.052 0.063 0.129 0.122 0.139 0.035

Concerning the precision results, FLAIR and T1+C, once again, showed a performance
of around 95% across all models, with VGG16 having 100% precision at both sequences
(Table 7).

Table 7. Precision results.

Precision FLAIR T1+C ADC T1 Diffusion T2 Avg/Sequence SD

VGG16 1.000 1.000 0.860 0.780 0.800 0.930 0.895 0.097

MobilenetV2 0.920 0.970 0.970 0.850 0.850 0.890 0.908 0.055

Resnet50 0.950 0.930 0.930 0.780 0.890 0.900 0.897 0.061

InceptionV3 0.920 0.970 0.850 0.900 0.890 0.860 0.898 0.044

Avg/Model 0.948 0.968 0.903 0.828 0.858 0.895

SD 0.038 0.029 0.057 0.059 0.043 0.029

Lastly, the results of the AUC scores are presented in Table 8. We noticed strong
performance at FLAIR and T1+C for all models, especially for VGG16, which gave AUCs
of 1 and 0.99, respectively. MobilenetV2 reached 0.98 and 0.92 at ADC and T1, respectively,
while Resnet50 reached around 0.90 at Diffusion and T2.
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Table 8. AUC scores results.

AUC
scores FLAIR T1+C ADC T1 Diffusion T2 Avg/Sequence SD

VGG16 1.000 0.991 0.887 0.875 0.755 0.867 0.896 0.091

MobilenetV2 0.965 0.978 0.983 0.925 0.853 0.852 0.926 0.060

Resnet50 0.965 0.957 0.844 0.818 0.907 0.894 0.898 0.059

InceptionV3 0.924 0.93 0.819 0.900 0.864 0.852 0.882 0.044

Avg/Model 0.964 0.964 0.883 0.880 0.845 0.866

SD 0.031 0.027 0.072 0.046 0.064 0.020

Following the AUC scores, the ROC curves can provide valuable and complementary
information on performance at different true positive and false positive rates for each
model and each sequence.

The ROCs for FLAIR presented a robust behavior for all models; for false positive
rates (FPR) of 0–8%, all models returned 92–100% true positive rates (TPR) (Scheme 1).
Similarly, at T1+C, we noticed 88–100% TPRs and 0–15% FPRs (Scheme 2).
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model and each sequence. 

The ROCs for FLAIR presented a robust behavior for all models; for false positive 
rates (FPR) of 0–8%, all models returned 92–100% true positive rates (TPR) (Scheme 1). 
Similarly, at T1+C, we noticed 88–100% TPRs and 0–15% FPRs (Scheme 2). 

 
Scheme 1. ROCs for FLAIR sequence. 
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The ROCs for the ADC sequence gave TPRs of 78–98% at 20% FPR. The MobileNetV2
model was an exception, with a 98% TPR at 7% FPR (Scheme 3). At the T1 sequence, the
InceptionV3 stood out, reaching a TPR of 100% at 15% FPR (Scheme 4).
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In the final experiment, the models were trained and tested on datasets that combined
all the sequences together. This approach aimed to examine the models’ performance on
a more complex dataset, exposing them to all MRI sequences simultaneously during the
training phase. There, Resnet50 and InceptionV3 performed better, showing an accuracy of
91% and 93%, respectively, and AUC scores above 0.93 and 0.97, respectively (Scheme 7).
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4. Discussion

Magnetic Resonance Imaging (MRI) plays a vital role in the diagnosis of brain tumors,
and optimizing imaging techniques is essential for enhancing diagnostic precision. In this
study, we aimed to leverage the strengths of six widely used clinical MRI sequences to
develop a deep learning tool for the automated classification of tumorous and normal MRI
slices. Our focus was on identifying the optimal model among four well-established CNN
architectures while integrating transfer learning to improve performance and accuracy in
clinical applications.

From a clinical point of view, the contrast and the different intensity values between
brain regions of interest consist of the main decision-making factors to discriminate a brain
lesion from a normal brain area.

The final radiologist’s diagnosis arises from gathering and combining data from all the
available image sequences, but some of them are indispensable. FLAIR sequence provides
inherently increased contrast due to the suppression of the fluid signals highlighting the
lesion and its possible edema. Increased visibility of lesions is also achieved in post-
contrast T1 weighted sequences in the case of gadolinium-enhancing lesions. However,
many neoplasms, especially (but not only) low-grade tumors, do not enhance after contrast
administration; thus, their visibility is not increased on T1 post-contrast imaging. We
assume that this is a limitation of the studies using exclusively T1 post-contrast images.
However, these two sequences are needed for both lesion detection and characterization.
T1 pre-contrast and T2 sequences are also useful for lesion evaluation and estimation of
potential peripheral edema (with lower contrast compared to the FLAIR sequence) and
depiction of intratumoral hemorrhage. Similarly, the advanced sequences of Diffusion and
ADC are mainly used by radiologists for differentiation among tumor types and grades
and not for normal and tumorous slice classification [31–34].

4.1. Sequence-Wise Analysis

The accuracy order of the sequences, with respect to our results, follows the clinical
pattern and shows a direct relationship between the deep learning analysis and clinical use.

According to the literature, FLAIR and T1+C are among the most common MRI
sequences used for similar deep learning applications, giving very reliable results [35–37].
Our results confirm the above as well. FLAIR and T1+C showed remarkably robust
performance compared to the other sequences with results at all metrics and models,
particularly with VGG16, which can directly support the clinical purpose of distinction
between normal and tumorous MRI images and fulfill the clinical need for accurate tumor
detection and characterization.

However, the usage of the remaining imaging sequences can potentially bring com-
plementary clinical values. For tumor screening applications with high sensitivity require-
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ments and edema or hemorrhage information needs, the T1 sequence with the InceptionV3
model or T2 with VGG16 are the best options. For high accuracy and tumor differentiation
options, the combination of ADC with MobileNetV2 or Diffusion with Resnet50 presents
promising results.

Additionally, the ROC analysis shows the flexibility and robustness of the different
models across sequences, offering the end-user radiologist the option to decide the optimal
value of FPR according to his TPR needs.

4.2. Model-Wise Analysis

In the modeling analysis, VGG16, despite achieving high accuracy, faces limitations
in specificity, particularly in sequences like ADC, T1, and Diffusion, where its simpler
architecture may struggle to capture nuanced differences in non-tumorous tissues. This
highlights a potential tradeoff for VGG16; its straightforward structure and interpretability
provide strong accuracy on some sequences but may reduce specificity in cases requiring
subtle differentiations. In contrast, MobileNetV2, Resnet50, and InceptionV3 demonstrate
more consistent and robust performance across complex sequences, with smaller standard
deviations in both sensitivity and specificity. These models, which have deeper architec-
tures, likely benefit from their capacity to capture finer details and more complex patterns,
resulting in stable performance across diverse sequence types.

Additionally, the final experiment, which combined all sequences into a single training
set, underscores the capability of deep CNNs, particularly InceptionV3, to achieve reliable
diagnostic performance on multisequence datasets without needing initial sequence separa-
tion. InceptionV3’s ability to reach an AUC above 0.97 in this combined setting (Scheme 7)
suggests that such deep networks could be valuable in time-sensitive clinical situations.
This combined sequence approach makes it possible to screen multiple MRI types in a
single pass, which could be highly beneficial in clinical emergencies when immediate
assessment across sequences is necessary, but time for extensive preprocessing is limited.

4.3. Explainability and Clinical Correlation

During diagnostic procedures, clinicians and radiologists examine all available MRI
sequences, both individually for specific anatomical regions and comparatively across
sequences, to reach a final diagnosis. Occasionally, abnormalities may appear in some
sequences but not in others. To explore whether CNN models follow similar reasoning and
to emphasize the importance of including as many sequences as possible in the training set,
we generated heatmaps [38] and prediction probabilities for the same 2D axial slice across
one normal and two tumor examinations for all six MRI sequences (Figure 4). We utilized
the VGG16 model trained on all sequences, as it demonstrated the highest accuracy and
has a relatively simple architecture.

For the normal examination, the model misclassified two slices (FLAIR and T1) as
tumorous but correctly classified the other four. By applying a majority vote, the examina-
tion could still be accurately identified as normal, mimicking the interpretative process of
human experts. Additionally, the heatmaps for the normal case revealed that the model
focused on different anatomical regions in each sequence, showcasing the variety of details
each sequence provides.

For the two tumor examinations, the model classified all slices correctly. The heatmaps
showed that the model’s focus extended beyond the tumor core to surrounding regions
(e.g., ADC and T2 sequences) and even to areas farther away (e.g., T1 and T1+C sequences).
This behavior could support radiologists by prompting them to examine areas near the
tumor core for micro-infiltrations or tumor expansion and to investigate more distant
regions for potential changes in white and gray matter patterns indicative of metastasis.
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Normal class, and T represents the Tumor class, both followed by the prediction probability for the
respective class. Misclassified cases are highlighted in red.
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5. Limitations-Future Work

Transferring learning utilization from large-scale annotated natural image datasets
(ImageNet) to medical domain problems has been consistently beneficial in coping with a
limited amount of data. However, we are focusing on expanding and further balancing
the existing datasets by adding more training images, including ones from different MRI
systems and medical centers.

The models’ hyper-parameters and the top classification layers were consciously kept
identical across the different models for comparison reasons, but there is a need for a
future benchmarking of each model separately to further enhance each’s accuracy and
performance. Additionally, more complex and advanced base models could improve
classification accuracy, with examples being CNNs like Efficientnet [39], transformer-based
image classification networks like Vision Transformers [40], and contemporary CNNs like
ConvNeXt [41].

Finally, in this study, we experimented using only the clinical case of classification
between normal and tumorous slices. Experiments with further clinical cases (i.e., classifi-
cation of different brain pathologies or tumor differentiation and characterization) could
provide more advanced diagnostic tools.

6. Conclusions

Numerous studies have demonstrated that deep learning techniques can significantly
enhance medical and radiology practices. In our investigation, we examined the influence
of six key MRI sequences on the development of an effective tumor screening system. By
employing four deep transfer-learning models, we achieved high levels of accuracy, demon-
strating that different MRI sequences can support diverse clinical decisions. We propose
that a comprehensive deep learning platform equipped with optimal input combinations
and model selections has the potential to offer versatile and precise assistance throughout
the diagnostic process.
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