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Abstract: We propose a neural-network-based watermarking method that introduces the quantized
activation function that approximates the quantization of JPEG compression. Many neural-network-
based watermarking methods have been proposed. Conventional methods have acquired robustness
against various attacks by introducing an attack simulation layer between the embedding network
and the extraction network. The quantization process of JPEG compression is replaced by the noise
addition process in the attack layer of conventional methods. In this paper, we propose a quantized
activation function that can simulate the JPEG quantization standard as it is in order to improve
the robustness against the JPEG compression. Our quantized activation function consists of several
hyperbolic tangent functions and is applied as an activation function for neural networks. Our
network was introduced in the attack layer of ReDMark proposed by Ahmadi et al. to compare it with
their method. That is, the embedding and extraction networks had the same structure. We compared
the usual JPEG compressed images and the images applying the quantized activation function.
The results showed that a network with quantized activation functions can approximate JPEG
compression with high accuracy. We also compared the bit error rate (BER) of estimated watermarks
generated by our network with those generated by ReDMark. We found that our network was able
to produce estimated watermarks with lower BERs than those of ReDMark. Therefore, our network
outperformed the conventional method with respect to image quality and BER.

Keywords: watermarking method; neural network; activation function; JPEG compression

1. Introduction

People are now easily able to upload photos and illustrations to the Internet, owing
to smartphones and personal computers. To protect content creators, we need to prevent
unauthorized copying and other abuses because digital content is not degraded by copying
or transmissions. Digital watermarking is effective against such unauthorized use.

In digital watermarking, secret information is embedded in digital content by making
slight changes to the content. In the case of an image, the image in which the information is
embedded is called a stego-image, and the embedded information is called a digital water-
mark. There are two types of digital watermarking: blind and non-blind. The blind method
does not require the original image to extract the watermark from the stego-image. How-
ever, the non-blind method requires the original image when extracting a watermark from
a stego-image. Therefore, the blind method is more practical. In addition, because stego-
images may be attacked by various kinds of image processing, watermarking methods
must have the ability to extract watermarks from degraded stego-images. Two types of
attacks on stego-images can occur: geometric attacks such as rotation, scaling, and cropping,
and non-geometric attacks such as noise addition and JPEG compression [1].

Neural-network-based methods have been proposed. In single-stage training, where
the embedding and extraction are performed in a single network, the network has been
trained to output a watermark from an input image [2,3]. The overall performance of the
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network is low because the relationship between the image and the watermark is trained
individually. To improve performance, watermarking methods using autoencoders (AE)
have been proposed [4–6]. The input layer to the middle layer is called the embedding
network, and the middle to the output layer is called the extraction network. Both the
original image and the watermark are input into the input layer of the AE, and the identity
mapping is learned to retrieve them in the output layer. The stego-image is extracted
from the middle layer [6]. Since the original image is unnecessary during extraction,
it is often omitted to output only the watermark. Furthermore, AE with convolutional
neural networks has been proposed [7]. An adversarial network has also been added to
improve image quality [8]. DARI-Mark [9] is a DNN-based watermarking method using
attention to determine the embedding regions. It can find non-significant regions that
are insensitive to the human eye and increases robustness by embedding the watermark
with larger intensities. Thus, end-to-end models were proposed [6–11]. However, a huge
training dataset was needed to train the connections as the network became more com-
plex. Although data augmentation was sometimes introduced, a model with internal
networks mimicking attacks was proposed in order to train on a relatively small training
dataset [8,10,11].

HiDDeN [8], proposed by Zhu et al., has an attack layer that simulates attacks such
as Gaussian blur, per-pixel dropout, cropping, and JPEG compression attacks on images
during training. Here, the implementation of JPEG compression is approximated by JPEG-
Mask, which sets the high-frequency components of the discrete cosine transform (DCT)
coefficients to zero, and JPEG-Drop, which uses progressive dropout to eliminate the high-
frequency components of the DCT coefficients. Therefore, this implementation does not
meet the standard for quantization in the JPEG compression process. It has also been
noted that the JPEG-Mask and JPEG-Drop layers of HiDDeN do not provide sufficient
performance for the robustness of the JPEG compression [12,13]. JPEGdiff is a method
of approximating around the quantized values in JPEG compression by a cubic function.
Hamamoto and Kawamura’s method [10] also introduces a layer of additive white Gaus-
sian noise as an attack layer to improve robustness against JPEG compression. Moreover,
ReDMark proposed by Ahmadi et al. [11] has attack layers implementing salt-and-pepper
noise, Gaussian noise, JPEG compression, and mean smoothing filters. The quantization of
the JPEG compression is approximated by adding uniform noise. As described, the quan-
tization process has been replaced by the process of adding noise, and the quantization
process as per the JPEG standard has not been introduced.

Adversarial samples are a problem in the field of pattern recognition. They are
generated by adding distortions to images to misclassify them. To avoid misclassification,
a pattern recognition method using JPEG compressed images has been proposed [14].
JPEG compression is expected to effectively reduce noise while preserving the information
needed for pattern recognition. However, JPEGdiff has been proposed as a way to break
this technique [12]. By approximating the JPEG quantization with a differentiable function,
a JPEG-resistant adversarial image can be generated. Therefore, approximating the JPEG
quantization with a smooth function may affect the performance of the model.

In our previous work [15], we proposed a quantization activation function (QAF)
that can simulate the quantization of JPEG compression according to a standard. That
model consists of a network that introduces the QAF into the AE-based model proposed
by Hamamoto and Kawamura [6]. Better performance was obtained in terms of JPEG
compression robustness than the AE-based model [6]. The effectiveness of the QAF has
been demonstrated in our previous work. However, in that model, a QAF with a constant
quantization width was used instead of the quantization table. In this paper, we apply the
QAF to the attack layer of the ReDMark [11], which is a CNN-based model, rather than an
AE-based model. Furthermore, the proposed method uses the quantization table-based
QAF. The robustness against the JPEG compression is expected to be improved using the
QAF. The effectiveness of our method is evaluated by comparing JPEG-compressed images
with QAF-applied images. The image quality of the stego-image is also evaluated.
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The rest of the paper is organized as follows. In Section 2, the process of JPEG
quantization is explained. In Section 3, we describe the ReDMark and, in addition, we
address our previous work. In Section 4, we define the quantized activation function and
describe the structure of the proposed network. In Section 5, we show the effectiveness of
the function and demonstrate the performance of our network in computer simulations.
The last section concludes the paper.

2. Preliminary: JPEG Quantization

JPEG compression is a lossy compression that reduces the amount of information in
an image to reduce the file size. In this kind of compression, an image is divided into
8 × 8-pixel blocks. Then, in each block, the processes of the DCT, quantization, and entropy
coding are sequentially performed. In JPEG compression, the process of reducing the
amount of information is the quantization process of the DCT coefficients. We focus on the
quantization of the DCT coefficients of the luminance component in an image because the
watermark is embedded in these coefficients of the image. Figure 1 shows the quantization
process in JPEG compression for DCT coefficients [16]. The process consists of three steps:
(1) the creation of the quantization table TQ, (2) the quantization process, and (3) the
dequantization process.

Figure 1. JPEG compression quantization for luminance components. (1) Creation of the quantization
table TQ, (2) the quantization process, and (3) the dequantization process.

During the quantization process, the DCT coefficients are quantized based on a default
basic table or a self-defined basic table. The default basic table B is defined as

B =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


. (1)

The quantization table is then determined using the quality factor (Q) and the basic table
B. The quantization table TQ(u, v) for the quantization level Q at coordinates (u, v), u =
0, 1 · · · , 7, v = 0, 1 · · · , 7 is defined as
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TQ(u, v) =
⌊

B(u, v)s(Q) + 50
100

⌋
, (2)

where ⌊·⌋ is the floor function and where B(u, v) is the (u, v) component of the basic table
B. Also, the scaling factor s(Q) is given by

s(Q) =

{
5000

Q (Q < 50)

200 − 2Q (Q ≥ 50)
. (3)

The quantization process is performed using the quantization table TQ. Let y(u, v)
be the quantized data, and let x(u, v) be the DCT coefficients in an 8 × 8-pixel block.
The quantization process is performed as

y(u, v) = round
(

x(u, v)
TQ(u, v)

)
, (4)

where

round(a) =

{
⌊a + 0.5⌋ (a ≥ 0)
−⌊−a + 0.5⌋ (a < 0)

. (5)

Let z(u, v) be the quantized DCT coefficients; then, the dequantization process is per-
formed as

z(u, v) = y(u, v)TQ(u, v). (6)

3. Related Works
3.1. ReDMark

Figure 2 shows the overall structure of ReDMark [11], which consists of an embedding
network, an extraction network, and an attack layer. The h and w are the height and
width of the 2D watermark, and H and W are the height and width of the original and
stego-images. The images are divided into M × N-pixel blocks, where M = N = 8 as it is
in ReDMark. The process flow during training is illustrated by the red arrows in Figure 2.
The host image and watermark are fed to the embedding network, and the attack layer
degrades the generated stego-image. By feeding the degraded image to the extraction
network, the extraction network learns to extract the watermark from the degraded image.
After training, the embedding and extraction networks are used individually. The process
flow during testing is illustrated by the blue arrows in Figure 2. A stego-image is generated
by the embedding network. This image is published and attacked. Let us assume that the
attack is to compress the image by some JPEG tool. When the attacked image is obtained,
the watermark is extracted from the image in the extraction network.

In ReDMark [11], normalization and reshaping are performed on the input image
in preprocessing. For the input image Iin(i, j), i = 0, 1, · · · , H − 1, j = 0, 1, · · · , W − 1,
the normalized image is given by

I(i, j) =
Iin(i, j)− 128

255
. (7)

Reshape is an operation that divides an image into M × N-pixel blocks and transforms
them into a 3D tensor representation. The image size H × W is assumed to satisfy
H = hM, W = wN. The reshaped image is represented by a three-dimensional ten-
sor of h × w × MN. This image is called the image tensor of size (h, w, MN). If necessary,
the tensor is inverse transformed back to its original dimension.
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Figure 2. Overall structure of ReDMark [11]. The red and blue arrows represent the process flow
during training and testing, respectively.

3.1.1. Embedding Network

The embedding network, as shown in Figure 3, consists of three layers: convolution,
circular convolution, and transform. The transform layer can perform lossless linear trans-
forms using 1 × 1 convolutional layers, e.g., the DCT, wavelet transform, and Hadamard
transform. In our method, the DCT is selected as the transform layer, as it is in ReDMark.
The circular convolution layer extends the input to make it cyclic before the convolution
is performed. Figure 4 shows an example of applying a circular convolution layer with
a 2 × 2 filter when the input is 3 × 3 pixels. When a circular convolution layer is used,
the dimension of the output after convolution is the same as the dimension of the input.

Figure 3. Embedding network of ReDMark [11].

Figure 4. Extended input in a circular convolution layer. 1⃝ Extended in the column direction.
2⃝ Extended in the row direction.

In the embedding network, the convolution and circular convolution layers use 1 × 1
and 2 × 2 filters, respectively, and both have 64 filters. In each layer, an exponential linear
unit (ELU) [17] activation function is used. The output of the embedding network is
obtained by summing the output of the transform layer performing the inverse DCT (IDCT)
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(for the IDCT layer) with the input image tensor of size (h, w, MN) and then by performing
the inverse process of reshaping. Here, the output of the IDCT layer can be adjusted by the
embedding intensity α. The intensity is fixed as α = 1 during training and can be changed
during an evaluation.

3.1.2. Extraction Network

The extraction network consists of a convolution layer, a circular convolution layer,
and a transform layer as shown in Figure 5. The transform layer of the extraction network
also performs the DCT. The filter sizes of the convolutional and circular convolutional
layers are 1 × 1 and 2 × 2, respectively. The number of filters is 64 for the fourth layer and 1
for the fifth layer. The activation function up to the fourth layer is ELU [17], and a sigmoid
function is used in the fifth layer. Let po(i, j) be the output of the extraction network,
and the estimated watermark pe(i, j) is given by

pe(i, j) =
{

1, po(i, j) > 0.5
0, po(i, j) ≤ 0.5

. (8)

Figure 5. Extraction network of ReDMark [11].

3.1.3. Attack Layer

The attack layer lies between the embedding and the extraction networks and operates
when ReDMark is trained. The attack layer itself is not trained. By simulating possible
attacks on the stego-image and feeding the attacked image to the extraction network,
the network can be trained to extract the watermark from the degraded image. Various
attacks can be simulated in the attack layer. In the attack layer of ReDMark [11], three
networks were implemented according to the type of attacks: a GT-Net (Gaussian-trained
network), a JT-Net (JPEG-trained network), and a MT-Net (multi-attack-trained network).

In ReDMark, the quantization process is approximated using the quantization table
TQ(u, v) and uniform noise ϵ. Let x(u, v) represent the DCT coefficients of an 8 × 8-pixel
block of a stego-image, and the quantized DCT coefficients z(u, v) are given as

z(u, v) =

(
x(u, v)

TQ(u, v)
+ ϵ

)
TQ(u, v) (9)

= x(u, v) + TQ(u, v)ϵ, (10)

where ϵ represents noise subject to a uniform distribution in the interval [−0.5, 0.5]. In other
words, the quantization process is equivalent to adding a uniform noise ϵ proportional to
the quantization table TQ(u, v).

3.2. JPEGdiff

In the quantization of JPEG compression, the DCT coefficient values are converted to
integers. This causes a problem that the activation function cannot be differentiated when
training a neural network. For example, the JPEG-Mask and JPEG-Drop layers of HiDDeN
do not provide sufficient performance against robustness for JPEG compression. Therefore,
the JPEGdiff, which approximates the activation function to a cubic function around the
quantized value, has been proposed [12,13]. This approximation can reduce the number
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of non-differentiable points and reduce the number of regions with a zero gradient. As a
result, performance is improved by training. The JPEGdiff is given by

JPEGdiff(x) = round(x) + (x − round(x))3. (11)

Note that this function still has non-differentiable points on the boundaries of the intervals.

3.3. Previous Work

In our previous work [15], we proposed a quantized activation function (QAF). This
function was a functional representation of the quantization process of JPEG compression.
Specifically, the function QAF(x) consists of several hyperbolic tangent functions and
returns the quantized value of the argument x. The proposed QAF was applied to the attack
layer of the AE-based model proposed by Hamamoto and Kawamura [6]. Moreover, all
DCT coefficients x(u, v) were quantized with the same intensity. In other words, the value
of the quantization table TQ(u, v) was constant as given by

TQ(u, v) = δ, (12)

where δ is a constant. Even with a constant quantization table, the previous method had
a certain level of tolerance to JPEG compression. However, if the original values of the
quantization table could be applied, the tolerance could be enhanced.

4. Proposed Method

We propose a quantization table-based QAF, and apply it to the attack layer of the
ReDMark [11], which is a CNN-based model rather than an AE-based model. To demon-
strate the effectiveness of the QAF, we compare the proposed layer using the QAF with the
JT-Net of ReDMark [11]. The embedding and extraction networks of the proposed method
are the same as those of ReDMark.

4.1. Quantized Activation Function

We propose a quantization table-based QAF for neural networks to implement the
quantization process of the JPEG compression according to the standard. The QAF consists
of n hyperbolic tangent (tanh) functions and is defined as

QAF
(
x|tQ

)
=

n

∑
i=0

tQ

2
tanh

{
β

(
x ± tQ

(
1
2
+ i

))}
, (13)

where tQ is the value of the quantization table TQ(u, v) when the quantization level is Q.
The parameters n and β denote the number and slope of the tanh functions, respectively.
The red dashed line in Figure 6 represents QAF(x|16) when the slope β = 1000 and
the value of the quantization table TQ(u, v) = 16. In addition, the values of the DCT
coefficients after JPEG quantization are plotted with a black line. We can see that they are
almost the same.

Quantization is essentially a rounding operation to integer values. It should therefore
be represented by a discontinuous, step-like function. In other words, a sign function should
be used for the representation of JPEG quantization (13). However, the tanh function was
used in the proposed method. When training a neural network, the differentiable function
works better for training. Therefore, we chose the tanh function, which is a continuous
function. Figure 7a shows the tanh functions for different slopes β = 1, 10, 100, 1000. We
can see that the slope becomes steeper and asymptotically closer to the sign function as
β increases. When the slope of tanh is set to β → ∞, it asymptotically approaches the
sign function. For practical use, a large value of β can approximate the quantization with
sufficient accuracy.

Let us see how the quantization with QAF differs from the quantization with JPEGdiff.
Figure 7b shows a comparison of JPEGdiff (11) with QAF functions. The green curve
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represents the JPEGdiff, and the blue and orange curves represent the QAF at slopes
β = 10, 1000. We can see that the JPEGdiff has discontinuities, while the QAF is smooth.
Since the QAF has no discontinuities, the network may be better trained.

Finally, we consider the number n of tanh functions. The number n depends on the
value of TQ(u, v). If the minimum value of TQ(u, v) = 1, because the maximum value of
the DCT coefficients is 2040, then at most, 2039 tanh functions are required. A sufficiently
large constant n is chosen because it does not matter if the possible values of the QAF
exceed the maximum value of the DCT coefficients.

Figure 6. Overview of the quantized activation function: QAF(x|16) with slope β = 1000 and number
of hyperbolic tangent functions, n = 500. The blue dotted line indicates that the function has been
expanded in this range.

(a) (b)

Figure 7. Activation functions: (a) the hyperbolic tangent functions for slopes β = 1, 10, 100, 1000.
(b) JPEGdiff vs. QAF.

4.2. Proposed Attack Layer

The proposed attack layer consists of three sublayers: a DCT layer, a layer introducing
QAF (QAF layer), and an IDCT layer. Note that in our network, the DCT coefficients
are quantized as in the JPEG compression. Figure 8 shows the structure of the network.
The embedding and extraction networks have the same structure as that of ReDMark [11].
The output O(i, j, k), i = 0, 1, · · · , h − 1, j = 0, 1, · · · , w − 1, k = 0, 1, · · · , MN − 1 of the
DCT layer is processed by the QAF (13) at the QAF layer. The output z(i, j, k) of this layer
is calculated by
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z(i, j, k) = QAF
(

O(i, j, k)
∣∣∣∣TQ(u, v)

255

)
. (14)

Note that the quantization table TQ(u, v) is divided by 255 because it is normalized by
(7). The quantization table values in (14) are determined according to TQ(u, v) because
the quantization table values are different for each of the coordinates (u, v) of the DCT
coefficients. The coordinates (u, v) are defined by

u =

⌊
k
8

⌋
, v = k − 8

⌊
k
8

⌋
. (15)

The attack layer [11] in ReDMark performs noise addition to the coefficients, while the one
in our network performs the quantization with the QAF.

Figure 8. Proposed attack layer.

4.3. Training Method

The embedding and extraction networks are trained in the same way as they were in
ReDMark [11], respectively. The loss function L1 of the embedding network is defined as

L1 = 1 − SSIM(I, Io), (16)

where SSIM represents the structural similarity function (SSIM) [18], which measures the
structural similarity between two images. The closer it is to 1.0, the larger the similarity
between the two images [18]. It is defined in

SSIM(I, Io) =
(2µµo + c1)(2Cov(I, Io) + c2)

(µ2µ2
o + c1)(σ2σ2

o + c2)
, (17)

where I is the original image given as a teacher and where Io is the output of the embedding
network. µ and µo are the means of I and Io, respectively. σ and σo are the variances of each
image, and Cov(I, Io) represents the covariance between the two images. Let c1 and c2 be
constants, and let c1 = 10−4, c2 = 9 × 10−4. Because the output of the embedding network
takes a real number, the stego-image Ist is obtained by converting it back to 256 levels of
the pixel value. That is, it is given by

Ist(i, j) =


255, Io(i, j) > 0.5
⌊255 Io(i, j) + 128⌋. −0.5 ≤ Io(i, j) ≤ 0.5
0, Io(i, j) < −0.5

. (18)

The loss function L2 of the extraction network is defined as

L2 = −
h−1

∑
i=0

w−1

∑
j=0

{p(i, j) log(po(i, j)) + (1 − p(i, j)) log(1 − po(i, j))}, (19)

where p is the watermark used as a teacher for the extraction network. po is the output of
the sigmoid function of the extraction network. That is, the value of the element takes a
value between 0 and 1. The total loss function L of our network is defined as
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L = γL1 + (1 − γ)L2, (20)

where the parameter γ determines the balance between the two loss functions. The em-
bedding and extraction network are trained by the back propagation [19] using stochastic
gradient descent (SGD) as the optimization method.

5. Computer Simulations
5.1. Evaluation of the QAF

First, the ability that the QAF function can approximate the quantization process of JPEG
compression was assessed, using computer simulations. Because the DCT and quantization
were applied to 8× 8-pixel blocks in the JPEG compression, the QAF was also applied to 8× 8-
pixel blocks. The evaluation images were taken from a dataset provided by the University
of Granada [20]. They consist of 49 images of 512× 512 pixels. Each image was normalized
by (7). The 512× 512-pixel image is divided into blocks of 8× 8 pixels, resulting in 64× 64
blocks. These blocks were indexed in raster scan order as µ = 1, 2, 3, · · · , 4096. The DCT was
performed on each block. Let Iµ

b (u, v), µ = 1, 2, 3, · · · , 4096 be the DCT coefficients of the
µ-th block. The QAF was applied to the µ-th block as

Iµ
QAF(i, j) = QAF

(
Iµ
b (i, j)

∣∣∣∣T70(i, j)
255

)
, (21)

where the quantization level of the JPEG compression was set to Q = 70. The parameters
of the QAF in (13) were set as gradient β = 1000, and the number of the hyperbolic tangent
functions n = 500. For all the QAF-applied blocks, an IDCT was performed, and the
luminance values were inversely normalized using (18). Next, all blocks were combined.
The combined image was converted back to the original image size. Then, the QAF-applied
image was given by

IQAF =
(

I1
QAF, I2

QAF, · · · , I4096
QAF

)
. (22)

In general, the peak signal-to-noise ratio (PSNR) of an evaluated image I′ against a
reference image I is defined by

PSNR
(

I′|I
)
= 10 log10

(
2552

MSE(I′, I)

)
[dB], (23)

where

MSE
(

I′, I
)
=

1
HW

H−1

∑
i=0

W−1

∑
j=0

{
I′(i, j)− I(i, j)

}2. (24)

To see the difference between the QAF and JPEG-compressed images shown in Figure 6,
the difference could be evaluated by PSNR rather than MSE. The accuracy of the QAF could
be measured by the PSNR of a QAF-applied image against a JPEG-compressed image,
that is, PSNR

(
IQAF|I jpeg

)
, where I jpeg is the JPEG-compressed image. Note that the PSNR

was measured against the JPEG-compressed image, not the original image. Similarly, we
evaluated the approximation ability of JT-Net using PSNR and compared it with QAF.
Figure 9 shows a histogram of PSNRs for JT-Net-applied images by using (9) and QAF-
applied images given by (21) and (22), where the quantization level is Q = 70. The PSNRs
for QAF-applied images are clearly greater than those for JT-Net-applied images. Figure 10
shows three examples of QAF-applied images and their PSNRs. Thus, we found that the
QAF more adequately represents the quantization of the JPEG compression.



J. Imaging 2024, 10, 138 11 of 16

Figure 9. Histogram of PSNRs for JT-Net-applied images and QAF-applied images.

(a) PSNR = 51.52 dB. (b) PSNR = 53.12 dB. (c) PSNR = 49.55 dB.

Figure 10. QAF-applied images and their PSNRs.

5.2. Evaluation of the Proposed Attack Layer

We compared the JT-Net in the ReDMark, our previous model, and the proposed
quantization table-based QAF network (QT-QAF-Net) based on the image quality of stego-
images and the BER of watermarks extracted from stego-images after the JPEG compression.
Note that our previous model [15] is the AE-based model with the quantization table
quantized by constant intensity. For comparison, we used an improved model of the
CNN-based QAF network with a constant intensity quantization table (constant QAF-Net).
The only difference between the QT-QAF-Net and the constant QAF-Net is the values of
the quantization table.

5.2.1. Experimental Conditions

The training and test images were selected as they were in ReDMark [11]. The training
images were 50,000 images of 32× 32 pixels from CIFAR10 [21] (H = 32, W = 32). An h×w-
bit watermark was embedded, where h = 4, w = 4. The watermark was randomly
generated. Therefore, the amount of watermark embedded per pixel was approximately
0.0156 bits per pixel. In the parameters used for training, the block height and width sizes
were set to M = 8 and N = 8, respectively. The parameter of the loss function (20) was set
to γ = 0.75, the number of learning epochs was set to 100, and the mini-batch size was
set to 32. For the parameters of SGD, the training rate was set to 10−4, and the moment
was set to 0.98. For training the proposed attack layer, the gradient of the QAF (13) was
set to β = 1000, and the number of the hyperbolic tangent functions was set to n = 500.
In the attack layer of JT-Net and the proposed method, the quantization level was set to
Q = 70, and the quantization table T70 was used. The embedding, attack, and extraction
networks were all connected, and the network was trained using the training images and
watermarks. Here, the embedding intensity was fixed at α = 1.

For testing, 49 images of 512 × 512 pixels from the University of Granada were used.
These images were divided into 32 × 32 pixel subimages, and the embedding process
was performed on each of them. The 256 subimages were given to the network as
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test images. Meanwhile, a 32 × 32-bit watermark was randomly generated. One wa-
termark was embedded four times in one image. That is, the watermark was divided into
4 × 4-bit subwatermarks, and finally each subwatermark was embedded in one subimage.
An estimated watermark was determined by bit-by-bit majority voting because the same
watermark was embedded four times in one image.

As stated in Section 3.1, the attack layer was not used during testing. The test im-
ages and the watermarks were used to output stego-images in the embedding network.
Here, the embedding intensity was set to values from α = 0.5 to 1.0. The stego-image is
published. Subsequently, we assumed that it was JPEG-compressed by some JPEG tool
with quantization levels Q = 10, 20, · · · , 90. The compressed stego-images were input to
the extraction network, and the estimated watermarks were output. These networks were
trained 10 times with different initial weights for the comparison of our network with the
JT-Net on image quality and BER. The mean and standard deviation of structural similarity
index measures (SSIMs), PSNRs, and BERs were calculated.

5.2.2. Evaluation of the Image Quality

The image quality of the stego-images obtained from the JT-Net, the constant QAF-Net
and QT-QAF-Net was evaluated using the SSIMs and PSNRs. The image quality of the
stego-image Ist against the original image I can be expressed as SSIM(Ist, I) by (17) and
PSNR(Ist|I) by (23). Figure 11 shows the SSIM and PSNR. The horizontal and vertical
axes represent the embedding intensity α and SSIM or PSNR, respectively. The error
bars represent the standard deviation of the SSIMs and PSNRs. Embedding a watermark
strongly causes degradation in image quality. Therefore, the SSIM and PSNR decreased as
the intensity α increased. The image quality of the proposed QT-QAF-Net was higher than
that of the other two networks. In other words, our network can reduce the degradation of
image quality even with the same embedding intensity.

(a) SSIM (b) PSNR

Figure 11. Image quality of stego-images (tained by Q = 70).

As the images were processed block by block, they were visually checked for block
artifacts. Three images selected from the dataset were cropped to 128 × 128-pixel size as
shown in Figure 12. These images were generated from the proposed network trained with
embedding intensity α = 1.0. The images were not reduced in size when displayed. Few
noticeable artifacts were observed.
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Figure 12. Images cropped to 128 × 128 pixels.

5.2.3. Evaluation of the BER

The robustness of our network against the JPEG compression was evaluated. The esti-
mated watermark obtained by (8) was evaluated by using the BER. The BER of the estimated
watermark pe can be defined by

BER =
1

hw

h−1

∑
i=0

w−1

∑
j=0

p(i, j)⊕ pe(i, j), (25)

where p is the original watermark, and ⊕ represents the exclusive OR.
First, we compared the robustness of our network with that of the JT-Net and constant

QAF-Net using the same embedding intensity α. Figure 13 shows the BER of the estimated
watermark for the embedding intensity α. The horizontal and vertical axes represent the
intensity α and BER, respectively. For different compression levels Q, the dashed lines with
circles represent the BER for the QT-QAF-Net, the solid lines with squares represent the BER
for the JT-Net, and the dotted lines with triangles represent the BER for the constant QAF-
Net. When the watermark was strongly embedded, it was extracted correctly. Therefore,
the BER decreased as the intensity α increased. The lowest BER was obtained when α = 1.0.
At compression level Q ≤ 70, the BER of the proposed network was lower than that of the
JT-Net. Also, at Q = 80, they had almost the same BER. Furthermore, at Q = 90, the BER
of our network was larger than that of the JT-Net. The BER of the constant QAF-Net was
always larger than that of the other two networks.

Figure 13. BER for embedding intensity α.
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Even with the same embedding intensity, the image quality of our network differs from
that of the JT-Net and the constant QAF-Net. Therefore, we next adjusted the embedding
intensity so that the PSNRs of these three networks were approximately the same, and we
compared the BERs of the networks under this condition. Figure 14 shows the histograms
of PSNRs for the QT-QAF-Net with embedding intensity α = 1.0. Figure 14a shows
the histograms for the embedding intensity α = 1.0 for the JT-Net and α = 0.55 for
the constant QAF-Net, respectively. Figure 14b shows histograms for these embedding
intensities α = 0.95 and α = 0.50, respectively. The intensities of the three networks were
chosen so that the histograms shown look similar. To measure the robustness against JPEG
compression, we set the intensity α to ensure that the PSNR obtained from these networks is
approximately the same. Specifically, we set the intensity for the JT-Net and QT-QAF-Net to
α = 0.95 (average PSNR = 37.58 dB) and α = 1.0 (average PSNR = 37.81 dB), respectively.
Figure 15 is the BER for the compression level Q. The error bars are the standard deviation
of the BERs. The BER of the estimated watermark for QT-QAF-Net is lower than that for the
JT-Net and constant QAF-Net. Thus, we can say that our network can generate watermarks
with fewer errors under the given PSNR.

(a) (b)

Figure 14. Histogram of PSNR for embedding intensity α = 1.0 for QT-QAF-Net: (a) intensity α = 1.0
for JT-Net and α = 0.55 for constant QAF-Net and (b) intensity α = 0.95 for JT-Net and intensity for
constant QAF-Net α = 0.50.

Figure 15. BER for the JPEG compression level Q.

6. Conclusions

The JT-Net in ReDMark [11] is a network that simulates JPEG compression. This
network substitutes the quantization process with a process that adds noise proportional
to the value of the quantization table. In previous work [15], a quantized activation
function (QAF) quantized by constant intensity (constant QAF-Net) was proposed. In this
paper, we proposed the quantization table-based QAF network (QT-QAF-Net), which can
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approximate the quantization process of the JPEG compression according to the standard.
By approximating the quantization of the JPEG compression using the QAF, we expected to
improve the robustness against the JPEG compression. The results of computer simulations
showed that the QAF represented quantization with sufficient accuracy. Also, we found
that the network trained with the QAF was more robust against the JPEG compression
than those trained with the JT-Net. Because the embedding and extraction networks were
more robust against the JPEG compression when trained with the QAF, we conclude that
our method is more suitable for simulating JPEG compression than conventional methods
applying additive noise.

Further studies with QAF are expected. For example, since QAF is differentiable over
the whole interval, it may produce better adversarial images compared to JPEGdiff [12].
Furthermore, there is a study on the estimation of the sign bit of DCT coefficients [22].
The non-linearity of the quantized DCT coefficients makes estimation difficult. The solution
could be simplified by using QAF.
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