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Abstract: Is learning more knowledge always better for vision-and-language models? In this paper,
we study knowledge transferability in multi-modal tasks. The current tendency in machine learning
is to assume that by joining multiple datasets from different tasks, their overall performance improves.
However, we show that not all knowledge transfers well or has a positive impact on related tasks,
even when they share a common goal. We conducted an exhaustive analysis based on hundreds of
cross-experiments on twelve vision-and-language tasks categorized into four groups. While tasks
in the same group are prone to improve each other, results show that this is not always the case. In
addition, other factors, such as dataset size or the pre-training stage, may have a great impact on how
well the knowledge is transferred.

Keywords: vision and language; knowledge transferability analysis; multi-modal learning

1. Introduction

The more data there are for learning, the better seems to be the current motto in ma-
chine learning seems to be, as large language models achieve exceptional results on pre-
viously unseen tasks by being trained on hundreds of millions of samples crawled from
the Internet [1–4]. Following the path led by natural language processing research, the
computer vision community is gradually adopting Transformer-based models trained on
web-scale datasets to achieve high performance in zero-shot settings [5,6]. This is conducted
by leveraging huge amounts of image-caption pairs available online to let the models learn
the correspondences between the language semantics and the visual appearance of objects.

The problem with using hundreds of millions of samples for training is that the anal-
ysis, maintenance, processing, and, particularly, understanding of the data are beyond
human means. With rising concerns about large models encoding and perpetuating harm-
ful representations towards historically discriminated groups [7,8], how data is handled
acquires a crucial role. Knowing which datum is being used, why, and for what means is
now more important than ever.

We try to answer whether more data is always better by systematically analyzing the
transferability within vision-and-language tasks which is the subset of tasks that require
both visual and language understanding to be solved, for example, image captioning [9]
or visual question answering [10]. In the last decade, dozens of high-quality vision-and-
language datasets were collected, cleaned, and used as de facto benchmarks for human-like
reasoning [11,12]. Now, some of these datasets that were created with diverse motivations
and purposes are coming together to train large vision-and-language models [13,14].

While some tasks can improve their performance when a model is trained on a multi-
dataset and multi-task protocol [15], it is still unclear to what extent and whether all
vision-and-language tasks can benefit from this. Our goal is to shed light on this question
and explore the transferability of knowledge within vision-and-language tasks in a similar
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way as that in [16,17] for vision-only datasets. Specifically, we conducted hundreds of
cross-experiments in which the performance of a target task trained under a dozen different
initializations from different pre-trained source tasks were compared.

Following [15], we divided vision-and-language tasks into four groups: visual ques-
tion answering (VQA), image retrieval (IR), referring expression (RE), and multi-modal
verification (MV). And we studied both intra- and inter-group transferability. As illustrated
in Figure 1, our results indicate that there is not yet a magic formula to consistently improve
performance on all the datasets by transferring knowledge between tasks. In other words,
while some target tasks benefit from pre-training a specific source task, others are harmed.
Even within target tasks that are similar in terms of datasets and goals, different behaviors
are observed when the same source’s knowledge is transferred. Conversely, similar behav-
iors are seen when different knowledge is transferred. This leads to the conclusion that
more data is not always necessarily better for higher performance since it depends on the
training dataset’s goal, nature, and size.

REMV

IRVQA

  What's the color of the cow?  
     -- Brown

  A woman leads a cow.

  woman in white, brown cow 
     

  A woman leads a horse. 
  -- False 
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Figure 1. We explore the transferability among 12 vision-and-language tasks in 4 different groups:
visual question answering (VQA), image retrieval (IR), referring expression (RE), and multi-modal
verification (MV). Here, we illustrate the transferability among 5 tasks. Different tasks have different
effects (positive or negative) on the other tasks.

From the experiments, we acquired several insights about the transferability of knowl-
edge between vision-and-language models, which are summarized as follows:
• Tasks in the same group are more likely to help each other to improve performance.

However, negative results show that tasks with shared goals do not always contribute
positively to one another. This indicates that having a shared goal is favorable, but
not enough.

• In the inter-group experiments, we find that the RE tasks tend to have a positive effect
on most of the tasks in other groups, while the MV group tends to receive a positive
effect from other groups.

• While the best improvement is often seen when knowledge is transferred within the
same group, the worst results are concentrated on specific tasks, particularly GQA [18].
We study why and how this happens.

• We detect that different random seeds strongly affect the numeric performance of each
task, sometimes even more than the transfer learning itself. This urges the reporting
of vision-and-language results on multiple random configurations.

• We explore the effect of the data scale of the source task by downsampling a large-scale
task. The results show increasing performance on all of the smaller-scale tasks, which
indicates that the dataset size is an important but not always a positive factor in
knowledge transferability.
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• We also explore how different stages of training affect the performance of the target
tasks. We discover that in some cases, transferring knowledge at the early stages
of pre-training can benefit the target task. When the model learns too much, the
performance on the target task drops.

• Finally, we analyze the similarity between the 12 tasks’ datasets and explore how the
similarity between these datasets relates to knowledge transferability. We discover
that tasks with different datasets can help each other, while tasks with similar datasets
can bring negative effects. These results show that dataset similarity may not strongly
affect vision-and-language tasks.

2. Related Work

Knowledge transferability focuses on how a model that learns knowledge from source
tasks can adapt to a new task. Existing research on this topic includes transfer learn-
ing [5,19], multi-task learning [20,21], and meta-learning [22,23]. Ideally, the more knowl-
edge a model learns, the better performance it has. However, in practice, models are
affected by several phenomena, such as catastrophic forgetting [24,25], that limit their
performance. Our work is mainly related to the following two topics:

2.1. Transferability Analysis

Transferability analysis studies how well the knowledge from a source task benefits a
target task. Zamir et al. [16] proposed a method to analyze and utilize the transferability
among 24 vision-only tasks on a single indoor-scene dataset. They pre-trained models in
the source tasks, transferred them to the target tasks, and calculated the transferability by
evaluating how well the model performed in the target task. Following this idea, Mensink
et al. [17] studied the transferability between 20 real-world vision-only tasks. They analyzed
three main factors: the image domain similarity between source and target tasks, the task
type, and the data size.

While studies in [16,17] were conducted on vision-only tasks, we aim to explore
multi-modality transferability in the vision-and-language domain. The particularity of
multi-modal datasets is that knowledge needs to be transferred not only across tasks but
also between modalities, which adds an extra layer of difficulty to the problem.

2.2. Paradigm of Solving Vision-and-Language Tasks

The most popular paradigm of knowledge transfer is to pre-train a model on a large
dataset and transfer it to a downstream task [13,14,26–33]. For example, Lu et al. [13]
proposed a BERT-based vision-and-language model, and pre-trained it with three self-
supervised tasks to learn knowledge from Google’s Conceptual Captions dataset [34].
Following this work, many contributions were made in applying better text modeling [31],
better visual feature extraction [32], and contrastive learning [6,14]. Furthermore, there has
been some work analyzing the knowledge transferability in specific tasks such as video
question answering [35].

Recently, CLIP [6] has shown a remarkable capacity to understand both vision and
language data, by applying a specific image-text contrastive learning strategy. In this model,
images and texts are separately processed by an image encoder and a text encoder, and
the model is trained to match the image feature and text feature that belong to one pair.
The specific design of CLIP makes it good for making zero-shot scenarios of vision-and-
language tasks. Following CLIP, many studies explore how to utilize CLIP to improve
models’ performances in existing vision-and-language tasks. Song et al. [36] explored the
possibility of using the CLIP model directly for vision-and-language tasks in the scenario
of few-shot learning. Tsimpoukelli et al. [37] and Shen et al. [38] explored the possibility
of utilizing CLIP’s visual encoder and text encoder to extract more useful features for
vision-and-language tasks. Li et al. [39] applied CLIP’s image–text contrastive learning
strategy to the pre-training process of large vision-and-language models and explored how
the training strategy benefits the pre-training model.
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In general, our work is similar to CLIP in that we are also concerned about how
downstream tasks can benefit from the pre-training. However, CLIP is different from us as
we primarily focus on how the related tasks can help each other, while CLIP focuses more
on how to train a model from an unrelated general dataset.

Our work is also close to multi-task vision-and-language learning [15,40–42]. Nguyen
et al. [41] proposed a multi-task learning model with three vision-and-language tasks
by choosing the best layers for each task. In [15], a training strategy to prevent learning
too much knowledge from converged tasks is proposed, resulting in a model trained
on 12 vision-and-language tasks. Following this idea, Hu et al. [42] designed a unified
Transformer that can learn from either vision or text data. This model enables multi-task
learning among vision-only, text-only, and vision-and-language tasks, and thus extends the
knowledge that the vision-and-language model can learn.

None of the above authors conducted a formal analysis of how the different tasks affect
each other. Conversely, we thoroughly explore knowledge transferability among vision-
and-language tasks and uncover insights that may be useful when applying knowledge
transfer methods to vision-and-language.

2.3. Vision-and-Language Tasks

This paper mainly explores knowledge transferability in four types of tasks: visual
question answering [10,18,43], image retrieval [9,44], referring expressions [45–48], and
multi-modal verification [49,50]. There are many other types of vision-and-language tasks,
such as image captioning [9,51,52], text-to-image generation [4,53,54], and visual language
navigation [55,56]. Furthermore, there are also other interesting tasks related to other
modalities, such as video [57–59] and voice [60]. Evaluating more tasks could provide
more insights about knowledge transferability, but we only focus on four types of tasks,
following [15], that take both image and text as input.

3. Vision-and-Language Tasks in This Work
3.1. Visual Question Answering (VQA)

Given an image and a related question, VQA requires a model to select an answer
from several candidates. The setting of VQA aims to not only explore the model’s capacity
to understand both visual and linguistic data but also the capacity of knowledge reasoning,
which is also known as a “visual Turing challenge” [61]. As the example in Figure 1 shows,
when the VQA task gives the question “What’s the color of the cow?” that relates to the
given image, the model not only needs to understand both the image and question but
also check the color of the cow to give the proper answer “brown” to the given question.
Beginning with the idea of the “visual Turing challenge”, Malinowski et al. proposed the
classic “questing-to-image” formula and were the first to release the small-scale (about
12 K question-answer pairs) but workable dataset DAQUAR [61] for both training and
evaluation. To solve the data-scale problem, Ren et al. generated question-answer pairs
based on the COCO caption dateset [62] to construct the dataset COCOQA [62], which
enlarges the scale of training data to about 82 K question-answer pairs. To further make
a reliable dataset, large annotation projects [10,43,63] on visual question answering were
launched and resulted in what are currently the most widely used datasets: VQA v2 [10]
and Visual Genome QA (VG QA) [43]. They are summarized as follows:

When the standard visual question answering task shows the possibility for a model to
answer visual questions, many studies start to explore the visual question answering models.
For example, Hudson et al. proposed the GQA dataset that requires the model to focus more
on the relations between visual contents. There are also studies that try to use visual question
answering models to solve real-world challenges such as blind people caring [64].

In this paper, our exploration involves the following three VQA tasks: VQA v2 [10],
VG QA [43], and GQA [18].
• VQA v2 is a classic visual question answering task towards solving multi-modal

problems. It contains 204 K images from MSCOCO [9] with 614 K human-annotated
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natural language question-answer (QA) pairs. In the evaluation process, models are
required to predict one answer from all answer candidates around the whole dataset,
i.e., each question has thousands of answer candidates.

• Visual Genome QA (VG QA) has a similar target as VQA v2, but has a larger dataset
with 108 K images, 1.7 M QA pairs, as well as 5.4 M region descriptions and 2.3 M
object relationships, which provide rich evidence for the analysis of visual question
answering. Similar to VQA v2, this task requires the models to predict one answer
from all the answer candidates around the whole dataset.

• GQA is more concerned with the models’ capacity on visual reasoning. It contains
a dataset with 113 K images and 22 M QA pairs, which leverage the scene graph
information from VG QA [43] to generate more challenging questions that need
multiple reasoning steps to arrive at the answer. During the evaluation process, GQA
also requires the models to predict one answer from all answer candidates around the
whole dataset.

3.2. Image Retrieval (IR)

Given a caption, image retrieval requires the model to select the most representative
image from a pool of images. The target of image retrieval is challenging as the images
and sentences may be highly related to each other. Furthermore, image retrieval is also
challenging when the task scale increases, as the time complexity of calculating the image-
sentence matching score is about O(n2). As shown in Figure 1, given the text “A woman
leads a cow”, the model should find the related image as shown in the top-left part. The
challenge of this task is that, although the image and sentence in one pair clearly match each
other, many of the images and the sentences are very similar. The similarity between image-
sentence pairs makes it difficult to distinguish the correct image by the given sentence. In
the area of image retrieval, COCO IR [9] and Flickr30K IR [51] are two of the most widely
used datasets, which are both for exploring models’ capacity to retrieve correct images.
In recent years, many valuable challenges have been proposed in the formula of image
retrieval, such as artwork retrieval [65] and food retrieval [66].

In this paper, our exploration involves the following two IR tasks: COCO IR [9] and
Flickr30K IR [44]. Both are summarized as follows:
• COCO IR in an image retrieval task based on the COCO caption dataset [9]. In this

task, there are 123 K images with 567 K related human-annotated captions. To evaluate
the models’ performances, COCO IR provides three accuracy scores with different
recall scales: the accuracy on top one retrieval (Recall@1), the accuracy on top five
retrievals (Recall@5), and the accuracy on top ten retrievals (Recall@10). In this paper,
we use Recall@5 as the main metric for the evaluation.

• Flickr30K IR is an image retrieval task based on the Flickr30K dataset [44]. It has
31 K images with 146 K human-annotated captions. Similar to COCO IR, Flickr30K IR
uses Recall@1, Recall@5, and Recall@10 to evaluate the models’ performances. In this
paper, we also use Recall@5 as the main evaluation metric.

3.3. Referring Expression (RE)

Referring expression concerns the relation between linguistic expressions (i.e., texts)
and visual contents (i.e., objects), which can be divided into two directions: (1) detecting
visual contents based on the expressions, or (2) generating expressions by the given visual
contents. In this paper, we mainly focus on the first direction of referring expression. Given
a text and an image, referring expressions require the model to detect the corresponding re-
gion in the image described by the text. In contrast to image retrieval, referring expressions
do not focus on retrieving one image from a group. Instead, it focuses on detecting the
related region from one image. Thus, compared to image retrieval, referring expression is
more concerned about the specific objects in one image. As the example in Figure 1 shows,
instead of the text about the whole image (e.g., “A woman leads a cow”), texts such as
“woman in white” and “brown cow” are given as the targets, which are related to certain
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objects. Referring expression is used to be a classic natural language processing task that
has been studied since the 1970s [67]. Since then, researchers have been interested in how
models can work as humans to link texts and visual contents and add more challenges,
such as applying real-world images [47,48], enriching object categories [46], and increasing
the level of difficulty in visual reasoning [45].

In this paper, our exploration involves the following RE tasks: Visual7w [45], Guess-
What [46], and RefCOCO(+/g) [47,48]. They are summarized as follows:
• Visual7w is a referring expression task based on the Visual 7w dataset [45]. In this

task, there are 25 K images with 151 K region-text pairs. The evaluation method is the
accuracy achieved if a model predicts a region that has an Intersection over Union
(IoU) score higher than 50%.

• GuessWhat is a referring expression task based on the GuessWhat dataset [46]. In
this dataset, there are 66 K images with 137 K region-text pairs. The same as Visual7w,
GuessWhat evaluates models’ performances by the object prediction accuracy with
IoU > 50%.

• RefCOCO(+/g) [47,48] are three similar referring expression tasks that leverage the
image and object information from the COCO dataset [9]. Among these tasks, ref-
COCO and refCOCO+ are collected by ReferitGame [47], which is an interactive game
between two players as one player expresses an object and the other player points
it out. refCOCO+ is more challenging than refCOCO as it restricts the player by not
allowing them to use location words during the game, while refCOCOg [48] collects
its data in a non-interactive setting, which asks annotators to express the given object
directly. In general, refCOCO has 19 K images with 131 K expressions, refCOCO+ has
19 K images with 130 K expressions, and refCOCOg has 25 K images with 90 K expres-
sions. The same as the above referring expression tasks, refCOCO(+/g) evaluates the
models’ performances using the object prediction accuracy with an IoU > 50%.

3.4. Multi-Modal Verification (MV)

Given one or more images and a referred text, multi-modal verification requires the
model to decide whether the text is correct or not. Different from the rest of the three
groups of tasks, multi-modal verification tasks usually have a very limited number of
answers, e.g., NLVR2 [49] only has two candidate answers, and SNLI-VE [50] only has
three candidate answers. However, multi-modal verification is challenging in the sense
that it requires more visual reasoning capacity to verify if the text and image conflict. As
shown in the example in Figure 1, multi-modal verification requires the model to judge
if “a woman leads a horse” in the image. The verification is considered challenging as
understanding “a woman” and “a horse” cannot directly lead to the correct answer. The
idea of recent multi-modal verification studies, such as CLEVR [68,69], is motivated by
the progress of visual question answering, which shows the evidence that deep learning
models are capable of making knowledge reasoning. The results of these two tasks are
encouraging and further motivate the tasks of NLVR2 [49] and SNLI-VE [50], which are
currently the most widely studied multi-modal verification tasks.

In this paper, our exploration involves the following two MV tasks: NLVR2 [49] and
SNLI-VE [50]. They are summarized as follows:
• NLVR2 [49] is a multi-modal verification task that requires models to verify if one

sentence is true in two images, i.e., the task takes one text and two images as the input
and requires the models to give a binary answer (true or false). This specific design is
to verify if the model can present a reasoning across not only the modality but also
different data in the same modality. The dataset of this task contains 103 K real-world
images with 93 K human-annotated texts. The evaluation process involves calculating
the accuracy of the models’ binary predictions.

• SNLI-VE [50] is another multi-modal verification task to verify if a hypothesis (text) is
accurate (entailment), partly accurate (neutral), or wrong (contradiction) to a given
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premise (image). The dataset of this task contains 31 K images with 548 K texts, and
the evaluation metric is the accuracy of the triplet classification.

4. Methodology

We studied how the knowledge from a source task affects a target task. Formally, we
define the problem as follows:

Given a set T of vision-and-language tasks, we pick out a source task s ∈ T and a
target task t ∈ T . We train a direct model mt by training a model m with the target task t.
We also train a one-hop model ms→t by pre-training m with s, and then with t. As shown
in Figure 2, the performances of a pair of models (mt, ms→t) are compared for all possible
combinations of s and t in T . Tasks are categorized into groups according to their main
goal, so tasks with similar goals are assigned to the same group.

Vision-Language Data

Text 1
Text 2
Text 3

...

VQA

IR

VGMV

VQA

IR

VG

MV

Task space
(feature space)

Task space
(feature space)

Task Score Table

Step 1: Task-specific Pre-training Step 2: Transfer Learning Step 3: Collection of Task Scores

VQA IR MV RE

VQA

IR
MV

RE

Figure 2. Analysis of transferability relationships between tasks. In Step 1, we trained 12 vision-and-
language tasks independently. In Step 2, we used the models from Step 1 and fine-tuned them on each
of the other tasks. In Step 3, we formed a transferability relation table for the 12 vision-and-language
tasks divided into 4 groups: visual question answering (VQA), image retrieval (IR), multi-modal
verification (MV), and referring expression (RE).

4.1. Tasks Selection

As introduced in Section 3, we studied 12 vision-and-language tasks categorized into
4 groups. The feature of each task is listed in Table 1. Please note that the number of
samples and images in the Train + Val set is the number after the cleaning in Section 5.

Table 1. Dataset statistics for the 12 tasks used in our experiments. From the left, the first and
second columns are the number of samples in the train and validation (Train +Val) set and test set,
respectively. The third column is the metric to evaluate the corresponding task. The fourth column is
the name of the test set. The fifth column is the number of images in the train and validation set. The
last column is the source dataset from which the images of the corresponding task come from.

Train + Val Samples Test Samples Evaluation Metric Evaluation Set Train + Val Image Image Source

VQA v2 [10] 542,104 447,793 Accuracy test-dev 98,861 MSCOCO [9]
VG QA [43] 1,294,255 5000 Accuracy validation 92,147 MSCOCO [9] + YFCC100M [70]
GQA [18] 962,928 12,578 Accuracy test-dev 69,868 Visual Genome [43]
COCO IR [9] 487,600 1000 Recall@5 test 99,435 MSCOCO [9]
Flickr30K IR [44] 140,485 1000 Recall@5 test 29,077 Flickr30K [51]
NLVR2 [49] 86,373 6967 Accuracy test-P 29,808 NLVR2 [49]
SNLI-VE [50] 512,396 17,901 Accuracy test 95,522 Flickr30K [51]
Visual7w [45] 93,813 57,265 Accuracy test 16,415 MSCOCO [9]
GuessWhat [46] 100,398 23,785 Accuracy test 51,291 MSCOCO [9]
refCOCO [47] 96,221 10,752 Accuracy test 14,481 MSCOCO [9]
refCOCO+ [47] 95,852 10,615 Accuracy test 14,479 MSCOCO [9]
refCOCOg [48] 65,514 9602 Accuracy test 17,903 MSCOCO [9]
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4.2. Model

We followed the model structure in [15], consisting of a unified multi-modal encoder
based on VilBERT [13] with 12 different task-specific heads for corresponding tasks. The
training goal is

arg min
θe ,θt

Lt(ψθt(ϕθe(Vt, St))), (1)

where Vt and St are the image and text in the dataset of task t, and θe and θt are the
parameters of the encoder ϕ and the task t’s head ψ, respectively. Lt is the loss of the task t.

4.3. Workflow

The workflow, as shown in Figure 2, was split into three steps: (1) task-specific pre-
training, (2) transfer learning, and (3) collection of scores.

Task-specific pre-training. We pre-trained each of the 12 tasks independently, i.e., each task
s ∈ T was trained by its corresponding dataset and did not see any datasets from other
tasks. We collected the trained models ms from each task as the pre-trained models, which
learned task-specific knowledge from the source task. We also evaluated each direct model
mt as baselines for non-transferred knowledge.

Transfer learning. We fine-tuned, again, each pre-trained model ms. Given ms and the target
task t, we obtained a final model ms→t by fine-tuning ms with all of the training samples in
task t.
Collection of scores. We categorized tasks into groups and evaluated all direct models mt and
one-hop models ms→t for all possible task pairs. The results are discussed in Section 5.2.

5. Experiments on VilBERT

Datasets. We used the same set of datasets as [15], including the training and test sets
of the 12 tasks. The overlapping samples from the different tasks were removed from
the training sets to prevent data leaking from the test set into the training set. Note that
the original test sets were not changed during this cleaning process. For the training and
validation sets, VQA v2, VG QA, COCO IR, and NLVR2 had about 100,000 images; GQA
and GuessWhat had about 60,000 images; Flickr30K IR and SNLI-VE had about 30,000
images; and refCOCO, refCOCO+, refCOCOg, and Visual7w had about 15,000 images.

Experimental settings. We followed most of the settings in [15]. We modified the batch size
to 1/4 to fit the training in our server. (We used a single server with 4 16 GB NVIDIA
P100 GPUs.) Pre-trained models ms were trained for 6 epochs, which was enough for
convergence. To ensure that the models ms→t learned task-specific knowledge well, we
used the models with the best performance in the validation set, except for VG QA, which
was evaluated on the validation set, and thus, the model at the 6th epoch was used. All
of the models were seen to converge into their corresponding tasks. We trained every
model with three different random seeds and reported the results by their mean and
standard deviation.

Evaluation metrics. We used accuracy for tasks in the VQA group and the MV group. For
the IR group, we used Recall@5. For the RE group, we followed [15,47,48] and computed
the score based on the Intersection over Union (IOU) between the ground truth and the
prediction.

5.1. Random Seed

Preliminary results showed large variations in performance when models were trained
under different random initializations, as was also shown in [71]. Thus, before proceeding
with the transferability experiments, we first explored the instability of vision-and-language
tasks and their sensibility to random seeds. We trained each direct model, mt for all t ∈ T ,
10 times with different random seeds. The results are shown in Figure 3. Although most of
the tasks presented a gap larger than 1% between the maximum and the minimum scores,
most of the scores in each task were concentrated in a small region. More details are shown
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in the box plots in Table 2. Nine tasks had a gap larger than 1%. Among them, Flickr30K
IR was the one that fluctuated the most, with a gap of 2.44% and a standard deviation of
0.87. This revealed that experiments on a single run may not be reliable enough to extract
conclusions about model performance. In general, we found that the random seed had a
big impact on the evaluation of vision-and-language tasks. To ensure that our results were
reliable, we ran each experiment three times.

Figure 3. Box plots of the 12 tasks trained with 10 random seeds showing a big gap between the best
and the worst scores.

Table 2. Results of direct model mt in the 12 tasks.

10 Different Random Seeds Avg ± Std Max Min

Task

VQA v2 70.3 ± 0.56 70.71 69.18
VG QA (Val) 33.5 ± 0.48 34.17 32.86

GQA 58.1 ± 0.53 58.65 57.10
COCO IR 90.4 ± 0.77 91.02 89.12

Flickr30K IR 86.5 ± 0.87 87.24 84.80
NLVR2 73.4 ± 0.50 74.11 72.34

SNLI-VE 75.3 ± 0.16 75.64 75.04
Visual7w 80.4 ± 0.19 80.63 80.04

GuessWhat 62.3 ± 0.17 62.68 62.14
refCOCO 77.7 ± 0.30 78.15 77.13

refCOCO+ 69.1 ± 0.57 69.68 67.81
refCOCOg 71.6 ± 0.63 72.50 70.50

5.2. Results by Group

For the transferability experiments, we collected results from 12 direct models mt and
132 one-hop models ms→t and present them herein in Table 3. We used the results of mt (Row
“direct model mt”) as the baseline. We relied on a color scheme to illustrate the comparative
performance of the transferred models ms→t: deep green for the best scores of each column,
i.e., the best results of each task in transfer learning, and deep orange for the worst results.
For the rest of the entries of the tables, light green and light orange indicated better and
worse performance than the baseline, i.e., positive or negative transfer of the knowledge.
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Table 3. Knowledge transferability results per group. Results of mrow → column (rows 2–13, green or
red color) are compared with the direct model mcolumn (row 1, blue color) and assigned green (when
the average score is higher than mcolumn, i.e., positive transfer) or red (when the average score is lower
than mcolumn, i.e., negative transfer). Deep green/red shows the best/worst score in each column.

Target Task t
Avg ± Std

VQA v2 VG QA (Val) GQA COCO IR Flickr30K IR NLVR2 SNLI-VE Visual7w GuessWhat refCOCO refCOCO+ refCOCOg

direct model mt 69.6 ± 0.71 33.7 ± 0.74 57.5 ± 0.59 89.2 ± 0.16 85.3 ± 0.48 72.8 ± 0.48 75.3 ± 0.11 80.1 ± 0.13 62.3 ± 0.08 77.3 ± 0.19 68.5 ± 0.72 70.8 ± 0.35

VQA v2 - 33.5 ± 0.55 58.2 ± 0.21 89.0 ± 1.43 84.8 ± 1.04 73.7 ± 0.60 75.4 ± 0.23 79.5 ± 0.51 60.8 ± 0.62 76.8 ± 0.62 67.7 ± 1.12 70.5 ± 0.12

VG QA 70.0 ± 0.33 - 57.5 ± 0.57 90.0 ± 0.11 84.3 ± 0.77 72.1 ± 0.69 75.7 ± 0.05 79.9 ± 0.91 60.9 ± 0.66 76.9 ± 0.57 68.0 ± 0.81 70.8 ± 0.33

GQA 69.7 ± 0.16 33.0 ± 0.76 - 88.9 ± 1.17 82.9 ± 1.46 72.1 ± 0.76 75.3 ± 0.67 79.0 ± 0.12 60.7 ± 0.26 76.7 ± 0.32 67.2 ± 0.22 70.0 ± 0.42

COCO IR 70.5 ± 0.56 33.6 ± 0.52 57.4 ± 0.49 - 86.8 ± 1.56 75.3 ± 0.24 76.1 ± 0.11 79.5 ± 0.34 62.0 ± 0.36 77.4 ± 0.59 69.4 ± 0.33 72.0 ± 0.25

Flickr30K IR 70.3 ± 0.32 33.4 ± 0.69 57.6 ± 0.35 90.1 ± 1.30 - 74.0 ± 0.65 75.8 ± 0.22 79.8 ± 0.17 62.3 ± 0.16 77.3 ± 0.18 68.7 ± 0.22 71.3 ± 0.23

NLVR2 69.9 ± 0.34 33.4 ± 0.35 57.5 ± 0.43 89.7 ± 1.16 84.8 ± 1.09 - 75.9 ± 0.06 79.4 ± 0.27 62.0 ± 0.17 77.1 ± 0.40 68.4 ± 0.40 70.9 ± 0.10

SNLI-VE 69.9 ± 0.68 33.3 ± 0.51 57.3 ± 0.32 89.2 ± 0.51 85.5 ± 1.80 73.9 ± 0.24 - 79.2 ± 0.60 61.2 ± 0.40 76.8 ± 0.43 67.2 ± 0.41 70.4 ± 0.65

Visual7w 70.2 ± 0.25 33.5 ± 0.94 57.7 ± 0.57 89.8 ± 0.45 85.6 ± 1.06 73.9 ± 0.71 76.1 ± 0.26 - 63.0 ± 0.36 78.1 ± 0.39 69.4 ± 0.06 72.8 ± 0.30

GuessWhat 69.7 ± 0.61 33.5 ± 0.06 56.9 ± 0.33 89.5 ± 0.45 85.1 ± 2.09 73.2 ± 0.31 75.9 ± 0.34 80.8 ± 0.05 - 78.1 ± 0.13 69.1 ± 0.13 72.2 ± 0.06

refCOCO 70.2 ± 0.22 33.7 ± 0.29 57.4 ± 0.21 90.1 ± 0.83 85.4 ± 1.33 73.7 ± 0.28 76.0 ± 0.33 80.3 ± 0.03 62.6 ± 0.29 - 69.5 ± 0.23 72.4 ± 0.29

refCOCO+ 70.1 ± 0.44 33.3 ± 0.05 57.2 ± 0.41 88.8 ± 1.93 84.9 ± 2.27 74.4 ± 0.22 76.1 ± 0.14 80.4 ± 0.17 62.5 ± 0.29 77.8 ± 0.35 - 73.0 ± 0.19

Source

task s

refCOCOg 69.7 ± 0.30 34.0 ± 0.46 57.4 ± 1.07 89.1 ± 2.19 84.9 ± 1.24 74.1 ± 0.59 75.7 ± 0.20 80.5 ± 0.35 62.8 ± 0.15 78.3 ± 0.14 69.7 ± 0.35 -

5.2.1. Visual Question Answering Group

Columns 1–3 (VQA v2, VG QA (Val), and GQA) in Table 3 show the results in the
VQA group. VQA v2 and GQA benefit from each other, but they do not improve the VG
QA performance. In fact, GQA has the worst effect on VG QA among the 12 tasks. VG QA
achieves its best performance with the help of refCOCOg, indicating that even though it is
commonly seen as a VQA task, it may be closer to the RE group. When tasks in the VQA
group are the target tasks, the source tasks have a consistent effect on each of them, e.g.,
COCO IR gives the best effect to VQA v2, while giving a negative effect to both VG QA
and GQA. In contrast, GuessWhat gives the worst effect on GQA, while giving a positive
effect on VQA v2. More specifically, VQA v2 and VG QA show contrary behavior: VQA v2
obtains a positive effect from all of the tasks outside the VQA group, while only refCOCO
and refCOCO+ give VG QA a positive effect. This indicates that although VQA, VG QA,
and GQA have the same type of training goal, their underlying knowledge may be very
different, and thus receive different contributions from the same source task. Finally, even
though tasks in the VQA group are the largest in terms of training samples when they act
as the source task, they tend to have a negative impact on the other group tasks (Row 1–3
in Table 3), indicating that large training sets are not a guarantee for a better transfer.

5.2.2. Image Retrieval Group

Columns 4–5 (COCO IR and Flickr30K IR) in Table 3 summarize the performance of
the IR group. Both tasks in this group help each other. Also, as source tasks, they show
similar behavior, with a tendency to improve other tasks. However, the results in this
group show the largest variance. On one hand, as target tasks, only the VQA group has a
consistently negative impact on Flickr30K IR. On the other hand, the standard deviation
scores in COCO IR and Flicker30K IR are usually larger than in other groups. The standard
deviation scores of mCOCO IR→Flickr30K IR and mFlickr30K IR→COCO IR tend to be larger than
tasks in other groups.

5.2.3. Multi-Modal Verification Group

Columns 6–7 (NLVR2 and SNLI-VE) in Table 3 list the performance of the MV group.
Except for GQA, most of the source tasks have a positive effect on the two MV tasks.
NLVR2 and SNLI-VE also improve each other, but the effect is not larger than the ones
from COCO IR and refCOCO+. This may be in part because NLVR2 and SNLI-VE are
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considerably different: NLVR2 is a binary classification task that verifies if a comment
describes a fact among multiple images, while SNLI-VE is a ternary classification task that
verifies how well a comment describes an image. Another reason may be because of the
data distributions: NLVR2’s images are from ILSVRC 2014 [72], while SNLI-VE’s are from
Flickr30K [51].

5.2.4. Referring Expression Group

Columns 8–12 (Visual7w, GuessWhat, refCOCO, refCOCO+, and refCOCOg) in Table 3
lists the scores of the RE group. All the tasks in this group benefit from transferred
knowledge in the same group. The improvements within this group, especially among
refCOCO, refCOCO+, and refCOCOg, are larger than those from tasks in other groups.
However, all tasks in the VQA and the MV groups have a negative effect on the RE group
(except mNLVR2→refCOCOg). RE tasks also receive the worst effect from the GQA task. Tasks
in this group usually have a positive outcome on the tasks in other groups, according to
rows 8–12 in Table 3. This may be because of the nature of the group: RE tasks aim to find
image regions given a text, which can be helpful to VQA, IR, and MV.

5.3. Main Observations

Observation 1. Intra-group analysis: tasks in the same group tend to improve each other,
but not always. Tasks in the IR, MV, and RE groups help other tasks in the same group
to achieve better performance. However, tasks in the VQA group show a different
behavior: only half of the intra-class relationships are positive. This indicates that
(1) the defined task groups based on shared goals may be superficial and not a good
representation of the internal type of knowledge in each task, and (2) having a shared
goal may be favorable, but it is not enough for successfully transferring knowledge
between tasks.

Observation 2. Inter-group analysis: some groups are more prone to help, while others
are a disservice. For example, while tasks in the RE group usually give a positive
effect on most of the tasks that are in other groups, tasks in the VQA group produce
no benefit to the tasks in the RE group, and only one task in the MV group (NLVR2)
gives a slightly positive effect to a task in the RE group (refCOCOg). This indicates
that the knowledge in certain groups, such as RE, may be more general, and thus
easier to transfer, than task-specific knowledge from other groups, e.g., VQA.

Observation 3. Benefits in knowledge transferability are not reciprocal. For example,
VQA v2 receives a positive effect from all of the other 11 tasks, but it contributes
negatively to most of these tasks, except GQA, NLVR2, and SNLI-VE. The same
happens between the MV and RE groups. RE consistently improves the MV group,
including the best effect on SNLI-VE from refCOCO+. However, the MV group harms
all the tasks in the RE group except mNLVR2→refCOCOg. This is consistent with the
observations in [15].

Observation 4. The best effect tends to come within the group, while the worst effect
is usually from GQA. The best results for each task are usually from a source task
in the same group, which reinforces the idea that tasks with the same target tend
to benefit each other more (Observation 1). The worst results, however, are usually
caused by GQA. Many reasons may cause this, for example, the difference in the
data scale between GQA and the rest of the tasks or the knowledge for solving GQA
may be too specific. To better understand the phenomena, we conducted additional
experiments and present them in Sections 5.4 and 5.5.

5.4. Data Scale

Next, we investigated the effect of the data scale on the transferability of knowledge.
As discussed in Section 5.3, GQA pre-training tends to harm many of the rest tasks. We
speculated that one of the reasons may be because GQA has a much larger training set
than the other tasks. To investigate this hypothesis, we used GQA as the source task and
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downsampled its training set from 962,928 to 96,221, which is close to the scale of seven
tasks: refCOCO, refCOCO+, refCOCOg, Visual7W, GuessWhat, NLVR2, and Flickr30K IR.
We pre-trained models with the reduced and full GQA training sets. The full GQA model
and the reduced GQA model were then trained again on the above seven tasks in the same
way as in Section 4.3. We also compared them against their direct models.

Figure 4 shows the accuracy of these seven tasks pre-trained on the reduced GQA, the
full GQA, and the direct models. All models pre-trained on the reduced GQA achieved
better performance than those pre-trained on the full GQA, which indicates that the data
scale is a crucial factor in the transferability. When comparing the models derived from the
reduced GQA with the direct models, the reduced models improved the performance of
four of the seven tasks (NLVR2, refCOCO, refCOCO+, and refCOCOg), showing that GQA
can also contribute positively as a source task. The results show some similar phenomena
to [73], as the large data scale may not necessarily generate better results.

Accuracy

NLVR2

FlickrIR

Visual 7w

GuessWhat

refCOCO

refCOCO+

refCOCOg

50.00 60.00 70.00 80.00 90.00

reduced GQA full GQA direct

Figure 4. Accuracy of seven tasks pre-trained with a smaller set of GQA (reduced GQA), the full set
of GQA (full GQA), and without pre-training (direct).

5.5. Training Epoch

We finally explored the relationship between the number of training epochs of the
source task and the success of the knowledge transferred in the target task. We conjectured
that, for a target task that receives a negative effect from a source task, the more a model
learns from the source task, the worse the model performs on the target task. To verify this,
we used GQA as the source task, which tended to give the most negative effect to the other
tasks. Furthermore, we chose refCOCO and NLVR2 as the target tasks, which obtained
the worst performance from GQA. We obtained six pre-trained me

GQA models, where the
number of epochs was e = {1, · · · , 6}. The higher the epoch, the more knowledge me

GQA
learns from GQA. We transferred these models to refCOCO and NLVR2.

The results are illustrated in Figure 5. The blue ■ and red • are the scores for refCOCO
and NLVR2, respectively, which, for visibility, are shown as the difference with respect
to the direct model, i.e., a = Acc(e)GQA→t − AccGQA, where Acc(e)GQA→t is the accuracy of

the model pre-trained with GQA for e epochs and fine-tuned with task t; Acc(0)GQA→t is
the model that has no training on GQA, i.e., the direct model; and t is either refCOCO or
NLVR2. For comparison, we also show the GQA accuracy (Acc(e)GQA, green ♦). Both tasks
obtained lower scores than the direct model when using a model trained on GQA for more
than four epochs. In the case of refCOCO, it achieved an inferior performance in all training
epochs. In contrast, NLVR2 improved by more than 1% from GQA pre-trained for two
epochs, showing that the knowledge from GQA does not always have a negative effect.
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Figure 5. Accuracy of refCOCO (■) and NLVR2 (•) fine-tuned with mGQA after different epochs of
pre-training. As a reference, the accuracy of GQA (♦) is also shown.

5.6. Data Domain Similarity
5.6.1. Data Domain Distance

We explored how the similarity of the data domain affects the transferability between
vision-and-language tasks. On the one hand, some tasks take images from the same image
dataset, e.g., images in VQA 2.0, COCO IR, Visual7W, and GuessWhat are all from the
MSCOCO [74] dataset. On the other hand, some tasks (e.g., refCOCO, refCOCO+, and
refCOCOg) have similar text data. Intuitively, two tasks with similar data domains may
face smaller domain shifts when fine-tuning and thus tend to have a higher probability of
helping each other. To explore this, we randomly took 1000 samples from the training set
of each task, used VilBERT [13] to extract the features from the samples, and calculated the
domain distance similarly to Mensink et al. [17]:

D(t|s) = 1
|t| ∑

zt

(min
zs

d( fzt , fzs)), (2)

where d() is the Euclidean distance, and zs and zt are the samples from source tasks s and t,
respectively. Please note that VilBERT [13] is not pre-trained on any of the 12 tasks.

In contrast to the analysis of vision-only tasks in [17], vision-and-language tasks
concern the visual and text data as well as the hidden relation between both data. Thus,
our domain distance exploration involves the analysis of the vision feature, text feature,
and fused vision-and-language feature, respectively. The results are illustrated in Figure 6.

In general, on the one hand, some tasks are close to other tasks from the data domain
view, e.g., refCOCO, refCOCO+, and refCOCOg are close to each other in all three figures.
The close distance of these three tasks is because of the same image origination and the
similar text collection process. Since refCOCO, refCOCO+, and refCOCOg are in the same
data scale, the close distance of the data domain becomes one of the factors that these three
tasks can help each other to achieve a better performance.

Figure 6c illustrates that Flickr30K IR has a larger distance as the target task compared
with other tasks. This indicates that the data from other tasks are more different from
Flickr30K IR, and the transfer learning toward Flickr30K IR may bring fewer benefits.
As shown in Column 4–5 in Table 3, while having the same data scale as Flickr30K IR,
GuessWhat and NLVR2—the largest and the second largest distances from Flickr30K
IR—show a negative effect on Flickr30K IR.

However, the domain distance is not as strong a decisive factor as the data scale.
Figure 6c illustrates that GQA is not much different from most of the other tasks. Instead,
GQA has the top-5 closest data domains to NLVR2, Visual7W, GuessWhat, refCOCO,
refCOCO+, and refCOCOg. However, GQA causes the worst results for these tasks.
This fact indicates that the data scale may have a more decisive effect on knowledge
transferability.
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(b) Visual feature
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(c) Vision-and-language feature

Figure 6. Domain distance between 12 vision-and-language tasks. We calculated the distances of
the vision-and-language feature (i.e., fused feature), text feature, and visual feature. Each of the
blocks shows the domain distance of Drow → column. Please note that the distance of Drow → column
and Drow → column may not be the same, as (2) finds the closest source task sample for each target
task sample.

5.6.2. Appearance Distribution

Furthermore, we explored the data domain distribution in the embedding feature
space, namely, the appearance distribution of all 12 tasks. The analysis was based on
the sample feature in the last experiments, i.e., we randomly took 1000 samples from the
training set of each task and used VilBERT [13] to extract the features from the samples. To
make a better visualization of the distribution, we used t-SNE to plot the samples into 2D
figures, as shown in Figures 7 and 8.

Figure 7 illustrates the data appearance distribution of all 12 tasks. We find that in
many cases, a sample from one task may be closer to the samples in another task, even
though the two tasks have different data origination (refer to Table 1) (e.g., although NLVR2
(the brown squares) and VQA 2.0 (the blue dots) have different data origination, their
samples are closed to each other). This indicates that the 12 tasks have a close appearance
distribution, and they are very similar to each other.

The similarity of data distribution not only appears in the vision-and-language feature
(Figure 7c) but also in the vision-only feature (Figure 7a) and text-only feature (Figure 7b).
This indicates that the 12 tasks are similar to each other from both the image and text domains.
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task_type
VQA
IR
MV
RE

(b) Visual feature
task_id
VQA 2.0
VG QA
GQA
COCO IR
Flickr30K IR
NLVR2
SNLI-VE
Visual7w
GuessWhat
refCOCO
refCOCO+
refCOCOg
task_type
VQA
IR
MV
RE

(c) Vision-and-language feature

Figure 7. Appearance distribution of all 12 vision-and-language tasks. In this figure, different tasks
are given different colors while tasks within the same task group share the same shape of markers.

Figure 8 further shows the appearance distribution of vision-and-language features
for each task group. On the one hand, tasks in the VQA group and RE group have similar
appearance distribution to other tasks in the same group, which indicates that tasks in these
task groups are similar from the data domain view. On the other hand, tasks in the IR group
and MV group have different appearance distribution from each other, which indicates
that the data of these tasks are different from each other and the knowledge from one task
may not be much help to the other task. However, we can still observe from Table 3 that
COCO IR and Flickr30K IR help each other to obtain the best performance, and NLVR2
and SNLI-VE help each other to improve. These results show that task similarity may be
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more decisive than data domain similarity in improving the model performance, i.e., task
similarity affects knowledge transferability more than data domain similarity.

VQA 2.0
VG QA
GQA

(a) VQA group

COCO IR
Flickr30K IR

(b) IR group
NLVR2
SNLI-VE

(c) MV group

Visual7w
GuessWhat
refCOCO
refCOCO+
refCOCOg

(d) RE group

Figure 8. Appearance distribution within four vision-and-language task groups. In this figure,
different tasks are given different colors and different shapes of markers.

5.7. Visual Results

Figure 9 shows predictions on refCOCO with the direct model mrefCOCO, one-hop
model mrefCOCO+→refCOCO, one-hop model mGQA→refCOCO, and the ground truth. The IOU
between the prediction and the ground truth is shown under the respective image. Whereas
refCOCO+ helps to find more accurate regions and to obtain higher IOU, GQA misleads the
task to smaller or even wrong regions. For example, in the image in the middle, although
the direct model finds the region with the right person, refCOCO+ helps to find a more
accurate region, but GQA predicts the wrong person. The same behavior can be observed
in the last two images.

Figure 10 shows examples of the GQA validation set with the direct model mGQA, one-
hop model mVQA v2→GQA, and one-hop model mGuessWhat→GQA. We show the confidence
of prediction for the ground truth class (Conf. of GT) under each example. VQA v2 gives
the most positive effect to GQA, while GuessWhat gives the most negative effect. For
example, in the second and third images from the left, GuessWhat induces wrong answers,
whereas, in the last two images, VQA v2 helps to find the correct answers and improve the
prediction with respect to the direct model.
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ground truth direct model refCOCO+ as source task GQA as source task

comp monitor umbrella above guy case with a 50on it in front woman w pumpkin

IOU:   0.575, 0.680, 0.000 IOU:   0.572, 0.794, 0.313

man on right facing
camera

IOU:   0.623, 0.671, 0.499 IOU:   0.843, 0.523, 0.032 IOU:   0.663, 0.724, 0.000

stove

IOU:   0.703, 0.874, 0.378

bottom left tray

IOU:   0.703, 0.874, 0.378

train on left

IOU:   0.617, 0.697, 0.390

chunk below knife

IOU:   0.526, 0.774, 0.499

top book

IOU:   0.534, 0.781, 0.051

catcher

IOU:   0.620, 0.753, 0.451

blue jacket, purple gloves

IOU:   0.535, 0.679, 0.056

girl facing camera

IOU:   0.680, 0.766, 0.000 IOU:   0.722, 0.773, 0.000

guy behind the catcher

IOU:   0.510, 0.616, 0.003

man with yellow tie

Figure 9. Example of the results on refCOCO. With the caption on top of the image, different models
find different regions on the image. It is easy to see that refCOCO+ helps refCOCO to obtain a more
accurate prediction, while GQA misleads refCOCO to some wrong regions.

direct model VQA v2 as source task GueesWhat as source task

What kind of furniture is to the
right of the chimney the mirror

is on?

Answer: chair, chair, chair
Ground truth: chair

Conf. of GT:  0.76, 0.82, 0.38

Which kind of fruit is on the
table?

Ground truth: rocky
Answer: rocky, rocky, rocky
Conf. of GT:  0.93, 0.94, 0.73

Is there an open window in the
photo?

Ground truth: yes
Answer: yes, yes, no
Conf. of GT:  0.83, 0.85, 0.23

What is the man that is to the
right of the helmet carrying?

Ground truth: snowboard
Answer: snowboard, snowboard, ski

Conf. of GT:  0.71, 0.98, 0.06

Which kind of fruit is on the
table?

Ground truth: yes
Answer: yes, yes, no
Conf. of GT:  0.65, 0.99, 0.00

What is the color of the bus?

Ground truth: yellow
Answer: yellow, yellow, green
Conf. of GT:  0.98, 0.99, 0.00

What kind of vehicle is on the
road?

Does the cow appear to be
lying?

Ground truth: yes
Answer: no, yes, no
Conf. of GT:  0.00, 0.77, 0.00

Ground truth: bus
Answer: car, bus, car
Conf. of GT:  0.48, 0.96, 0.07

Does the cow appear to be
lying?

Ground truth: motorcycle
Answer: bike, motorcycle, bike
Conf. of GT:  0.34, 0.90, 0.00

What is the color of the shorts
the man is wearing?

Ground truth: gray
Answer: green, gray, khaki
Conf. of GT:  0.16, 0.81, 0.00

Was wood used to make that
dishwasher?

Answer: no, yes, no

Which kind of fruit is on the
table?

Ground truth: yes

Conf. of GT: 0.29, 0.73, 0.00
Answer:  orange, orange, orange
Ground truth: orange

Conf. of GT: 0.86, 0.99, 0.72

Is there either any blanket or
lamp in the picture?

Ground truth: yes
Answer: no, yes, no
Conf. of GT: 0.32, 0.71, 0.00

Is the drapery different in color
than the wall?

Ground truth: yes
Answer: yes, yes, no
Conf. of GT: 0.88, 0.99, 0.01

What kind of place is shown?

Ground truth: runway
Answer: runway, runway, terminal
Conf. of GT: 0.76, 0.95, 0.00

Figure 10. Example of the results on GQA. With the question on top of the image, different models predict
the answer based on the image. The predictions from mGQA, mVQA v2→GQA, and mGuessWhat→GQA, as
well as the confidence score of the ground truth class (Conf. of GT), are shown under the examples,
respectively. It is easy to see that VQA v2 helps GQA to achieve a more accurate prediction, while
GuessWhat misleads GQA to achieve a low confidence score in the ground truth class.
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6. Experiments on ViLT

In this section, we introduce our experiments on ViLT [75], which is also widely
applied to multiple vision-and-language tasks (VQA v2 [10], COCO IR [9], Flickr30K
IR [44], and NLVR2 [49]). To explore more tasks, we follow the instructions of ViLT and
expand the model to support VG QA [43] and SNLI-VE [50]. Since ViLT directly uses the
whole image (instead of the regions of the image) as the visual input, this model is not able
to perform referring expression tasks. In general, we conduct a knowledge transferability
exploration based on ViLT with six different vision-and-language tasks of three types:

• VQA: VQA v2 [10] and VG QA [43];
• IR: COCO IR [9] and Flickr30K IR [44];
• MV: NLVR2 [49] and SNLI-VE [50].

We follow the same experimental setting of ViLT (https://paperswithcode.com/
method/vilt, accessed on 15 October 2024.) to fine-tune the model on each task and
make the experiments with the same methodology in Section 4, i.e., train direct models mt
and one-hop models ms→t, then compare their performance. We also use the same evaluation
data and metrics as listed in Table 1.

Main Observations

The experimental results are listed in Table 4. We have the following observations
from these results:

Observation 1. Most of the tasks tend to obtain bad effects from other tasks. Compared
to the performance of the direct model mt, the performance of one-hop models ms → t
in VQA v2, COCO IR, Flickr30K, and NLVR2 show significant decreases (more than
3%). These decreases may be related to catastrophic forgetting since ViLT is trained
on more datasets than VilBERT. The result may indicate that catastrophic forgetting is
one of the factors that affect knowledge transferability.

Observation 2. VG QA and SNLI-VE obtain help from some tasks to achieve better
performance. These results indicate that the knowledge from other vision-and-
language tasks may still benefit models in solving some target tasks, even though
catastrophic forgetting mitigates benefits.

Observation 3. SNLI-VE tends to obtain benefits from other tasks while having bad
effects on them. This observation is similar to VilBERT’s results in Observation 3
in Section 5.3, which indicates that the benefits of knowledge transferability are not
reciprocal. The phenomenon may also indicate that the knowledge in SNLI-VE is
different from other tasks, but other tasks may involve the knowledge for solving
SNLI-VE.

Table 4. Knowledge transferability results in the ViLT model. Results of mrow → column (rows 2–7,
green or red color) are compared with the direct model mcolumn (row 1, blue color) and assigned green
(when the average score is higher than mcolumn) or red (when the average score is lower than mcolumn).
Deep green/red shows the best/worst score in each column.

Target Task t
ViLT

VQA v2 VG QA (Val) COCO IR Flickr30K IR NLVR2 SNLI-VE

direct model mt 71.32 35.10 93.10 88.80 76.55 72.58

VQA v2 - 35.20 90.60 78.82 73.29 73.06

VG QA 69.48 - 89.24 76.26 70.34 72.29

COCO IR 71.10 34.99 - 79.74 72.31 72.94

Flickr30K IR 69.93 34.79 89.14 - 73.59 73.28

NLVR2 70.87 34.66 89.46 78.20 - 72.67

Source

task s

SNLI-VE 65.97 33.25 85.46 74.60 63.46 -

7. Limitations and Future Work

More complex transfer scenarios. In this paper, we mainly focus on one-to-one transfer
learning as it is the most widely used strategy in knowledge transferability. In our future

https://paperswithcode.com/method/vilt
https://paperswithcode.com/method/vilt


J. Imaging 2024, 10, 300 19 of 22

work, we would like to make comprehensive explorations on other knowledge transfer
strategies (e.g., more-to-more knowledge transfer scenario) in our future work.

Optimal transfer point. From our experiments, we observe that although GQA usually
brings negative effects to other tasks, modifying the training setting of GQA during the
pre-training step (e.g., decreasing the data scale of the GQA dataset or the training epochs
of GQA) could make GQA a positive transfer to other tasks. These results may indicate that
there is an optimal transfer point of knowledge transfer when the model learns just enough
knowledge from the source task s but does not overfit. However, finding the optimal
transfer point is a challenging task as the verification of the performance of model ms → t
needs another round of training and evaluation. We consider finding the optimal transfer
point as one of our future work.

Explorations on large-scale pre-training models. Large-scale pre-training models, such as CLIP
and BLIP-2, may contain rich and valuable knowledge that can bring more benefits to
vision-and-language tasks. We are aware that it is important to involve the exploration
based on these large-scale pre-training models. Actually, recent research has shown that
studies [76,77] show that the knowledge from large-scale datasets is sensitive and easily
suffers from catastrophic forgetting during the fine-tuning process. Since we focus more
on the knowledge transferability between vision-and-language tasks, we would like to set
the exploration of knowledge transferability from pre-text tasks or noisy but large-scale
datasets as our future work.

8. Conclusions

We studied the knowledge transferability among 12 vision-and-language tasks. We
confirmed that different tasks have different effects on each other, and the selection of
tasks for knowledge transfer should be made carefully. Furthermore, we observed some
interesting insights about knowledge transferability, e.g., the tasks in the image retrieval
and referring expression groups tend to have a positive impact on other tasks, while
the tasks in the visual question answering and multi-modal verification group give a
negative contribution. The scale of datasets, training epochs, data domain similarity, and
the difference in their goals may cause this divergence.

In general, this paper sheds light on the knowledge transferability of vision-and-
language tasks, including those factors such as data scale and training epoch that may
affect the transferability. We hope our work can bring inspiration to the fields of knowledge
transferability in vision-and-language tasks, especially on the topic of seeking knowledge
from similar tasks for positive transfer.
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