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Batenburg, K.J. Reducing Manual Annotation Costs for Cell Segmentation by Upgrading Low-Quality
Annotations. In Proceedings of the Workshop on Medical Image Learning with Limited and Noisy Data,
Vancouver, BC, Canada, 13 October 2023; Springer: Cham, Switzerland, 2023; pp. 3–13.

Abstract: Deep-learning algorithms for cell segmentation typically require large data sets with
high-quality annotations to be trained with. However, the annotation cost for obtaining such sets
may prove to be prohibitively expensive. Our work aims to reduce the time necessary to create
high-quality annotations of cell images by using a relatively small well-annotated data set for training
a convolutional neural network to upgrade lower-quality annotations, produced at lower annotation
costs. We investigate the performance of our solution when upgrading the annotation quality for
labels affected by three types of annotation error: omission, inclusion, and bias. We observe that
our method can upgrade annotations affected by high error levels from 0.3 to 0.9 Dice similarity
with the ground-truth annotations. We also show that a relatively small well-annotated set enlarged
with samples with upgraded annotations can be used to train better-performing cell segmentation
networks compared to training only on the well-annotated set. Moreover, we present a use case where
our solution can be successfully employed to increase the quality of the predictions of a segmentation
network trained on just 10 annotated samples.

Keywords: annotation enhancement; annotation errors; cell segmentation; deep learning

1. Introduction

Deep-learning algorithms have been providing effective solutions for many tasks,
contributing to the advancement of domains such as speech recognition [1] and computer
vision [2]. One important computer vision task that is being tackled with such algorithms is
image segmentation [3], a process that labels each pixel into categories, e.g., background and
various cell types. However, deep-learning models require large quantities of annotated
data for training. In addition, the provided annotations should also be of high quality.
Specifically, the annotations should be accurate by providing information that reflects the
reality within the input, and be complete, meaning that they provide all the information
required for the given task, e.g., all pixels from an image have an associated label in a
segmentation task.

For many biomedical imaging tasks, including cell imaging [4], the annotations are cre-
ated manually by domain experts. Due to the limited availability of experts, the annotation
process is often tedious [5], limiting the capacity for annotating the large quantities of data
required by deep-learning algorithms. As a result, the general adoption of deep learning for
such specialized domains may be considerably hindered. An annotation process with fewer
quality constraints could significantly reduce the burden on expert annotators, enabling
them to produce annotated images within a shorter time frame. For instance, when creating
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segmentation masks, the boundary of every cell in the image has to be carefully delineated.
By providing coarser delineations, only annotating a subset of all cells, or relying on auto-
matic but inaccurate segmentation tools based on classical image processing, a much faster
annotation process can be achieved. However, training directly on low-quality annotations
harms the performance of cell segmentation deep-learning algorithms [6]. Thus, it becomes
apparent that a solution that leverages inaccurate annotations to expand costly training
data sets can greatly benefit the adoption of deep learning for cell segmentation.

Learning from imperfect or missing labels due to annotation constraints is a long-
standing issue associated with machine-learning tasks. In the case of cell segmentation,
obtaining large amounts of labeled data requires time-consuming efforts by experts with
specialized knowledge of the task. One field concerned with this problem is weakly-
supervised learning, where the aim is to train deep-learning algorithms to produce com-
plete segmentation masks by only providing the models with partial annotations. Such
techniques usually vary in the amount of information that is present in the annotations,
which can include bounding boxes [7], rough sketches of shape contours [8], geometrical
shape descriptors in the form of center points and lines [9], or partially-annotated segmen-
tation areas [10]. Despite their promising results, these techniques are generally tailored
towards a single type of inconsistency, which can limit their applicability.

Directly accounting for labelling errors, implicit consistency correction methods com-
pensate for inaccuracies in the annotated input during the training process by, for in-
stance, reducing the influence of gradients coming from segmentation areas of lower confi-
dence [11], by using a teacher–student architecture [12] to change the label of less confident
areas in the annotation mask [13], or by using adversarial training to only annotate high-
confidence areas of unlabeled data [14]. On the other hand, explicit consistency correction
solutions provide fine adjustments to the output of trained deep-learning models [15–18].
Similarly to weakly supervised techniques, these methods lack a broad applicability and
their utilization depends rigidly on custom architectures. When it comes to improving
the provided labels, Yang et al. [19] developed a solution for iteratively adjusting the
manual annotations of retinal vessels by employing generative adversarial networks. Their
framework, however, only produces small adjustments, relies on a relatively large amount
of high-quality annotations, and may suffer from the challenges associated with generative
models, e.g., mode collapse and convergence failure [20].

Also concerned with annotation scarcity, few-shot segmentation aims to segment new
query images by leveraging information from relatively few support images with a limited
amount of annotations. However, these approaches generally require additional training
tasks with a large set of semantic classes [21,22] whose annotations can be costly to obtain.
The need for manual annotations can also be avoided by employing general foundation
models such as the Segment Anything Model (SAM) [23], or cell-specific models such as
Cellpose [24]. However, although the applicability of such models is not confined to a
single image modality or cell type, they do not generalize well to images outside their
vast training pool. For instance, the SAM is not accurate when the targets have weak
boundaries [25], which can be the case with cell images [26], whereas Cellpose is sensitive
to variations in the texture of the objects [24]. This may make these general solutions less
suitable than techniques trained for a specific cell type.

In summary, although there are many methods designed for improving deep-learning
segmentation with incorrect or incomplete labels, these solutions generally tackle specific
types of inconsistencies, e.g., boundary uncertainty, require custom architectures or training
schemes, or have considerable annotation requirements for additional training tasks. In
this paper, we present a method designed to be applied to a wide set of inconsistencies,
with low data requirements and a flexible training scheme allowing for a straightforward
integration in other pipelines. We propose a framework for effectively obtaining large
amounts of high-quality training data with limited required human annotation time for
the task of cell segmentation. Our approach is based on manually annotating a small
training set of high quality, which we then enlarge with a much larger set with low-quality
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annotations (possibly produced with considerably less human effort). In order to leverage
the low-quality annotations, we train a convolutional neural network to learn the mapping
for upgrading a low-quality annotation to a high-quality one by presenting it with both
high-quality annotations as well as low-quality versions of these annotations. We create
multiple types of erroneous annotations by perturbing the high-quality annotations with a
function that approximates potential errors resulting from a low-quality annotation process.
Moreover, we show that this perturbation function does not need to exactly replicate the
annotation errors present in the low-quality annotations in order for a good mapping to
be trained. The training process requires pairs of the perturbed annotations with their
corresponding images as input for the upgrade network with the unperturbed, high-quality
annotations as targets. We apply the learned mapping to the large low-quality set to
enhance its annotations. Finally, we combine the initial small set of well-annotated data
together with the larger set with upgraded annotations and use them for training accurate
deep-learning models for the task of cell segmentation. By separating the inconsistency
correction step, i.e., the upgrading of annotations, from the segmentation step, we enable
our framework to tackle a wide array of inconsistencies and we facilitate its integration
into other segmentation pipelines.

This paper is an extended version of our paper published in [27]. We extend our
previous version by:

1. Providing a formal introduction of the perturbations used throughout the experiments
together with illustrative examples;

2. Adding extensive experiments to further evaluate (i) the training requirements of the
upgrade network, (ii) the effect of inconsistencies in the annotations of the high-quality
data set, (iii) the trade-off between annotation cost and segmentation performance
when upgrading the low-quality annotations, (iv) the performance of segmentation
networks based on the annotation quality;

3. Adding comparisons with related solutions;
4. Adding experiments on complex RGB cell segmentation data sets;
5. Expanding the discussion by elaborating on the potential consequences of our obser-

vations and scenarios under which our framework can contribute the most.

2. Materials and Methods
2.1. Data Sets
2.1.1. Synthetic Data

We opted to use synthetic data to study most aspects of our method since their
ground truth annotations do not suffer from the inconsistencies a human annotator may
induce. Thus, we can be confident that such external factors do not influence the outcomes
of our experiments. Also, to isolate the effect of a particular type of inconsistency in
the low-quality set, we apply perturbation functions (see Section 2.2.3) throughout the
experimentation with synthetic data. We employ three data sets [28], which consist of
microscopy images of HL60 nuclei cells, granulocytes, and both cell types, respectively,
produced by a virtual microscope [29] extracted from the Masaryk University Cell Image
Collection (https://cbia.fi.muni.cz/datasets) (accessed on 15 June 2023). Each data set
consists of 30 volumes of 129 slices, each containing 565 × 807 16-bit pixels. We filtered the
volumes by eliminating the slices with empty labels, which resulted in differently sized
volumes, averaging 84 slices per volume. In addition, 25 volumes were used for training,
while 5 volumes were kept only for testing. In Figure 1, we show sample slices and their
corresponding high-quality annotations of the synthetic data sets. Since they are organized
in volumes, we want to avoid selecting high-quality annotations of adjacent slices since
such samples show little variation in their input and may be less informative when training
the upgrade network than more distant slices. Consequently, we sample by subdividing a
volume into a number of sections equal to the number of slices we want to select. We then
select the middle slice of each section, thus ensuring an equidistant separation between
slices. Additionally, when we sample from multiple volumes, we similarly partition each

https://cbia.fi.muni.cz/datasets
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volume, but we select every next slice from a section belonging to a different volume in a
circular manner. For instance, when taking a total of 5 slices from 5 volumes, the first slice
will be selected from the center of section 1 from volume 1, the second from section 2 of
volume 2 and so on.

(a) HL60 (b) Granulocytes (c) Combined

Figure 1. Sample slices and their corresponding high-quality annotations for the synthetic data sets
we considered for analysis. The slices are produced with a virtual microscope [29].

2.1.2. Real Data

We also employ two manually-annotated data sets: the EPFL Hippocampus data
set [30] and a large-scale data set for colonic nuclear segmentation called Lizard [31]. The
EPFL data set is comprised of a training and a testing volume, each containing 165 slices
of 768 × 1024 8-bit grayscale pixels. This set of images, obtained using focused ion
beam scanning electron microscopy, is commonly used for benchmarking mitochondria
segmentation algorithms, whose monitoring can provide, for instance, insights into the
development of neurodegenerative diseases [32]. The Lizard data set contains histology
RGB images of colon tissue of varying sizes with instance labels for each cell. Among the six
cell types annotated in this data set, we selected the most prevalent category, i.e., epithelial
cells, as our target and the remaining cells as background objects. This choice allows us to
test our method on the largest number of samples, which ensures that we obtain the most
statistically significant results. We split the images into 500 × 500 patches, with 100 pixels
overlapping between patches and removed patches that did not contain epithelial cells.
We partitioned the resulting set into 1209 training and 288 testing patches. In this case,
we assume the corresponding provided ground-truth annotations to be of high quality.
For each data set, we select a small subset of samples for which we keep the high-quality
annotations while perturbing the annotations of the remaining samples to generate the
low-quality set. This perturbation step is performed only once per annotated image.

2.2. Method

In Figure 2, we illustrate an overview of our method. We consider a high-quality
annotation process that produces labels in a slow and costly manner and a low-quality
annotation process, yielding labels faster and cheaper. Within a given time frame, the
processes would generate a small data set with high-quality labels and a larger lower-
quality set. We apply perturbations to the well-annotated labels and we use the perturbed
labels together with their corresponding images as input to train an upgrade model. We
employ the upgrade model to enhance the labels of the larger data set, which we use in
conjunction with the well-annotated samples to train the final segmentation model.



J. Imaging 2024, 10, 172 5 of 18

Discover the world at Leiden University

LQ
labels

HQ
labels

upgrade model

upgraded
labels

HQ
labels

DATA

no
labels

segm
entation training

slow & costly
HQ labeling

fast & cheap
LQ labeling

perturb

train

pair

Figure 2. Workflow. We train the upgrade model on a small set with high-quality labels. We apply
the trained model to upgrade the low-quality labels of a larger set. We enlarge the initial high-quality
set with the upgraded labels and we use the combined set for segmentation training.

2.2.1. Background

We apply our framework to the segmentation task of 2-dimensional vector-valued
(e.g., RGB, grayscale) images. In this paper, we define an image as a matrix of pixels
x ∈ RN×M×C, where N, M, and C represent the number of rows, columns, and channels,
respectively. The goal of segmentation is to create a mapping from a given input x to the
target y ∈ ZN×M in order to provide a separation between the different entities within that
image. Essentially, a label is attributed to each pixel according to the entity that it belongs
to. When using deep learning for image segmentation, this mapping is approximated using
convolutional neural networks (CNNs), fδ : RN×M×C → RN×M, which require a set of
image-target pairs X = {(x1, y1), (x2, y2), . . . , (xNt , yNt)}, to train their parameters, δ. The
process of training neural networks usually involves successive predictions based on the
input x and adjusting the parameters such that the loss between the predictions and the
labels is minimized. In order to achieve the desired results, the network requires well-
annotated training samples. We describe the annotation process that produced high-quality
labels as the output of the high-quality annotator,

AHQ : RN×M×C → AHQ, (1)

that receives an input image x and produces a label that belongs to the set of high-quality
annotations, AHQ, i.e., it is both complete and correct. Such an annotation can be the result
of a consensus between multiple experts or can require a slow and careful delineation
of the shape of each element in x by a single expert. Additionally, we define the set of
well-annotated images, XHQ = {(x, AHQ(x))}, needed to train the network parameters,

δ̂ = argmin
δ

∑
(x,y)∈XHQ

L( fδ(x), y), (2)

where L is a loss function. Due to their large parameter count, these models are generally
prone to overfitting and therefore require large quantities of well-annotated samples.

2.2.2. Perturbation-Removal Framework

Since producing a sufficient number of high-quality annotations may prove unfea-
sible for cell segmentation, the required annotations may be supplied via a less rigorous
annotation process. A low-quality annotation process would, for instance, result from an
individual expert who quickly produces the annotation, without spending additional time
on finer shape details or on removing ambiguities. Also, for setups that require consensus,
the label can come from a single expert, a person in training, or a non-expert, thus reducing
the annotation costs. Alternatively, the low-quality annotations can even be the product
of traditional segmentation techniques (e.g., thresholding, graph cut [33], Otsu [34]) or
machine-learning-based algorithms, removing the need for a human annotator in this
stage of the process. For instance, one easily-applicable strategy to produce low-quality
annotations is to simply train a segmentation network on the few available high-quality
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samples and then use its predictions on the remaining unannotated samples as low-quality
annotations. We define the low-quality annotator

ALQ : RN×M×C → ALQ, (3)

as a function that produces labels that are either incorrect or incomplete or both, thus, being
included in the set of low-quality annotations, ALQ.

Training solely with low-quality annotations generally leads to inaccurate results [6].
Thus, we propose a solution to enhance the quality of a larger set of low-quality annotations,
which we utilize to enlarge an initially small set of high-quality annotations. Our framework
requires a small number of well-annotated images, XHQ, together with a substantially larger
set of images and their low-quality annotations, XLQ = {(x, ALQ(x))}, with |XHQ| <
|XLQ|. We aim to enhance ALQ(x) to AHQ by finding the upgrade function

U : (RN×M×C,ALQ) → AHQ, (4)

which translates an annotation of the input image created by the low-quality annotator to
an annotation belonging to the space of high-quality annotations. In order to create both
high- and low-quality versions of annotations, we utilize a perturbation function that aims
to approximate the unknown mapping from a high-quality annotation to a low-quality one.
We handcraft function

P : AHQ → ALQ, (5)

which applies perturbations to a high-quality annotation to create an annotated image
that approximates a faster, but lower-quality, annotation process. The choice for such a
function can vary by task and data set, with implementations that can include heuristics
or even learning the perturbations from the data. In our work, we assume that we can
approximate the perturbation function, P, by implementing a custom stochastic version
of it. Additionally, we assume that the function U that maps the low-quality label to a
high-quality one is a learnable function. We employ the high-quality set to generate many
(x, P(AHQ(x))) pairs. Given the stochastic nature of our chosen perturbation function, we
can generate multiple perturbed versions of the same high-quality annotation; thus, we
only require a small number of (x, AHQ(x)) pairs. We utilize the generated pairs to train
an upgrade network, uθ , parameterized by θ, which approximates U by finding

θ̂ = argmin
θ

∑
(x,AHQ(x))∈XHQ

L(uθ(x, P(AHQ(x))), AHQ(x)), (6)

where L is a loss function. After training uθ , we apply it to our lower-quality set. In this way,
we enhance the low-quality annotations, which results in the pairs (x, uθ(x, ALQ(x))) of in-
put images and upgraded annotations. Finally, we use both the enhanced (x, uθ(x, ALQ(x)))
pairs and the initial high-quality (x, AHQ(x)) pairs as training samples for our final seg-
mentation task. Therefore, our segmentation CNN fδ will be obtained as

δ̂ = argmin
δ

( ∑
(x,y)∈XHQ

L( fδ(x), y)+ (7)

∑
(x,y)∈XLQ

L( fδ(x), u
θ̂
(x, y))).

Algorithm 1 shows the pseudocode of a segmentation pipeline that makes use of our
upgrade network. The requirements of our framework are (1) a small set with high-quality
annotations, (2) a larger set with low-quality annotations, and (3) a perturbation function.
The objective of this pipeline is to obtain the parameters δ of a well-trained segmentation
network. We initially train the upgrade network uθ only on the high-quality data XHQ,
whose labels we perturb with the previously selected perturbation function, P. We aim here
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to obtain predictions from input images and perturbed labels that match the high-quality
annotations as closely as possible. After estimating the parameters of uθ , we apply it to
XLQ, whose images and resulting upgraded annotations we employ, in conjunction with
XHQ, to estimate the parameters δ of a segmentation network.

Algorithm 1 Upgrade Framework

Require: XHQ, XLQ, P return δ
(1) Train the upgrade network uθ :
for (x, y) ∈ XHQ do

Perturb y: P(y)
Predict upgraded label: uθ(x, P(y))
Compute loss: L(uθ(x, P(y)), y)

end for
Estimate θ̂ according to Equation (6)

(2) Upgrade low-quality set and expand segmentation training data:
for (x, y) ∈ XLQ do

Upgrade low-quality label: uθ(x, y)
end for
Estimate δ̂ according to Equation (7)

2.2.3. Producing Low-Quality Annotations

We designed our method for the task of binary cell segmentation, where the object
of interest is a single type of cell. In order to apply our perturbation function, we require
the instance label of every cell in the image. Therefore, considering E cells in image x, we
define L ⊂ Z as the set of all cell instance labels, with |L| = E. Our label then becomes

ynm =

{
i, if xnm belongs to cell i ∈ L,
0, otherwise

(8)

1 ≤ n ≤ N, 1 ≤ m ≤ M.

We apply three types of perturbations (omission, inclusion, and bias), introduced in [6],
which are designed to reflect the incompleteness and inaccuracy of the cell segmentation
masks resulting from an annotation process with fewer resources. For instance, a much
shorter annotation time can be spent by using segmentation masks that only contain a
proportion of the total cells present in the image. Moreover, allowing for inconsistencies
in cell recognition in the form of inclusions can also reduce the time an annotator spends
choosing which cells to include in the segmentation mask. Finally, by eliminating the need
to provide correct cell border delineations, we can expect a boost in the annotation speed.

Omission Perturbation. We randomly select a subset of S ≤ E of cell instance labels
LS ⊆ L, whose size is chosen such that it satisfies the omission rate rω = S

E . Our
perturbation function, therefore, becomes

P(y)nm =

{
0, if xnm belongs to cell i ∈ LS,
ynm, otherwise

(9)

1 ≤ n ≤ N, 1 ≤ m ≤ M.

Inclusion Perturbation. Given an image x and Λ ⊂ Z, a set of instance labels of other
objects belonging to x (L ∩ Λ = ∅), we perform inclusion by randomly selecting a
subset ΛS ⊆ Λ of the objects, whose size S ≤ F satisfies the inclusion rate rϕ = S

F .
Hence, we apply the perturbation as
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P(y)nm =

{
j, if xnm belongs to shape j ∈ ΛS,
ynm, otherwise

(10)

1 ≤ n ≤ N, 1 ≤ m ≤ M.

Bias Perturbation. We model the inconsistency in border delineation by performing
morphological operations [35] on the cell labels. We employ dilation operations, D, to
enlarge the cell area and erosion operations, E, to shrink the cell area. The operation is
randomly chosen and the impact of the operation is controlled by factor q that controls
the number of iterations, with a 3 × 3 all-ones matrix as the fixed structural element,
for which we perform the chosen operation. This bias severity constant, randomly
picked between 1 and qmax, indicates the largest allowed number of iterations. As a
result, the perturbation is formed either as

P(y) = Eq(y) or P(y) = Dq(y). (11)

where Eq and Dq denote q iterations of erosion and dilation, respectively.

Given the relatively ill-defined distinction between low-quality and high-quality
annotations, we will further consider as low-quality annotations only the ones affected
by large degrees of perturbations, i.e., 70% omission, 70% inclusion, a bias of 6, or a
combination of perturbations. Thus, we only consider as low-quality the annotations that
significantly diverge from the gold standard. In Figure 3, we illustrate an example of an
annotation where all three perturbation types are present and highlighted. Alternatively,
we investigate the case where the low-quality annotator ALQ would not imply any human
effort. This can happen when ALQ are produced by a segmentation network trained on
the small number of samples in the high-quality set AHQ. In this case, the generation
of low-quality annotations is disentangled from the perturbations that we apply when
training the upgrade network.

2.3. Experimental Setup

We designed our experimental setup around a PyTorch [36] implementation of UNet [37].
UNet features an encoder–decoder architecture with skip connections between the encoding
layers and the decoding layers of the same spatial resolution. We employed 4 convolutional
blocks in the encoder and 4 in the decoder, with a block containing 2 convolutional and
2 batch normalisation layers. We treat both the segmentation and upgrade tasks as binary
pixel-wise classification tasks. Thus, the output of the network in both cases is a two-
channel image with the first channel’s pixels being 0 if they belong to the foreground and 1
if they belong to the background, with the opposite holding true for the second channel.
All activations between layers are ReLU functions, with the exception of the last layer,
where the output is processed by a soft-max function. We train the network until there
is no improvement in the validation score for 10 consecutive epochs, at which point we
only keep the model with the highest score. Our loss function is the Dice loss, and we
update the network’s parameters according to ADAM optimization algorithm [38], with a
learning rate of 10−5 and a batch size of 4. We partition our data into training and testing
with an additional 80/20 split of the training data into training and validation. Finally, we
present our results by reporting the Sørensen–Dice coefficient computed over the entire
test set and averaged over 5 runs. We validated our comparisons by using the Wilcoxon
non-parametric test [39].
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(a) Input image (b) HQ annotation (c) LQ annotation

(d) Omission (e) Inclusion (f) Bias

Figure 3. An example of the perturbations applied to the high-quality annotations. Figure
(a) presents an input image from the combined data set, where the HL60 cells are the target cells and
the granulocytes are the included cells. The high-quality annotation corresponding to the input is
shown in (b). The low-quality version of the annotation shown in (c) is affected by 50% omission,
50% inclusion, and a bias of 6. The omission perturbation is represented by the orange omitted cells
in Figure (d), inclusion by the red shapes in (e), and bias by the magenta contours in (f).

3. Results

We performed a series of experiments to analyze various aspects of our proposed
framework. In Section 3.1, we use the synthetic data sets with objective ground truth to
measure the quality gain of upgraded annotations under various sets of assumptions. On
the same data sets, we also evaluate the benefits of expanding the segmentation training
data with upgraded annotations in terms of segmentation performance and annotation cost
(Section 3.2). Furthermore, in Section 3.3, we validate our previous observations on real
manually-annotated data. Lastly, we show, in Section 3.4, a case study of an application
where our solution can be integrated to improve the prediction quality of a segmentation
network trained with insufficient samples.

3.1. Analysis of the Upgrade Network

To assess the optimal training set size for the upgrade network uθ , we created various
training sets by varying both the total number of annotated slices and the number of vol-
umes from which the annotated slices were selected. The models were trained to upgrade
annotations affected by 70% omission, 70% inclusion, and a bias of 6, respectively. The
results presented in Figure 4 show that the upgrade network requires just 5 well-annotated
slices to improve the quality of the annotations, regardless of the applied perturbation. We
also notice that the resulting quality of the upgraded annotations plateaus quickly to Dice
values > 0.9. We report the optimal number of training slices for different perturbations
together with the corresponding Dice score of the upgraded annotations in Table 1.
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Figure 4. The Dice similarity with the ground truth test set of the upgraded annotations as a function
of the total number of slices used for training and the number of volumes from which the slices
were selected for the HL60 cells (represented using a different color). The colored dots represent the
experimental results, while the colored dashed lines are showing the general trend of the results. The
straight dash-dotted line represents the average Dice similarity with the ground truth test set of the
perturbed annotations before the upgrade.

Table 1. The Dice similarity with the ground truth test set of the annotations affected by perturbation
and the upgraded annotations, as well as of the predictions produced by segmentation networks
trained only on the high-quality data, on the high-quality data together with the data with upgraded
annotations, and the results of using thresholding as baseline. In each row, the largest value is
highlighted in bold. The training setup indicates the data set on which the upgrade network was
trained, as well as the total number of slices used for training and the number of volumes from which
the slices were selected. The cell types marked with an asterisk were obtained from the combined
synthetic data set.

Training Setup
for Upgrade Network

Quality of
Training Annotations

Quality of
Segmentation Network

Training Data

Perturbation Data Vols. Slices LQ Upg. HQ HQ + upg. HQ + LQ LQ only Thrs.

70% omission
HL60 10 10 0.462 0.939 0.823 0.929 0.311 0.311 0.887

gran. 10 80 0.495 0.92 0.892 0.894 0.41 0.414 0.732

70% inclusion
HL60 * 10 10 0.925 0.992 0.913 0.962 0.891 0.89 0.892

gran. * 10 10 0.381 0.98 0.856 0.898 0.364 0.353 0.214

bias 6
HL60 10 10 0.857 0.909 0.823 0.923 0.931 0.933 0.887

gran. 10 40 0.675 0.865 0.868 0.877 0.827 0.81 0.732

30% om. 30% inc.
bias 4

HL60 * 10 10 0.71 0.929 0.913 0.934 0.739 0.745 0.892

gran. * 10 10 0.54 0.86 0.856 0.854 0.505 0.5 0.214

So far, we assumed that we can perfectly model the errors affecting the low-quality
annotations with our perturbation functions. However, in practice, it might be difficult to
exactly match the type and severity of the perturbations present in the data. To account
for that, we relax this assumption by allowing a mismatch between the error generated
by the perturbation functions and the errors in XLQ. In Table 2, we report the effect of
such mismatch on the performance of the upgrade network when the annotations of XLQ

contain 30% omission, 30% inclusion, and a bias severity of 4, respectively. We observe that,
even when not reaching the highest Dice scores, the upgraded annotations show high Dice
scores when uθ is trained on the highest perturbation level. This implies that varying the
presence of a large proportion of the cell masks can be more beneficial for training uθ than
aiming to exactly match the amount of error present in the XLQ.

In addition to the perturbation function, another essential requirement of our solution
is the presence of a high-quality set of annotations for training uθ . Since we use synthetic
data, the quality of this set is ideal, which, however, is not expected from manual an-
notations for many reasons, including inter-observer variability [40] or limited available
resources. We model these inaccuracies by introducing moderate amounts of perturbations
into the high-quality set. Figure 5 illustrates that the upgrade networks trained on the
larger HL60 cells are robust to imperfect HQ annotations, whereas the ones trained on gran-
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ulocytes are more sensitive due to the comparatively smaller footprint of the cells. Thus,
the same amount of perturbation affects the quality of the granulocytes annotations more
drastically than that of HL60 cells. Despite allowing for a moderate amount of omission
and inclusion perturbations, the networks trained on granulocytes show a sharp drop in
performance for bias since this type of perturbation introduces the greatest variation in
shape relative to cell size among the two data sets.

Table 2. The Dice similarity with the ground truth test set of the upgraded network trained on
various degrees of perturbations. The perturbations present in the low-quality set are 30% omission,
30% inclusion, and a bias severity of 4, respectively. For each perturbation type, the highest score is
highlighted in bold.

Training Perturbation for Upgrade Network

Omission Inclusion Bias

20% 30% 50% 20% 30% 50% 2 4 6

HL60 0.955 0.972 0.952 0.973 0.972 0.986 0.915 0.918 0.926

gran. 0.838 0.86 0.93 0.984 0.98 0.981 0.821 0.837 0.884

0.1 0.2 0.30.0 0.1 0.2 0.30.0 2 4 60 <latexit sha1_base64="FixVx5rLzGH31lnu3h2glIsQn8U=">AAAB9XicbVBNTwIxEO3iF+IX6tFLIzHxRHYNUY9ELx4xkY8EkHRLFxra7trOKmSz/8OLB43x6n/x5r+xwB4UfMkkL+/NZGaeHwluwHW/ndzK6tr6Rn6zsLW9s7tX3D9omDDWlNVpKELd8olhgitWBw6CtSLNiPQFa/qj66nffGTa8FDdwSRiXUkGigecErDS/UMv6QAbQyLJOE17xZJbdmfAy8TLSAllqPWKX51+SGPJFFBBjGl7bgTdhGjgVLC00IkNiwgdkQFrW6qIZKabzK5O8YlV+jgItS0FeKb+nkiINGYifdspCQzNojcV//PaMQSX3YSrKAam6HxREAsMIZ5GgPtcMwpiYgmhmttbMR0STSjYoAo2BG/x5WXSOCt75+XKbaVUvcriyKMjdIxOkYcuUBXdoBqqI4o0ekav6M15cl6cd+dj3ppzsplD9AfO5w+OMZM2</latexit>qmax
<latexit sha1_base64="p+dxq7nE/SPAPF92uxTjnm5X62U=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2k3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzUUf2sl4z4tF+uuFV3DrJKvJxUIEejX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfja/d0rOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/9jMskNSjZYlGYCmJiMnueDLhCZsTEEsoUt7cSNqKKMmMjKtkQvOWXV0nroupdVmv3tUr9Jo+jCCdwCufgwRXU4Q4a0AQGAp7hFd6cR+fFeXc+Fq0FJ585hj9wPn8AaFeQOQ==</latexit>r�
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Figure 5. The Dice similarity with the ground truth test set of the upgraded annotations as a function
of the perturbation level present in the high-quality training set of the upgrade network. The vertical
bars correspond to the standard deviation of the results.

We compare our solutions with works tackling the issue of training biomedical image
segmentation models with imperfect or incomplete annotations. We selected techniques
that employ full-size segmentation masks for training and that apply corrections to these
masks to either fill incomplete areas or remove incorrect ones. Also, although we compare
the selected methods for all our perturbation types, it is important to note that Partial
Labeling [10] was designed for setups closer to omission than the other perturbations,
whereas Confident Learning [13] tackles uncertain areas at the border of the masked areas
resembling more our bias perturbation. In Table 3, we observe that our method generates
comparable results with Partial Labeling for omission and Confident Learning for bias
perturbation. However, among all three perturbation types, our framework performs
consistently better than the other solutions, showing wider applicability to different types
of inconsistency.

Table 3. The Dice similarity with the ground truth test set of the predictions produced by three
different segmentation networks designed for training with incomplete/noisy annotations. The
models were trained on 10 volumes of the combined set of HL60 and granulocytes with the HL60
cells as the target cells. The upgrade network of our method was trained using 20 well-annotated
slices, which were also included in the training set of the other two methods. For each perturbation,
the highest score is highlighted in bold.

Perturbation

Method 70% Omission 70% Inclusion Bias 6

Partial Labeling [10] 0.906 0.859 0.803

Confident Learning [13] 0.381 0.888 0.947

Ours 0.923 0.962 0.916
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3.2. Segmentation Improvements

In Section 3.1, we investigated the capability of the upgrade network to improve the
quality of annotations affected by errors. In this section, we are analyzing whether adding
the upgraded annotations to the training set results in improved segmentation performance
and reduced overall annotation costs. In Table 1, we report different scenarios under which
XHQ and XLQ can be used to train networks for segmentation. Given an initial data set
with low-quality annotations, we can use it directly as a training set for segmentation (LQ
only column in Table 1). We can also spend additional resources on improving the quality
of a small number of annotations and utilize them in conjunction with the low-quality set
(column HQ + LQ) or we can employ the high-quality set alone for training (column HQ).
Finally, we can use our framework for upgrading the low-quality annotations and, together
with XHQ, forming a larger training set of improved quality for the segmentation network
(column HQ + upgraded). In order to ensure that the synthetic data cannot be easily
segmented based on the pixel intensity levels, we use as baseline a simple thresholding
solution in which the input images are segmented by selecting a threshold via grid search
with a step of 1% of the maximum pixel intensity. For each data set, we select a single
threshold that yields the highest Dice score on the training set. The low baseline results in
Table 1 reflect the complexity of the simulated data sets. Our results show that, for most
cases where uθ improved the quality of annotations, the addition of samples with upgraded
annotations translated into a higher segmentation performance of the final segmentation
network on the test data.

From Table 1, we observed that adding the upgraded annotations to the training set
results in better segmentation. However, this performance gain resulted from upgrading
a large number of low-quality annotations, which may also prove difficult to produce in
practice. To account for this, we perform an experiment analyzing the trade-off between
annotation cost and performance. For a fixed number of slices, we select 10% of them to
have high-quality annotations, while the rest have low-quality annotations. We apply our
framework to this set of slices and compare against segmentation networks trained with
low-quality annotations, i.e., 0% high-quality slices, and against segmentation networks
trained on high-quality slices only, i.e., 100% high-quality slices. We define the annotation
cost as the equivalent number of low-quality annotations that would be produced with the
same effort as a given annotation. For instance, for a low-quality annotation, the equiv-
alent number of low-quality annotations is 1, while for a high-quality annotation, this
number will differ depending on the particularities of the task, such as the data sets or
the experience of the annotators, as is the case with works comparing annotation costs
in the literature [41,42]. For illustration purposes, we consider the equivalent number of
low-quality annotations for a high-quality annotation to be 5. We observe in Figure 6 that,
except for bias perturbation, the segmentation networks trained with our framework are
the most cost-effective option for reaching the highest Dice scores. When it comes to bias,
the variation in cell size induced in the training set with low-quality annotations forces
the network to learn an “average” cell size that matches more closely the ground truth in
the test set. However, in cases where the bias is more systematic, we expect a considerable
drop in performance for the networks trained only with low-quality labels.

3.3. Enhancing Manual Annotations

In Section 3.1, we showed that the upgrade network is able to improve low-quality
annotations of synthetic images under various circumstances. Here, we expand our analysis
by validating our observations on real cell images. We integrate the two described real data
sets in a scenario emulating the process experts may undertake to enhance the quality of
their annotations. Our goal is to assess whether the quality gains reported in Table 1 can
be similarly reproduced on real manually-annotated data. We consider a setup where the
constraints on the annotation process are accurately captured by the perturbation functions
used during the training of the upgrade network. With omission, we model an expert that
deliberately ignores most cells in an image, focusing only on 30% of them. Inclusion allows
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for the presence of other structures that, for instance, can result from using networks trained
on other cell data sets, or from foundation models. Bias would allow the annotator to either
focus on the “core” of the cell, as shown in Figure 7m,o, or on the wider cell area without
rigorously delineating the boundaries. Figure 7 shows the results of the upgrade network
trained on 24% of the training samples of EPFL, and on 20% of Lizard’s, respectively. We
notice, both qualitatively and quantitatively, that our solution can successfully upgrade
annotations affected by high perturbation levels, requiring a relatively low number of
high-quality annotations for real, more complex data sets. Also, the large quality increase
for omission and bias highlights the potential of our framework to expand the size of cell
data sets with relatively low effort for producing the low-quality annotations.
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Figure 6. The Dice similarity with the ground truth test set of the segmentation networks as a function
of annotation cost. The results in Figure (a) correspond to the HL60 data set where the low-quality
annotations suffered from 70% omission, the results in Figure (b) correspond to the combined data
set with HL60 cells as targets and 70% inclusion in the low-quality annotations, and the results in
Figure (c) correspond to the HL60 data set with a bias of 6 in the low-quality annotations.

3.4. Case Study: Upgrading Low-Quality Predictions

We showcase here an example where the upgrade network can be applied in a scenario
requiring no manual annotation cost for producing the low-quality annotations. In this
case, XHQ can be employed to train a segmentation network whose predictions can then be
further used as the cheap annotations of XLQ. We consider the predictions of a segmentation
network trained with 10 well-annotated samples of Lizard data set in a setup similar to [18].
We use the same XHQ for training our upgrade network. We opted for a set of perturbations
that would guide uθ to compensate for prediction inaccuracies that we visually assessed. At
each training iteration, we perform a 50% omission, followed by the inclusion of 10% of the
segments extracted by Felzenszwalb’s algorithm [43] to emulate missing or mispredicted
structures. We add salt and pepper noise with a 10% probability to mimic the observed
gaps in the segmented area as well as the small clusters of false positive pixels that can be
noticed in Figure 8d. Finally, the resulting label is subjected to bias perturbation with a
bias of 6 to guide the upgrade network towards better delineation of cell boundaries. The
results, shown in Figure 8, demonstrate the potential of our method to refine the predictions
of an undertrained segmentation network. We achieve a 22% improvement in the quality of
the predictions without requiring additional supervision. Moreover, by visually inspecting
the results, we notice that uθ achieves good separation between the individual shapes, a
property not captured by the Dice score metric. These delineated shapes can then be used,
for instance, to facilitate a further instance segmentation step.
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(c) Input image Lizard (d) Ground truth Lizard 
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(k) LQ annotation (l) Upgraded annotation

(o) LQ annotation (p) Upgraded annotation

Dice LQ: 0.464 Dice upgraded: 0.827 

Dice LQ: 0.872 Dice upgraded: 0.921 

Dice LQ: 0.547 Dice upgraded: 0.861 

(a) Input image  EPFL (b) Ground truth EPFL 

(e) LQ annotation (f) Upgraded annotation

(i) LQ annotation (j) Upgraded annotation

(m) LQ annotation (n) Upgraded annotation

Dice LQ: 0.491 Dice upgraded: 0.926 

Dice LQ: 0.91  Dice upgraded: 0.91 

Dice LQ: 0.851 Dice upgraded: 0.933 

Figure 7. An example of perturbations applied to the real data sets paired with upgraded annotations.
Figures (a–d) show the input image paired with its corresponding ground truth for EPFL and Lizard.
Figures (e–p) present the perturbed-upgraded annotation pairs for 70% omission, 70% inclusion,
and a bias of 6, respectively. The results below the images represent the Dice similarity between the
ground truth, the low-quality annotations, and the upgraded annotations, respectively. Both metrics
were computed on the entire test set.

(a) Input image (b) Ground truth (c) Perturbed annotation (d) LQ annotation (e) Upgraded annotation

Dice LQ: 0.5288 Dice upgraded: 0.6448

Figure 8. An example of an application where our framework can upgrade the predictions of a
segmentation network trained on insufficient data. Figures (a,b) show the Lizard input image
together with the corresponding ground truth. Figure (c) is an example of a perturbed annotation
used during the training of the upgrade network. Figure (d) shows a low-quality annotation produced
by the segmentation network with its upgraded version presented in Figure (e). The results below
the images represent the Dice similarity between the ground truth, the low-quality annotations, and
the upgraded annotations, respectively. Both metrics were computed on the entire test set.
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4. Discussion

Our results reported in Table 1 indicate that, with as few as 10 well-annotated images,
we can improve low-quality annotations to a level comparable with the gold standard. In
addition, as can be seen in Figure 4, the performance of the upgrade network relative to
the size of the high-quality data set follows a logarithmic trend. Therefore, continuously
increasing the size of XHQ will not generate meaningful improvements. By knowing the
logarithmic trend of the performance of uθ , the end user of our framework would benefit
from being able to decide more easily when enough high-quality data has been gathered
and annotated, since, once uθ performs well for a certain size of XHQ, little improvement
can be expected when the size of the training is increased. Furthermore, we showed that
the upgrade network produced positive results for all considered cell data sets. The only
requirements are a small high-quality set of annotations, a separate larger set of low-quality
annotations, and a perturbation function that can map a high-quality annotation to multiple
lower-quality versions of it, resembling the quality within the low-quality set. Since our
requirements are independent of the data set, we expect our method to also work on other
image modalities where our assumptions are met. This also applies to data collected in the
three-dimensional regime, such as tomography. In this case, our framework can be applied
on each individual slice separately.

We observed that using both the upgraded annotations of the low-quality set together
with the small well-annotated set generally results in higher segmentation scores. Moreover,
we noticed that the highest Dice scores are obtained when the upgrade model is both trained
with and applied to annotations perturbed with 70% omission, 70% inclusion, or a bias of 6.
We also saw in Figure 6 that our framework can be a cost-effective solution to increase the
performance of segmentation networks when the annotation time is a constraint. Moreover,
by comparing with other works targeting the enhancement of imperfect annotations, we
showed that our upgrade network can handle a wider variety of perturbations than existing
techniques. Thus, our solution is well-suited for being embedded into an annotation process
with limited resources, rather than for fine-tuning, where there is a wide gap between the
cost of producing a low-quality annotation and the cost of producing a high-quality one.
For instance, for automatically-produced annotations by a non-learning algorithm, the only
costly requirement would be to manually enhance a small proportion of them, on which the
upgrade network can be trained. Moreover, as shown in Figure 8, our solution is flexible
enough to be used for upgrading predictions of a network trained with insufficient data.
These upgraded predictions can then be used to enlarge the existing data set or be further
adjusted by experts, reducing the overall annotation time.

We also noticed the benefit of training for high perturbation levels, i.e., 70% omission,
70% inclusion, and a bias of 6, when we tested the robustness of our solution with respect
to discrepancies between the perturbation levels used to train the upgrade network and the
perturbation levels in the low-quality set. In Table 2, we saw that, generally, when we train
for the highest perturbation level we reach comparable, or higher, performance than when
training on the same perturbation applied to generate the low-quality set. Since, in practice,
the annotation inaccuracies can have a systematic, i.e., annotator-specific, component and a
random component, it may prove impossible to exactly model these inaccuracies through
perturbations. Thus, the robustness to discrepancies in perturbation levels shown by our
framework can indicate its potential applicability in practical scenarios. We additionally
showed that our framework is robust to reductions in the quality of XHQ. Figure 5 shows
that we can expect a relatively small drop in performance when we moderately reduce the
quality of the well-annotated set. This observation may imply that the annotation process
of XHQ can become less costly, e.g., requiring fewer experts per high-quality annotation,
while still being able to produce annotations to train a well-performing upgrade network.
However, the less information is present in an annotation, e.g., small cell areas, the more
sensitive the framework becomes to inconsistencies.

Given that we focused solely on cell segmentation, we are unable to conclude with
certainty whether or not our framework is applicable to other image segmentation appli-
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cations where the goal would diverge from the cell segmentation setup, for instance by
requiring the segmentation of a single contiguous target object. However, considering
that our framework does not demand a specific type of annotation, as long as sufficient
realistic low-quality versions of the high-quality annotations can be created with enough
variety between them, we expect the upgrade network to still be applicable. Despite this,
further experimentation is required to ensure that our requirements are met by other seg-
mentation applications. Another limitation presented by our work is the lack of integration
of the third dimension for volumetric data sets. This can be tackled in the future by, for
instance, employing an architecture with 3D convolutions as the upgrade network. Finally,
throughout our experimentation, we upgraded only annotations suffering from high lev-
els of inconsistencies, while ignoring the fine-tuning of less severe cases. We expect our
upgrade network to not perform similarly well on such cases, given that the small errors
would not allow for much variation in the generation of the low-quality versions of the
annotations. This would then impede the network from learning a generalizable mapping
from a low-quality annotation to a high-quality one.

5. Conclusions

We presented our framework for enlarging training data sets with limited human
annotation costs by only requiring a small set of data with high-quality annotations and a
larger set with low-quality annotations that would require little or no human annotation
effort. We utilize a small high-quality data set whose annotation quality is reduced for
providing it as input to an upgrade network that learns the mapping from a low-quality an-
notation to a high-quality one. We then use the upgrade network to enhance the annotation
quality of the larger low-quality set.

We observed that our solution is applicable to at least three types of annotation
inconsistencies (omission, inclusion, and bias), that it is robust to changes in the annotation
quality of the training set, and that it can have wider applicability than existing works. We
showed that our work can be applied to enhance the low-quality predictions of a network
trained on an insufficient number of samples. Finally, we showed that the networks trained
on data sets enlarged by our method present higher segmentation scores than only training
on high-quality data.
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