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Abstract: Ischemic brain strokes are severe medical conditions that occur due to blockages in the brain’s
blood flow, often caused by blood clots or artery blockages. Early detection is crucial for effective
treatment. This study aims to improve the detection and classification of ischemic brain strokes in
clinical settings by introducing a new approach that integrates the stroke precision enhancement,
ensemble deep learning, and intelligent lesion detection and segmentation models. The proposed
hybrid model was trained and tested using a dataset of 10,000 computed tomography scans. A
25-fold cross-validation technique was employed, while the model’s performance was evaluated using
accuracy, precision, recall, and F1 score. The findings indicate significant improvements in accuracy
for different stages of stroke images when enhanced using the SPEM model with contrast-limited
adaptive histogram equalization set to 4. Specifically, accuracy showed significant improvement (from
0.876 to 0.933) for hyper-acute stroke images; from 0.881 to 0.948 for acute stroke images, from 0.927
to 0.974 for sub-acute stroke images, and from 0.928 to 0.982 for chronic stroke images. Thus, the
study shows significant promise for the detection and classification of ischemic brain strokes. Further
research is needed to validate its performance on larger datasets and enhance its integration into
clinical settings.

Keywords: brain stroke; clinical application; deep learning; hybrid model; image enhancement; images

1. Introduction

Brain strokes, or brain attacks, represent a severe global health problem, significantly
contributing to the burden of illness, disability, and mortality worldwide [1,2]. The World
Health Organization (WHO) reports that cerebrovascular accidents, commonly known as
strokes, are the second leading cause of death and the third leading cause of disability
globally [3]. The severity of stroke can vary greatly, from mild cases that resolve with little
or no residual disability to severe cases that can lead to death or lifelong dependence on
care [4,5].

Speedy treatment of stroke is crucial as delays can cause permanent brain damage or
increase the severity of the incident on the patient’s healthcare. However, accurately diag-
nosing strokes quickly in an emergency is difficult due to several factors, including varying
levels of expertise among doctors, availability (or lack thereof) of Magnetic resonance
imaging (MRI) and Computed tomography (CT) machines for overcrowded hospitals,
and a long processing time due to the heavy computational load from processing medical
images. These issues can lead to missed or delayed diagnoses and increase the risk of
long-term disabilities.
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Several methods for ensuring early detection and timely treatment of stroke have
been studied. For instance, deep learning, a relatively new yet rapidly developing field
of artificial intelligence, has the potential to revolutionize the diagnosis and treatment of
stroke. Deep learning models can be trained on large datasets of medical images to learn to
identify stroke lesions with high accuracy, even in small or complex cases [6]. These models
leverage complex algorithms to extract intelligent, high-dimensional patterns not easily
detectable through standard diagnostic procedures. The efficacy of deep learning in stroke
diagnosis is gaining attention, primarily due to its proficiency in separating significant
features and facilitating differentiation between diverse patient scenarios [5,7–11].

In recent years, studies have indicated that deep learning models can outperform
human radiologists in detecting and classifying stroke lesions on CT scans and MRI
scans [6,7]. Exploring this cutting-edge field, recent research has identified several bench-
mark deep learning models—including AlexNet, Visual Geometry Group (VGGNet),
Inception, and Residual Network (ResNet)—as effective tools in the early detection of
brain stroke [12].

Employed as transfer learning algorithms, these models have demonstrated consider-
able success in infarct lesion detection and classification [5–7,13]. Within their functionality
is an encoder–decoder structure that emphasizes semantic segmentation tasks, empower-
ing these models to precisely identify and categorize stroke-related abnormalities within
CT images of the brain [14]. Nevertheless, the effectiveness of these advanced models in
automating brain infarction diagnosis is complicatedly connected to the selection of the
architectural framework.

Moreover, researchers have introduced the Hybrid ensemble deep learning (HEDL)
models as advanced approaches that combine several deep learning methods, aiming to
obtain even better prediction performances [13]. Several studies have used the hybrid
model by combining various algorithms, like convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and long short-term memory networks (LSTM), all
with varying results [15–17].

Despite promising results, machine learning faces several significant challenges in
detecting early-stage ischemic strokes. One major issue is the quality and variety of data.
Medical imaging data can be inconsistent due to differences in equipment, scanning proto-
cols, and patient conditions. Limited labeled data is another critical challenge. Annotating
medical images requires expert knowledge, making it difficult to amass large datasets for
training machine learning models.

The subtle and varied nature of stroke features further complicates detection. Early-
stage ischemic strokes often present with minute changes in the brain that can be easily
overlooked. These features can vary widely between patients, necessitating robust models
that can generalize across diverse cases. Additionally, the inherent complexity of medical
images, with their high-dimensional and noisy nature, poses a significant obstacle in
accurately identifying stroke-related abnormalities.

Extracting important features from these images and making models that perform well
in different settings is also challenging. Feature extraction requires sophisticated techniques
to capture relevant information without losing critical details. Ensuring that these models
work effectively across various clinical environments, with different imaging devices and
patient demographics, adds another layer of difficulty.

Considering the above, this study seeks to introduce a novel approach for speedy
detection of stroke in emergency situations by combining advanced image processing
techniques with a unique deep learning network. The image processing techniques sim-
plify and classify ischemic strokes more accurately, overcoming previous obstacles and
improving diagnosis reliability. This technological advance not only boosts diagnostic
precision in a shorter time but also integrates smoothly into clinical workflows, enhancing
patient care and reducing the chances of long-term after-effects from strokes.
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2. Materials and Methods

This study utilized both CT and MRI scans from Istishari Arab Hospital (IAH) to
capture different stroke stages, including normal, acute, chronic, hyper-acute, and sub-
acute. The equipment used includes the Philips Incisive scanner and the Philips Ingenia
MRI scanner (Philips Healthcare, Amsterdam, Netherlands).

The brain CT scans were performed using the Philips Incisive scanner (128 slices)
at IAH. The technical specifications for the CT scans were a tube current of 300 mA, a
peak voltage of 120 kVp, a window width/level (WW/WL) of 80/40 HU, a matrix size of
512 × 512, a slice thickness of 0.625 mm, and a reconstruction technique utilizing iDose 3.

For the diffusion-weighted MRI (DW-MRI) sequences, the Philips Ingenia 1.5 T MRI
scanner at IAH was employed. The technical specifications for the DW-MRI sequences
included an echo time (TE) of 85 ms, a repetition time (TR) of 4000 ms, a field of view (FOV)
of 230 × 230 mm, a matrix size of 152 × 106, and a b-Factor of 0 & 1000.

Neurologists and radiologists classified the strokes into hyper-acute, acute, sub-acute,
and chronic categories, following recognized medical standards. Each classification was
verified by clinical diagnosis and follow-up. The research protocol was approved by the
Al-Quds University Institutional Review Board (IRB), under code 410/REC/2023.

2.1. Dataset

In 2023, our study collected a dataset of 10,000 images from public hospitals across
Palestine, featuring five categories: normal, hyper-acute, acute, sub-acute, and chronic,
with 2000 cases each. The images, standardized to 640 × 640 pixels and JPEG format,
trained our advanced diagnostic model.

The dataset was divided into four training groups: Normal-Hyper-acute, Normal-
Acute, Normal-Sub-acute, and Normal-Chronic. To enhance diversity and prevent over-
fitting, we applied data augmentation techniques, quadrupling the dataset size. The
augmented dataset was split into training (70%), testing (20%), and validation (10%) seg-
ments, using 25-fold cross-validation and dropout layers. Additionally, a supplementary
set of 500 real-world clinical images validated the model’s accuracy and clinical relevance.

2.2. Hybrid Ensemble Deep Learning for Clinical Stroke Diagnosis

This study introduces a novel HEDL model for diagnosing and classifying ischemic
brain strokes in CT medical images. The model has three main phases: (1) medical image
enhancement and data preparation, using the Software Process Engineering Metamodel
(SPEM) model to improve image quality and clarity for clinical stroke diagnosis; (2) the
HEDL model, combining Dense Convolutional Network with 121 layers (DenseNet121) and
Ensemble Deep Random Vector Functional Link (edRVFL) algorithms for their effectiveness
with stroke image datasets; and (3) a novel approach for stroke lesion detection and
segmentation, utilizing Medical Segmentation Anything Model (MedSAM) and the “You
Only Look Once version 5” (YOLOv5) object detection model [18–20].

We employed transfer learning to adapt the Visual Geometry Group 16-layer model
(VGG16) and DenseNet121 architectures within the CNN to our stroke image dataset. A
comparative analysis of both architectures helped identify the most effective model for
integration with the edRVFL outputs, creating a robust hybrid deep learning framework.
Figure 1 illustrates the architecture of the model, highlighting the integration process and
the flow of data through the different components.
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2.2.1. Stroke Precision Enhancement Model (SPEM)

The study introduced the stroke precision enhancement model (SPEM) as an approach
for enhancing CT image quality to aid in stroke prediction through deep learning analysis.
SPEM employs morphological erosion to reduce noise and simplify raw CT images, en-
hancing visibility for stroke diagnosis [21]. It then uses contrast-limited adaptive histogram
equalization (CLAHE) to redistribute pixel intensity values, enhancing contrast crucial
for accurate stroke prediction [22]. The effectiveness of CLAHE in SPEM is evaluated
using the effective measure of enhancement (EME) and peak signal-to-noise ratio (PSNR),
ensuring that SPEM enhances images while maintaining the integrity and accuracy needed
for reliable stroke prediction.

The following equation is utilized for EME:

EME =
1

K1K2

K2

∑
L=1

K1

∑
K=1

20 log
(

Imax(k, l)
Imin(k, l)

)
(1)

where K1, K2 are the number of horizontal and vertical blocks in the image, Imax(k, l), and
Imin(k, l) are the maximum and minimum pixel values in each block.

The peak signal-to-noise ratio (PSNR) was used to measure the deviation of the current
image from the original image with respect to the peak value of the gray level. Given a
reference image f and a test image g, both of size M × N, the PSNR between f and g is
defined by:

PSNR(f, g) = 10
(

2552/MSE(f, g)
)

(2)

where

MSE(f, g) =
1

MN

M

∑
i=1

N

∑
j=1

(
fij − gij

)2
(3)

In SPEM, as the Mean Squared Error (MSE) approaches zero, the PSNR increases,
indicating improved image quality. A higher PSNR means the enhanced image closely
resembles the original CT scan, retaining essential details for accurate stroke prediction.

SPEM also uses the Laplacian of Gaussian (LoG) edge enhancement technique, which
begins with Gaussian smoothing followed by the application of a Laplacian operator to
highlight edges of pathological structures, crucial for stroke analysis [23]. Furthermore,
SPEM employs unsharp masking to sharpen CT image details. The masking technique
involves creating a blurred, or “unsharp”, version of the image and then subtracting it from
the original. The resulting high-contrast mask is then added back to the original image.
This step enhances the sharpness and clarity of the image without introducing unwanted
noise or artifacts, maintaining the integrity of diagnostic details [24].
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2.2.2. Adaptation of Ensemble Deep Random Vector Functional Link for
Stroke Classification

In the context of our study, the ensemble deep random vector functional link (edRVFL)
has been adapted for classifying strokes, which integrates deep and ensemble learning
techniques, furthering the random vector functional link (RVFL) network’s legacy. Initially
brought forward by Hu et al. (2023) and built upon the single-layer feedforward network
introduced by Zhang et al. (2016), RVFL is praised for its straightforward design which is
remarkably capable in several machine learning models [25–27].

The RVFL network is known for its effectiveness in machine learning, image clas-
sification, pattern recognition, and signal processing. It has a simple architecture with
three layers:

1. Input layer: processes incoming data.
2. Hidden layer: uses randomly initialized weights for unbiased data processing.
3. Output layer: produces the final output.

During training, the focus is on adjusting the weights of the output layer, often by
solving a linear least squares problem. Methods like the conjugate gradient method can
improve this process’s efficiency.

In the RVFL, features from each model level are merged with the original input
data after undergoing nonlinear transformations, enhancing the model’s complexity and
effectiveness. The core computation of the RVFL is outlined by a specific mathematical
formula that describes this process of feature integration and transformation:

y = Wo tanh tanh (Wix + bi) + bo (4)

wherein:

• y stands for the predicted output.
• Wo and Wi designate the weights associated with the output and hidden layers,

respectively.
• bi and bo are the bias terms corresponding to the hidden and output layers.
• x is representative of the input data.

The edRVFL approach improves upon the basic RVFL by creating an ensemble of mul-
tiple RVFL networks, each trained on different segments of the dataset. This ensures that
each network specializes in a unique subset of data. The outputs from these networks are
then combined to form a more robust model. This integration results in reduced overfitting
and improved generalization across diverse datasets. The mathematical framework of the
edRVFL reflects this enhanced approach (see Figure 2):

edRVFL(x) = F(XW1 + b1)W2 + b2 (5)

For clarity:

• x symbolizes the input data.
• W1 and W2 represent weight matrices corresponding to the sequential RVFL networks.
• b1 and b2 denote bias vectors that are aligned with the respective RVFL networks.
• F is indicative of a nonlinear activation function.

The training process for the edRVFL involves several key steps:

• Begin by randomly assigning the weight matrices and bias vectors in the RVFL networks.
• Conduct individual training sessions for each RVFL network, tailoring them to specific

data subsets for the best results.
• Combine the outputs from all RVFL networks to create a unified edRVFL output.
• Repeatedly adjust and fine-tune the process by revisiting steps 2 and 3 until the model

reaches optimal performance.
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2.2.3. Enhancing Stroke Detection by Advancing edRVFL Classification Capabilities

Our research has refined the edRVFL algorithm parameters to better classify strokes,
emphasizing early detection of acute events. We have enhanced the algorithm’s efficiency
and accuracy in stroke classification, focusing on early-stage identification, reducing execu-
tion times, and minimizing reliance on conventional feature engineering.

In-Depth Hyperparameter Optimization

Our research focuses on optimizing edRVFL’s hyperparameters for better stroke
classification. We have identified three key hyperparameters: enhancement node count,
regularization parameter, and hidden layer quantity. Their precise calibration balances
algorithm performance and resource efficiency.

We adjust enhancement nodes for optimal classification and manage the computational
load. The regularization parameter is fine-tuned to prevent overfitting and ensure memory
efficiency. The optimal number of hidden layers is crucial for handling complex data
features while considering computational demands and execution speed.

The optimal hyperparameter values found are:

1. Enhancement nodes: 10
2. Regularization parameter: 100
3. Hidden layers: 10

Enhancing Feature Extraction and Clustering Techniques

We have enhanced the edRVFL framework by integrating DenseNet 121, a state-
of-the-art deep learning architecture, improving its ability to detect complex patterns in
stroke images and simplifying classification. This approach outperforms standard feature
engineering in biological classification.

Our method surpasses traditional clustering techniques by leveraging the hierarchical
structure of data and capturing subtle image relationships. We used a 25-fold cross-
validation technique in the clustering process to ensure the robustness and reliability of our
results. This is crucial for analyzing our curated dataset of 500 stroke cases, augmented
for increased robustness and diversity. Our hierarchical clustering strategy achieves more
precise and relevant grouping outcomes by accurately reflecting the nuanced relationships
between images.
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2.2.4. Ablation Study

In our study, we conducted an ablation study to dissect the contribution of individual
components within our proposed ensemble model for diagnosing and classifying ischemic
brain strokes in CT medical images. The baseline ensemble model consists of a combination
of customized CNN, VGG16, and DenseNet121 architectures.

To assess the impact of each component within the ensemble model, we conducted a
series of experiments wherein we systematically removed one model from the ensemble
at a time. For instance, we eliminated the CNN and observed the resultant effects on
performance metrics such as accuracy, precision, recall, F1 score, and AUC (area under
the curve). The subsequent configurations after the elimination of one model include the
ensembles of CNN + VGG16, CNN + DenseNet121, and VGG16 + DenseNet121, as well as
individual models such as CNN, VGG16, and DenseNet121.

Objective measures, including accuracy, precision, recall, F1 score, and AUC, are
employed to quantitatively evaluate the effectiveness of the model in enhancing stroke
diagnosis accuracy.

2.2.5. Developing a Novel Method for Lesion Detection and Segmentation in
Medical Imaging

Quantitative analysis in medical imaging relies heavily on segmentation, but tradi-
tional methods are limited by the need for extensive manual data labeling. Foundation
models like Meta’s Segment Anything Model (SAM) by Alexander Kirillov et al. in 2023,
and MedSAM by Bo Wang et al. in 2023, show promise in overcoming these limitations by
pre-training on diverse datasets [18]. SAM provides broad segmentation capabilities across
imaging types using text prompts. MedSAM, trained on over one million image–mask
pairs, excels in medical segmentation, outperforming specialist models in some cases due
to its superior generalization [19]. Furthermore, in our study, the YOLOv5 object detec-
tion model on the dataset was employed [20]. YOLOv5 was chosen for its exceptional
performance in real-time object detection. It was trained for 250 epochs using the stochastic
gradient descent (SGD) optimizer, with an initial learning rate of 0.001, and common data
augmentation techniques like flipping, rotations, and cropping.

Our primary metric for segmentation accuracy was the Dice similarity coefficient
(DSC), a widely used metric in medical imaging for evaluating segmentation performance.
It measures the spatial overlap between two segmentation masks on a scale from 0 to 1,
with a score of 1 indicating perfect overlap. The formula for calculating the DSC is:

DSC =
2 |A ∩ B|
|A|+|B| (6)

A: Predicted Segmentation
B: True Segmentation

2.3. Model Validation

We evaluated various machine learning models for stroke prediction on a clinical
dataset of 500 CT brain scans, comparing results with actual diagnoses. The evaluation
used 25-fold cross-validation and metrics like accuracy, precision, recall, F1 score, and
AUC to assess consistency and generalization, identifying the most effective algorithm for
stroke detection.

The hybrid approach combines supervised detection and unsupervised segmentation
to reduce manual annotation dependency. We employed YOLOv5 for real-time detection
efficiency, achieving high accuracy in lesion detection on annotated scans from Palestinian
hospitals. MedSAM was then used for precise lesion segmentation, guided by YOLOv5’s
detections. This method leverages the strengths of both models, offering a robust solution
for accurate medical image segmentation.
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3. Results
3.1. Hybrid Model Performance before Enhancement

Table 1’s analysis reveals the performance of various machine learning classifiers on an
original brain ischemic stroke dataset before integrating the SPEM model. For hyper-acute
strokes, SVM led in accuracy (94.9%), closely followed by random forest (92.0%), with
random forest (41.87 s) being quicker than SVM (53.05 s). In acute strokes, edRVFL was
most accurate (95.4%), with logistic regression nearly matching (95.3%). Nonetheless, LR
was faster in processing time than the edRVFL at 0.06 s and 1.01 s, respectively. Sub-acute
stroke detection saw SVM and edRVFL both achieving 96.3% accuracy, with SVM faster at
0.34 s compared to edRVFL’s 0.45 s. For chronic strokes, SVM and edRVFL impressed with
97.5% and 97.9% accuracies, respectively, and were efficient in time, with SVM at 0.61 s
and edRVFL at 0.74 s. Overall, SVM consistently offered high accuracy and time-efficiency
across stroke types, with logistic regression and edRVFL also showing strong performance
in both accuracy and speed.

Table 1. Performance evaluation of the original data using different machine learning classifiers,
concerning the DenseNet121 Deep Learning Model.

Brain Ischemic Stroke Prediction

Cases Classifier Accuracy Precision Recall F1 AUC Time (s)

Hyper-acute

Random Forest 0.920 0.904 0.926 0.915 0.975 41.87

SVM 0.949 0.940 0.952 0.946 0.989 53.05

Logistic Regression 0.908 0.907 0.895 0.901 0.967 0.4

edRVFL 0.910 0.910 0.910 0.910 0.972 2.4

Acute

Random Forest 0.907 0.921 0.927 0.924 0.968 8.63

SVM 0.939 0.963 0.937 0.950 0.987 2.52

Logistic Regression 0.953 0.963 0.960 0.962 0.988 0.06

edRVFL 0.954 0.948 0.947 0.947 0.990 1.01

Sub-acute

Random Forest 0.933 0.932 0.919 0.925 0.992 2.35

SVM 0.963 0.986 0.932 0.958 0.992 0.34

Logistic Regression 0.957 0.947 0.960 0.953 0.994 0.04

edRVFL 0.963 0.963 0.963 0.963 0.996 0.45

Chronic

Random Forest 0.945 0.950 0.943 0.947 0.986 3.44

SVM 0.975 0.983 0.967 0.975 0.998 0.61

Logistic Regression 0.978 0.988 0.959 0.979 0.999 0.05

edRVFL 0.979 0.980 0.979 0.979 0.999 0.74

3.2. Hybrid Model Performance with SPEM Image Enhancement Top of Form

Table 2 reveals the impact of the SPEM model alongside DenseNet121 on enhancing
machine learning classifiers’ performance on an enhanced dataset. In hyper-acute stroke
detection, edRVFL and logistic regression led with accuracies of 0.9958 and 0.9957, re-
spectively, combining high precision with low processing times of 0.74 and 0.04 s. SVM
also showed strong performance with a 0.9915 accuracy and 0.52-s processing time, while
random forest, despite its lower accuracy of 0.9832, completed predictions in 3.30 s.

For acute strokes, SVM, logistic regression, and edRVFL classifiers all recorded ac-
curacies above 0.99. SVM’s accuracy stood at 0.9930, requiring 24.74 s, whereas logistic
regression showed a near-identical accuracy of 0.9922 but with a much quicker 0.42 s
processing time. edRVFL achieved the highest accuracy at 0.9933, with a processing time of
2.46 s. Random Forest lagged slightly in accuracy (0.9716) and took longer at 42.73 s.
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Table 2. Performance evaluation of the enhanced data using the SPEM model, using different machine
learning classifiers, concerning the DenseNet121 Deep Learning Model.

Enhanced Dataset at CLAHE (Clip Limit = 4)

Cases Classifier Accuracy Precision Recall F1 AUC Time (s)

Hyper-acute

Random Forest 0.9832 0.9918 0.976 0.9838 0.9995 3.30

SVM 0.9915 0.9830 0.9945 0.9915 0.9998 0.52

Logistic Regression 0.9957 0.9914 0.9932 0.9957 0.9999 0.04

edRVFL 0.9958 0.9957 0.9958 0.9958 0.9999 0.74

Acute

Random Forest 0.9716 0.9534 0.9896 0.9711 0.9961 42.73

SVM 0.9930 0.9931 0.9930 0.9930 0.9997 24.74

Logistic Regression 0.9922 0.9919 0.9919 0.9919 0.9994 0.42

edRVFL 0.9933 0.9933 0.9933 0.9933 0.9994 2.46

Sub-acute

Random Forest 0.9509 0.9398 0.9630 0.9512 0.9918 2.07

SVM 0.9754 0.9639 0.9876 0.9756 0.9993 0.31

Logistic Regression 0.9755 0.9753 0.9753 0.9753 0.9986 0.03

edRVFL 0.9816 0.9817 0.9816 0.9817 0.9988 0.45

Chronic

Random Forest 0.9736 0.9649 0.9892 0.9769 0.9980 8.36

SVM 0.9959 0.9928 0.9941 0.9964 0.9999 1.83

Logistic Regression 0.9959 0.9928 0.9976 0.9964 0.9997 0.06

edRVFL 0.9980 0.9980 0.9980 0.9980 0.9999 1.02

In sub-acute stroke analysis, edRVFL had the top accuracy of 0.9816, with a quick
0.45 s processing time. SVM and logistic regression both notched accuracies of 0.975, with
logistic regression being the fastest at 0.03 s, slightly edging out SVM’s 0.31 s. Random
Forest was less accurate (0.9509) but maintained efficiency with a 2.07 s processing time.

In chronic stroke analysis, classifier performance notably improved. The edRVFL
classifier achieved an impressive accuracy of 0.9980 with a processing time of 1.02 s. SVM
and logistic regression both recorded accuracies of 0.9959, with SVM slightly less time-
efficient at 1.83 s, compared to logistic regression’s swift 0.06 s. Random Forest, although
the least accurate at 0.9736, maintained a quick processing time of 8.36 s.

3.3. Insights from Ablation Study

The results of the ablation study, as summarized in Table 3, provide valuable insights
into the significance of each model within the ensemble for stroke diagnosis.

The results indicate that DenseNet121 plays a crucial role in contributing to the overall
performance metrics of the ensemble model. DenseNet121 significantly enhances the final
performance when included in the ensemble, as evidenced by the high accuracy scores
achieved in both the hyper-acute and acute stages. In particular, DenseNet121 achieved
the highest accuracy scores of 0.9958 and 0.9933 for the hyper-acute and acute stages,
respectively, surpassing the performance of the baseline model.

Moreover, removing DenseNet121 from the ensemble resulted in a significant de-
crease in performance across all stages, highlighting its substantial impact on the overall
effectiveness of the model.

However, while the customized CNN architecture achieves the best result for the
sub-acute stage, it does not perform as well as DenseNet121 in other stages. Interestingly,
the combination of CNN and DenseNet121 in the ensemble resulted in the highest accuracy
for the chronic stage, showcasing the complementary strengths of these two architectures
when used together.
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Table 3. Comparative ablation study results for stroke diagnosis model configurations.

Cases Experiment Accuracy Precision Recall F1 Score AUC

Hyper-acute

Baseline Model 0.9923 0.9922 0.9923 0.9923 0.9998

Ensemble of CNN, VGG16 0.9906 0.9905 0.9906 0.9906 0.9996

Ensemble of CNN, DenseNet 0.9936 0.9935 0.9936 0.9936 0.9999

Ensemble of VGG16, DenseNet 0.9927 0.9926 0.9928 0.9927 0.9998

CNN 0.9912 0.9911 0.9911 0.9911 0.9998

VGG16 0.9898 0.9896 0.9898 0.9897 0.9996

DenseNet121 0.9958 0.9957 0.9958 0.9958 0.9999

Acute

Baseline Model 0.9925 0.9926 0.9925 0.9925 0.9994

Ensemble of CNN, VGG16 0.9924 0.9925 0.9925 0.9925 0.9992

Ensemble of CNN, DenseNet 0.9932 0.9931 0.9931 0.9931 0.9994

Ensemble of VGG16, DenseNet 0.9926 0.9925 0.9926 0.9926 0.9993

CNN 0.9928 0.9929 0.9929 0.9929 0.9994

VGG16 0.9922 0.9921 0.9921 0.9921 0.9992

DenseNet121 0.9933 0.9933 0.9933 0.9933 0.9994

Sub-acute

Baseline Model 0.9855 0.9854 0.9854 0.9854 0.9988

Ensemble of CNN, VGG16 0.9871 0.9871 0.9872 0.9872 0.9989

Ensemble of CNN, DenseNet 0.9878 0.9877 0.9876 0.9877 0.9991

Ensemble of VGG16, DenseNet 0.9872 0.9871 0.9871 0.9871 0.9987

CNN 0.9932 0.9934 0.9933 0.9933 0.9991

VGG16 0.9811 0.9812 0.9811 0.9811 0.9989

DenseNet121 0.9816 0.9817 0.9816 0.9817 0.9988

Chronic

Baseline Model 0.9961 0.9962 0.9963 0.9963 0.9998

Ensemble of CNN, VGG16 0.9952 0.9951 0.9951 0.9951 0.9996

Ensemble of CNN, DenseNet 0.9981 0.9982 0.9981 0.9981 0.9998

Ensemble of VGG16, DenseNet 0.9975 0.9976 0.9976 0.9976 0.9997

CNN 0.9978 0.9979 0.9978 0.9978 0.9998

VGG16 0.9916 0.9915 0.9915 0.9915 0.9993

DenseNet121 0.9980 0.9980 0.9980 0.9980 0.9999

Based on these findings, only DenseNet121 was used in our proposed architecture.
This decision is motivated by its superior performance across different stages and the desire
to streamline the model architecture, thus avoiding unnecessary computational overhead
and reducing processing time.

It is worth noting that all experiments were conducted on enhanced datasets uti-
lizing contrast limited adaptive histogram equalization (CLAHE) with a clip limit of 4.
Additionally, the final classification was performed using the enhanced discriminative
random vector functional link (edRVFL) algorithm, ensuring robustness and accuracy in
the diagnosis of ischemic brain strokes.

3.4. Hybrid Model’s Validation in Clinical Setting

Table 4 presents a comparison of hierarchical clustering’s performance on raw versus
SPEM-enhanced stroke images using the edRVFL model. For hyper-acute stroke images,
accuracy increased from 0.876 in the raw dataset to 0.933 with SPEM enhancement, demon-
strating clear accuracy benefits for hyper-acute cases. In acute stroke images, accuracy
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improved from 0.881 with no enhancement to 0.948 post-SPEM application, underscoring
the value of image enhancement in acute stroke classification.

Table 4. Comparative performance evaluation of hierarchical clustering on raw stroke images and
images enhanced with the use of hybrid edRVFL model.

Accuracy
Time (s)

Hyper-Acute Acute Sub-Acute Chronic

Original
without enhancement 0.876 0.881 0.927 0.928 0.2922

SPEM
at

CLAHE = 4
0.933 0.948 0.974 0.982 0.2550

Sub-acute stroke images saw a marked accuracy increase from 0.927 in the original to
0.974 with SPEM enhancement, indicating the technique’s effectiveness in sub-acute cases.
Chronic stroke images experienced the most significant accuracy boost, from 0.928 in the
raw dataset to 0.982 with enhancement, highlighting SPEM’s role in accurately classifying
chronic strokes.

3.5. Hybrid Segmentation Model

Results in Table 5 indicated the success of a hybrid segmentation method combining
MEDSAM and YOLOv5, validated with clinical data from the Palestinian healthcare system.
The results indicated the hybrid model’s segmentation efficiency using Dice similarity
coefficients (DSCs), comparing original and SPEM-enhanced data. Original data showed
moderate to high segmentation efficiency across stroke types, with DSCs ranging from 0.7
to 0.96, the highest being for chronic strokes. SPEM enhancement significantly improved
DSCs for acute, hyper-acute, and sub-acute strokes to 0.91, 0.92, and 0.98 respectively.

Table 5. The efficiency of the hybrid segmentation model based on Dice similarity coefficients (DSCs)
estimation compared to MedSAM.

Stroke Level Dice Similarity Coefficient
(MedSAM)

Dice Similarity Coefficient
(SPEM)

Acute 0.7 0.91

Hyper-acute 0.71 0.92

Sub-acute 0.8 0.92

Chronic 0.96 0.98

Results in Figure 3 reveal that the hybrid segmentation method, especially with SPEM-
enhanced data, excels in accurately identifying stroke lesions in CT scans. The noticeable
boost in Dice similarity coefficients (DSCs) for hyper-acute, acute, and sub-acute strokes
highlights the significant role of image enhancement in increasing lesion detection accuracy
for these stroke types. On the other hand, for chronic strokes, the unenhanced original
data yielded marginally superior outcomes, indicating that SPEM’s effectiveness may differ
based on the stroke’s nature and features.
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4. Discussion

This study successfully demonstrates the potential of a HEDL model, empowered by
image enhancement, for improving brain stroke detection and classification in clinical appli-
cations. This model leverages the complementary strengths of diverse architectures, notably
DenseNet 121 and ensemble deep random vector functional link (edRVFL) networks, to
achieve high accuracy across different stroke types. Furthermore, the integration of the
SPEM image enhancement technique significantly elevates the model’s performance, partic-
ularly for hyper-acute and acute stroke types. These findings align with previous research
highlighting the efficacy of hybrid deep learning approaches and image preprocessing for
enhancing medical image analysis for diagnoses and classification [16,17,28].

The synergy within the hybrid model lies in the strategic combination of distinct
strengths. edRVFL networks, recognized for their robustness and interpretability in med-
ical applications [15,16], provide a reliable foundation for accurate stroke classification.
DenseNet121, known for its exceptional efficiency and speed [17], complements edRVFL
by ensuring rapid processing, a crucial factor for real-world clinical applications. This
combination empowers the model to deliver high accuracy while maintaining practical
feasibility. These findings align with other studies indicating the efficiency and robustness
of DenseNet121 in medical diagnosis and object recognition [29,30].

Secondly, this study emphasizes the remarkable impact of image enhancement on
model performance. The SPEM model, by enhancing image clarity and highlighting stroke-
related abnormalities, significantly boosts the accuracy of all classifiers across diverse
stroke types. This finding corroborates previous research advocating for the importance
of image preprocessing and enhancement in boosting the accuracy and reliability of deep
learning models in medical image analysis [5,6,8,31]. Notably, the accuracy improvement
was most noticeable for hyper-acute, acute, and sub-acute stroke cases, suggesting that
image enhancement may be particularly beneficial for these challenging categories.

The hybrid segmentation model, integrating MedSAM and YOLOv5, further strength-
ens the model’s capabilities by enabling accurate lesion detection and visualization. This
approach, combining the object detection ability of YOLOv5 with MEDSAM’s lesion seg-
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mentation expertise, achieved high accuracy in identifying stroke lesions, particularly in
acute and hyper-acute cases. This aligns with prior studies demonstrating the effectiveness
of hybrid segmentation models for medical image analysis tasks [9,14,32].

Therefore, this study demonstrates the efficacy of a hybrid deep learning model with
image processing for superior stroke detection and classification in clinical settings. The
model’s high accuracy and operational efficiency, particularly through the hybrid prediction
method, indicate its readiness for clinical use. The SPEM image enhancement technique
boosts the precision of classifiers in identifying ischemic strokes, especially in hyper-acute
and acute cases.

The integration of MEDSAM and YOLOv5 further improves accuracy, especially in
acute and hyper-acute strokes.

5. Limitations

Despite these promising results, some limitations necessitate further investigation.
First, the model requires validation and testing on larger and more diverse datasets to
ensure generalizability and robustness. Second, enhancing the model’s interpretability
would provide valuable insights into its decision-making process and build trust among
clinicians. Finally, seamless integration with existing clinical workflows is crucial for
successful real-world implementation. Addressing these limitations will promote the
real-world deployment of this model, enabling more accurate and efficient brain stroke
diagnosis and management, and thus better care and quality of life for stroke patients.

6. Conclusions

This study highlights the potential of a hybrid ensemble deep learning model with
image enhancement for improved brain stroke detection and classification in clinical ap-
plications. The model’s high accuracy and efficiency, coupled with the effectiveness of
the hybrid segmentation approach, suggests its potential for clinical adoption. The study
demonstrates the effectiveness of the SPEM image enhancement technique in significantly
improving the accuracy of machine learning classifiers for predicting ischemic strokes.
Before enhancement, SVM, logistic regression, and edRVFL showed promise in accuracy
and processing times. However, after enhancement, accuracy levels notably increased,
particularly for hyper-acute and acute strokes. edRVFL and logistic regression consistently
achieved high accuracy with low processing times, making them practical choices. SVM
maintained high accuracy but required a slightly longer processing time, while random
forest offered a balance between accuracy and speed. These results emphasize the potential
of image enhancement methods for enhancing stroke prediction models and improving
early diagnosis and treatment. This study encourages further research in this field to benefit
healthcare professionals and patient outcomes.
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