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Abstract: An extended four-dimensional version of the traditional Petitot–Citti–Sarti model on
contour completion in the visual cortex is examined. The neural configuration space is considered
as the group of similarity transformations, denoted as M = SIM(2). The left-invariant subbundle
of the tangent bundle models possible directions for establishing neural communication. The sub-
Riemannian distance is proportional to the energy expended in interneuron activation between two
excited border neurons. According to the model, the damaged image contours are restored via
sub-Riemannian geodesics in the space M of positions, orientations and thicknesses (scales). We
study the geodesic problem in M using geometric control theory techniques. We prove the existence
of a minimal geodesic between arbitrary specified boundary conditions. We apply the Pontryagin
maximum principle and derive the geodesic equations. In the special cases, we find explicit solutions.
In the general case, we provide a qualitative analysis. Finally, we support our model with a simulation
of the association field.

Keywords: visual cortex; contours thickness; similarity group; orientation; scale; sub-Riemannian
geodesics; optimal control

1. Introduction

A mathematical description of the functioning of the human body is a pressing problem
in the modern world. Particularly, the specification of cerebration and neuron operation
is of particular interest. In this paper, we model the visual information processing by the
visual cortex. The complete mechanism of the visual signal processing is not fully studied;
however, there is a profound understanding [1] of how image processing is carried out via
the information accumulated in light-sensitive receptors, bipolar and ganglion cells of the
eye retina. Such information includes the spatial coordinates of the image.

After the retina, the visual signal passes through LGN cells of the thalamus and arrives
in the visual cortex. The visual cortex has a multi-layered organization and consists of
billions of neural cells. Neurons are connected in a complex network, which is extremely
difficult to analyze due to the huge number of elements and even more connections between
them. The direct simulation approach to modeling such systems faces inevitable obstacles.
However, there are some fundamental principles that are used in network configuration,
e.g., the principle of minimum energy spent on establishing communication between two
excited neurons of the network. A promising direction for studying such complex systems
is to understand such principles and propose simple mathematical models based on these
principles. Further mathematical analysis of such models can deepen the understanding of
the original systems.

In [2], a mathematical model based on scale space theory was proposed to describe the
primary processing mechanism. The model is based on the properties of Gaussian kernels
and their derivatives as regularized differential operators, as well as solutions to the linear
diffusion equation. The model is supported by experimental study [3], where the shape
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of the receptive fields (RFs) of bipolar and ganglion cells was established. The authors
concluded that RFs are mathematically well approximated by filter profiles based on the
Gaussian kernel and Gaussian derivatives. Then, their functioning can be represented as
the action of a filter on the input signal (convolution of two functions).

In [4], Marr put forward the idea that retinal ganglion cells perform a convolution
capable of extracting qualitative breaks encoded in the signal. Marr also posed that higher
levels of visual processing are rooted in this first level of morphological organization of the
retinal image, which he called the 2D-primal sketch. He discovered that the convolution
of a signal with a receptive profile is a wavelet analysis of the signal, i.e., a spatially
localized multiscale Fourier analysis capable of detecting discontinuities. An alternative
transformation tool can be an internal compression of the image in accordance with its
geometric structure. There is Marr’s hypothesis that the image can be reconstructed from
its different-scale edges. This contour reconstruction is extremely accurate as only finer
details such as textures are smoothed out. In this case, a problem arises with the origin of
the breaks. Discontinuities that are robust to large-scale changes can be mistaken for the
edges of external objects. Therefore, compression of visual information, i.e., information
limitation, is identified with morphological analysis, i.e., geometric constraint.

Further research required a more comprehensive approach. Hubel and Wiesel [5]
understood the principles of the primary visual cortex V1 processing. They showed that
some parts of the brain react not only to the spatial position of the visible image, but also to
its orientation in space. They found that the receptive fields of V1 neurons were elongated
rather than rounded. This indicated the ability of V1 cells to detect contour segments with
different orientations throughout the image. Mathematically, the operation of V1 cells can
be modeled as lifting a two-dimensional input image into an expanded space of positions
and orientations.

Even though V1 is physically a two-dimensional neural layer, it implements more
than two degrees of freedom. Hubel [1] called the difference between physical and abstract
dimensions the grafting of variables. In his pioneering work [6], Hoffmann introduced
differential fiber bundles to describe the visual cortex. Here, the base of the fiber bundle
represents the retinal plane and the fibers represent the engrafted variables. Further
development of this model was performed by Petitot and Tondut [7] (see also the honorable
work [8] by Petitot). They described V1 cells as a fiber bundle equipped with a contact
structure, and the neural long-range connections were identified as integral curves in the
Heisenberg group. In their model, contour completion is carried out along integral curves
by minimizing a suitable length functional.

Petitot [8] described the biological functioning of the visual cortex V1 as a sub-
Riemannian (SR) structure on the Heisenberg group. Citti and Sarti [9] took into ac-
count the nature of the orientation angle and proposed the SR structure on the Lie group
SE(2) = R2 × SO(2). The roto-translation group SE(2) models the configuration space of
V1 neurons as the space of R2 positions and SO(2) orientations. In this model, the recon-
struction of a hidden contour occurs by minimizing the excitation energy of neurons that
perceive visual information. Such a process is interpreted as the action of the hypoelliptic
diffusion operator studied in [10–12]. Then, the reconstructed parts of the contour are the
SR length minimizers on SE(2). The exact expression of the minimizers was found in [13].
Such curves are used to render images [14] and to explain some visual illusions [15,16].

Modern computer vision is actively developing based on the principles of biological
systems. They are used for image analysis tasks such as enhancement, segmentation,
shading, and feature detection. In [17,18], the authors provided a mathematical background
for image processing in an extended space of positions and orientations. Salient lines
are tracked by SR length minimizers (see [19,20]) or by optimal trajectories in modified
models [21–24], where the spatial propagation along the minimizers is restricted to avoid
cusp points and to normalize the curvature of the detected salient lines.

The classic Petitot–Citti–Sarti model has been widely developed. It is the cornerstone
of an entire scientific direction—neuromathematics of vision [25,26]. This model was



J. Imaging 2024, 10, 185 3 of 16

modified in subsequent works by many authors (e.g., [27–35]), taking into account some
aspects of the physiology of vision and based on the needs in the field of image processing.
A recent work [36] showed an overview of different models.

The work [27] bridged the classic Petitot–Citti–Sarti model with the edge co-occurrence
statistics in natural images. The model’s applicability for the association field construction
was studied in [28], where the authors showed that the boundary conditions connected by
the SR geodesic with cuspless planar projection match the criteria of good continuation.
In [29], the authors modified the model to account for the spherical nature of the retina.
Later, in [30], this spherical model was extended by considering the non-uniform distribu-
tion of photoreceptors on the retina. A link to the well-known Bresloff–Cowan spherical
model [31] of V1 hypercolumns was studied in [32]. A link to the widely used Wilson–
Cowan equations of neural dynamics was studied in [37]. In [33], a four-dimensional
model accounting for the contour curvature was studied. In [38], the authors proposed a
five-dimensional model considering the duration and velocity of visual stimuli. Another
five-dimensional extension was proposed in [39], where orientation, frequency, and phase
selective behavior of the V1 simple cells are analyzed. Based on this model, a contour
completion method was developed in [40]. A semidiscrete modification and its application
to image processing was studied in [34].

In [35], the authors expanded their classic model by adding a scale parameter and
introducing a symplectic structure to describe the structure of neural connectivity. In the
current work, we take this model as a basis and develop it by explicitly introducing the
length functional and considering the problem of finding length minimizers between
arbitrarily specified boundary conditions.

Neurophysiological studies show that spatial hypercolumns also accumulate sec-
ondary information about the visible image, such as ocular dominance [41], contour cur-
vature [42,43], contour thickness (scale) [44], and other features. It is known that neurons
(simple cells) have different sizes in different areas of the visual cortex. Hence, from V1 to
V2, we find simple cells sensitive to objects of different scales (see, e.g., Figure 37 in [25]).
In this paper, inspired by [35], we consider a four-dimensional model, which is an exten-
sion of the classic Petitot–Citti–Sarti model by adding the contour thickness parameter.
The configuration space of neurons is interpreted as a group of similarity transformations
M = SIM(2). The left-invariant distribution [45] of the tangent subspaces models the
possible directions of establishing a neural connection. The sub-Riemannian distance is
proportional to the energy expended in interneuron activation between two excited bor-
der neurons. According to the model, the contours of the damaged image are restored
using sub-Riemannian geodesics in the space M of positions, orientations and thicknesses
(scales). This extension is also intended for image processing tasks to find salient lines
(see Figure 1), and to restore damaged image contours (see Figure 2). Image enhancement
via left-invariant evolution in the SIM(2) group is studied in [46].

Figure 1. Finding blood vessels (salient lines) in the fundus photography of the human retina.
Specifications: x, y are spatial coordinates, θ is the orientation, and κ = eσ is the thickness of lines.
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Figure 2. Restoration of image contours. From left to right: original image; corrupted image (the
damaged area is a white disc); recovering contours via the classical model (sub-Riemannian geodesics
in SE(2)); restoration via geodesics in SIM(2), taking into account the thickness of contours.

In this paper, we consider the problem of SR geodesics in SIM(2). In Section 2, we
formulate the model and state the sub-Riemannian problem. In Section 3, we prove
the complete controllability of the system and the existence of optimal controls. Then,
in Section 4, we apply a necessary optimality condition, the Pontryagin maximum principle
(PMP), and study the Hamiltonian PMP system. We obtain an explicit expression for
the abnormal geodesics and provide a qualitative analysis of the Hamiltonian system for
normal geodesics. In Section 5, we discuss the boundary value problem. In Section 6, we
provide a simulation to construct the association field using the sub-Riemannian geodesics
in our problem.

The main contributions of our research are the following:

• An optimal control formulation of the contour completion problem; see (15) and (16).
• A proof of well-posedness of the geodesic problem in M; see Theorem 1.
• An explicit expression of minimal abnormal geodesics; see Theorem 2.
• An explicit expression of a special case of normal geodesics; see Theorem 3.
• Asymptotic behavior of normal geodesics in the general case; see Theorem 4.

2. Problem Formulation

The classic works of Petitot, Citti, and Sarti [8,9] present a model of V1 as a three-
dimensional Lie group SE(2) of positions and orientations. In their model, horizontal
long-range connections between cells of V1 are represented by smooth curves adhering
to a nonholonomic constraint: the curves must be tangent to the distribution ∆̃ = Ker ω̃,
where ω̃ ∈ Λ1 SE(2) is a given left-invariant differential one-form. Through this approach,
a horizontal connection between two neurons is established based on the principle of
minimum energy spent on its creation. This leads to the natural modeling of the space V1
by the sub-Riemannian manifold (SE(2), ∆̃, g̃), where the metric g̃ specifies the distance
encoding the expended energy. According to the model, the visual system performs contour
completion (restoration of a corrupted or partially hidden from observation contour) by
finding a sub-Riemannian length minimizer between two configurations on the boundary
of the damaged area (see Figure 2).

In the consequent work [44], the same authors introduced a new variable σ and
defined a symplectic structure in the extended space SIM(2) of positions, orientations and
scales. The symplectic structure generates nonholonomic constraints for establishing a
long-range neural connection. Note that the explicit form of a metric encoding the energy
spent to create the connection was not considered in [44]. In our work, we explicitly present
this sub-Riemannian metric and formulate an optimal control problem for finding length
minimizers. In [44], the authors presented special types of integral curves with a fixed
parameter of scale or orientation, which correspond to constant controls in our model. We
are also motivated by image analysis applications, where the thickness of contours varies
during tracking (see Figure 1).

According to the model, the contour completion mechanism by V1 is invariant under
parallel translations, rotations, and scaling of the image on the retina. Such transformations
constitute the group of orientation-preserving similarity transformations on the plane
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SIM(2) =

q =

eσ cos θ − eσ sin θ x
eσ sin θ eσ cos θ y

0 0 1

 ∣∣∣∣∣∣ (x, y) ∈ R2, θ ∈ S1, σ ∈ R

. (1)

The retinal plane is a homogeneous space of the Lie group SIM(2), which acts transi-
tively on it. Thus, SIM(2) models the configuration space of simple cells V1.

Now, we explain the lifting of an observable image from the retinal plane to the group
SIM(2), which represents V1. The set of receptive profiles of V1 simple cells over a retinal
point is formed from the “mother” Gabor function (see [44]),

G(0,0)(x, y) = e−(x2+y2) cos 2y, (2)

by rotations on an angle θ, and dilations on eσ:

G(θ,σ)(x, y) = e−2σ e−(x2
θ+y2

θ) cos 2yθ , (3)

where
xθ = e−σ(x cos θ + y sin θ), yθ = e−σ(−x sin θ + y cos θ). (4)

The lifted image O(x, y, θ, σ) : SIM(2) → R+ is obtained by probing the observable
image I(x, y) : R2 → R+ on the retinal plane with a family of two parametric Gabor filters,

O(x, y, θ, σ) = (I ∗ G(θ,σ))(x, y) =
∫
R2

I(ξ, η)G(θ,σ)(x − ξ, y − η)dξ dη. (5)

A selection from all different cells in a fiber is performed by maximum response
selection

(θ̄, σ̄) = argmaxθ∈S1,σ∈R O(x, y, θ, σ). (6)

The values (θ̄, σ̄) are actual values of engrafted variables θ and σ associated with a
retinal point (x, y). Such values are used as boundary conditions for contour completion
problem that we formulate at the end of this paragraph as an optimal control problem.

Beforehand, we explain a nonholonomic constraint on a long-range (horizontal) neu-
ral connection. A horizontal connection is modeled by a smooth curve tangent to the
distribution ∆ = Ker ω, where the one-form ω ∈ Λ1 SIM(2) is given by (see [44])

ω = e−σ(− sin θ dx + cos θ dy). (7)

Notice that the distribution ∆ is given by

∆ = span(X1, X3, X4) = u1X1 + u3X3 + u4X4, ui ∈ R, (8)

where Xi are basis left-invariant vector fields on SIM(2)

X1(q) = Lq∗
∂

∂x

∣∣∣∣
Id

= eσ

(
cos θ

∂

∂x
+ sin θ

∂

∂y

)
, (9)

X2(q) = Lq∗
∂

∂y

∣∣∣∣
Id

= eσ

(
− sin θ

∂

∂x
+ cos θ

∂

∂y

)
, (10)

X3(q) = Lq∗
∂

∂θ

∣∣∣∣
Id

=
∂

∂θ
, (11)

X4(q) = Lq∗
∂

∂σ

∣∣∣∣
Id

=
∂

∂σ
, (12)

where Id is a unit element, and Lqh = qh is the left translation on SIM(2) (see Appendix A).
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By a horizontal curve, we call a Lipschitz curve tangent to ∆ at almost every point

γ(t) : [0, T] → SIM(2), γ̇(t) = u1(t)X1(γ(t)) + u3(t)X3(γ(t)) + u4(t)X4(γ(t)), (13)

where ui(t) ∈ L∞([0, T],R).
We construct the sub-Riemannian metric by requiring that X1, X3, and X4 be orthogo-

nal. Thus, the length of a horizontal curve is given by

l(γ) =
∫ T

0
∥γ̇(t)∥dt =

∫ T

0

√
u2

1(t) + α2u2
3(t) + β2u2

4(t)dt, (14)

where the parameters α > 0, β > 0 are coefficients of the sub-Riemannian metric that
encode the balance between penalties for motion in a plane along the contour and changing
its orientation and thickness. Further, for simplicity, we consider the model case α = β = 1.

Any horizontal curve γ(t) of positive length can be reparameterized by arc length
∥γ̇(t)∥ = 1 (see Lemma 3.15 in [47]). Thus, the problem of length minimization l(γ) → min
is equivalent to time-optimal problem T → min.

Finally, we formulate a contour completion problem as the optimal control problem.
Consider the following control system:

ẋ = u1 eσ cos θ,
ẏ = u1 eσ sin θ,
θ̇ = u3,
σ̇ = u4,

(x, y, θ, σ) = q ∈ SIM(2),

(u1, u3, u4) ∈ U,

U =
{
(u1, u3, u4) ∈ R3

∣∣ u2
1 + u2

3 + u2
4 ≤ 1

}
.

(15)

For given boundary conditions q0, q1 ∈ SIM(2), we aim to find the controls u1(t), u3(t),
u4(t) ∈ L∞([0, T],R), such that the corresponding trajectory q : [0, T] → SIM(2) transfers
the system from the initial configuration q0 to the final configuration q1 by minimum time:

q(0) = q0, q(T) = q1, T =
∫ T

0
dt → min . (16)

Remark 1. The problem is invariant under the left action of SIM(2) since the vector fields X1, X3,
and X4 are left-invariant. Due to this property, without loss of generality, we set q(0) = Id.

3. Existence of Solutions

When studying Problems (15) and (16), the natural question arises about the existence
of an admissible trajectory connecting boundary conditions (16). The control system is
called completely controllable if an admissible trajectory exists for any q0, q1 ∈ SIM(2). We
study the complete controllability of System (15) using the technique of geometric control
theory [48].

We have the following nonzero Lie brackets of the controlled vector fields:

[X1, X3] = −X2, [X1, X4] = −X1, [X2, X3] = X1, [X2, X4] = −X2. (17)

System (15) is symmetric with respect to the controls and it satisfies Hormander
condition (i.e., the Lie algebra of the controlled vector fields spans at every point q ∈ SIM(2)
the entire tangent space):

Lieq(X1, X3, X4) = span(X1(q), [X3, X1](q), X3(q), X4(q)) = Tq SIM(2) . (18)

By Chow–Rashevsky theorem [48], these two conditions plus connectedness of SIM(2)
guarantee complete controllability.

Existence of an optimal admissible trajectory that satisfies conditions (16) is ensured
by Filippov’s theorem [48,49]. In such a way, we proved the following theorem.
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Theorem 1. Solutions to the optimal control problems (15) and (16) exist for any boundary
condition.

4. Pontryagin Maximum Principle

The necessary condition for optimality is given by the Pontryagin maximum principle
(PMP). In this section, we apply PMP to our problem (15) and (16).

Let p ∈ T∗
q SIM(2). Define the Pontryagin function

Hu(p, q) = ⟨p, u1X1(q) + u3X3(q) + u4X4(q)⟩
= u1 eσ(p1 cos θ + p2 sin θ) + u3 p3 + u4 p4, (19)

where (p1, p2, p3, p4) are coordinates in T∗
q SIM(2) corresponding to (x, y, θ, σ) in SIM(2).

PMP states the following. Let u(t), q(t), t ∈ [0, T] be the optimal control and the
corresponding optimal trajectory. Then, there exists a Lipschitz curve p(t) such that
∑4

i=1 p2
i (t) ̸= 0 for t ∈ [0, T] (the non-triviality condition), and the following conditions

hold for almost every t ∈ [0, T]:

1. The Hamiltonian system

ṗ(t) = −∂Hu

∂q
(p(t), q(t)), q̇(t) =

∂Hu

∂p
(p(t), q(t)); (20)

2. The maximum condition

Hu(t)(p(t), q(t)) = max
u∈U

Hu(p(t), q(t)) = H(p(t), q(t)) ≥ 0. (21)

The function H(p, q) being maximized is called the Hamiltonian. This is the first
integral of the Hamiltonian system. The case H = 0 is called abnormal, and the case H > 0
is called normal. The normal case is reduced to H = 1 by time reparameterization.

The Hamiltonian system (20) in our problems (15) and (16) is given by
ẋ = u1 eσ cos θ,
ẏ = u1 eσ sin θ,
θ̇ = u3,
σ̇ = u4,


ṗ1 = 0,
ṗ2 = 0,
ṗ3 = u1 eσ(p1 sin θ − p2 cos θ),
ṗ4 = u1 eσ(−p2 sin θ − p1 cos θ).

(22)

Natural coordinates for left-invariant systems [45] are given by hi(p, q) = ⟨p, Xi(q)⟩:

h1 = eσ(p1 cos θ + p2 sin θ), h2 = eσ(p1 sin θ − p2 cos θ), h3 = p3, h4 = p4. (23)

The inverse transformation from h to p is given by

p1 = e−σ(h1 cos θ − h2 sin θ), p2 = e−σ(h1 sin θ + h2 cos θ), p3 = h3, p4 = h4. (24)

The Pontryagin function (19) is expressed in the coordinates (23) as follows:

Hu = u1h1 + u3h3 + u4h4. (25)

The Hamiltonian system (22) takes the following form in the coordinates (23):
ẋ = u1 eσ cos θ,
ẏ = u1 eσ sin θ,
θ̇ = u3,
σ̇ = u4,


ḣ1 = u3h2 + u4h1,
ḣ2 = −u3h1 + u4h2,
ḣ3 = −u1h2,
ḣ4 = −u1h1,

(26)
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with the boundary conditions

x(0) = y(0) = θ(0) = σ(0) = 0, hi(0) = hi0 ∈ R. (27)

The subsystem for the configuration variables x, y, θ, σ is called the horizontal part,
and the subsystem for adjoint variables hi is called the vertical part of the Hamiltonian system.

Remark 2. The vertical part of the Hamiltonian system (26) can be alternatively derived by
computing the Poisson brackets: ḣi = {Hu, hi} (see [47]).

In PMP formulation for Problems (15) and (16) of searching for a non-trivial (of
non-zero length) optimal curve without loss of generality, we choose the arc length param-
eterization

U =
{
(u1, u3, u4) ∈ R3

∣∣∣ u2
1 + u2

3 + u2
4 = 1

}
. (28)

Next, we consider two cases: H = 0 (the abnormal case), and H = 1 (the normal case).

4.1. Abnormal Case H = 0

The Pontryagin function is given by Hu = u1h1 + u3h3 + u4h4. Since the set of admis-
sible controls U : u2

1 + u2
3 + u2

4 = 1 is symmetric, the maximum condition H = max
u∈U

Hu = 0

is satisfied if and only if h2
1 + h2

3 + h2
4 ≡ 0. Then, the vertical part of (26) is reduced to

ḣ1 = u3h2 = 0,
ḣ2 = u4h2,
ḣ3 = −u1h2 = 0,
ḣ4 = 0,

⇒


u1 = u3 = 0,
u4 = ±1,
ḣ2 = u4h2.

(29)

The horizontal part of (26) is reduced to ẋ = ẏ = θ̇ = 0, σ̇ = u4. Taking into account
the boundary condition x(0) = y(0) = θ(0) = σ(0) = 0 leads to the following theorem.

Theorem 2. Abnormal extremal trajectories have the following form:

x(t) = y(t) = θ(t) = 0, σ(t) =
t∫

0

u4(τ)dτ, (30)

where u4(·) is an integrable function with values ±1.
Abnormal optimal trajectories parameterized by arc length have the following form:

x(t) = y(t) = θ(t) = 0, σ(t) = ±t. (31)

The expression (31) of optimal trajectories immediately follows from (30) since, in a
time-optimal problem, a motion of a system in opposite directions is not optimal. Therefore,
the sign of u4 is not changed.

4.2. Normal Case H = 1

The Pontryagin function Hu = u1h1 + u3h3 + u4h4 can be considered as a scalar product
Hu = ⟨(u1, u3, u4), (h1, h3, h4)⟩. It reaches maximum on the control set U : u2

1 + u2
3 + u2

4 = 1
when the vector (u1, u3, u4) is collinear to (h1, h3, h4) and has unit length. Note that, due to the
choice of H = 1, this implies the following relation for extremal controls:

u1 = h1, u3 = h3, u4 = h4. (32)
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The Hamiltonian system takes the form
ẋ = h1 eσ cos θ,
ẏ = h1 eσ sin θ,
θ̇ = h3,
σ̇ = h4,


ḣ1 = h3h2 + h4h1,
ḣ2 = −h3h1 + h4h2,
ḣ3 = −h1h2,
ḣ4 = −h2

1.

(33)

This system has a first integral: the Hamiltonian H. We can find more first integrals by
considering right-invariant vector fields Yi = Rq∗Ai, Rqh = h · q, and associated linear on
the fibers of the cotangent bundle Hamiltonians gi = ⟨p, Yi⟩, p ∈ T∗

q SIM(2). Among these
four right-invariant Hamiltonians, only two (g1, g2) are in involution (i.e., the Poisson
bracket {g1, H} = {g2, H} = {g1, g2} = 0) and functionally independent. Thus, we found
the following set of first integrals:

g1 = e−σ(h1 cos θ − h2 sin θ), g2 = e−σ(h2 cos θ + h1 sin θ), H = h2
1 + h2

3 + h2
4. (34)

To prove Liouville integrability, it is necessary to find four functionally independent
first integrals in involution. Three of them we found above. We could not find the remaining
first integral. Thus, the question of Liouville integrability remains open.

Now, we focus on the vertical part and describe the coadjoint orbits [50]. Consider the
Poisson bivector, which is given by a matrix P =

(
Pij

)
with the components Pij = {hi, hj}.

The structure of Poisson brackets coincides with the structure of Lie brackets (17). Thus, we
have only the following nonzero Poisson brackets:

{h1, h3} = −h2, {h1, h4} = −h1, {h2, h3} = h1, {h2, h4} = −h2. (35)

We have det P = (h2
1 + h2

2)
2; thus rank P = 0 if h2

1 + h2
2 = 0, and rank P = 4 otherwise.

In the case h2
1 + h2

2 = 0, the coadjoint orbit is zero dimensional. The explicit expression
for the extremals are given by the following theorem.

Theorem 3. For the initial covector values

h10 = h20 = 0, h2
30 + h2

40 = 1, (36)

normal extremal trajectories have the following form:

x(t) = y(t) = 0, θ(t) = h30 t, σ(t) = h40 t. (37)

They are optimal on a time interval t ∈ [0, π
h30

], when h30 ̸= 0; and up to infinity, when
h30 = 0.

Proof. The expression (37) is obtained by integration of the Hamiltonian system (33) with
the boundary conditions (27) that, due to the condition (36), is reduced to

ẋ = ẏ = 0, θ̇ = h3, σ̇ = h4, ḣ1 = ḣ2 = ḣ3 = ḣ4 = 0. (38)

Optimality for h30 = 0 holds, since the corresponding extremal trajectory is a straight
line passing at maximum speed. In the time-optimal problem, this trajectory is optimal,
since any other trajectory of the control system requires more time to reach a point on
this line.

Optimality for h30 ̸= 0 for t ∈ [0, π
h30

] holds for the same reason.
The trajectory for h30 ̸= 0 is not optimal for t > π

h30
, since it has a Maxwell point [45] at

t = π
h30

. A Maxwell point is a point where two distinct geodesics meet with the same time.
After a Maxwell point, an extremal loses its optimality. A reason for the Maxwell point in
our case is periodicity of the angle θ ∈ S1. Indeed, consider two trajectories with the initial
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values h1(0) = h2(0) = 0, h3(0) = ±h30, h4(0) = h40. They reach the same configuration
x(t) = y(t) = 0, θ(t) = π, σ(t) = h40

h30
π at t = π

h30
.

Remark 3. The abnormal optimal trajectories (31) coincide with normal optimal trajectories (37)
when h30 = 0. Thus, they are not strictly abnormal.

In the general case h2
1 + h2

2 > 0, the coadjoint orbit is four dimensional. We performed
a qualitative analysis of the Hamitonian system leading to the following theorem.

Theorem 4. Any solution to the vertical part corresponding to the initial covector h2
10 + h2

20 > 0,
h40 < 0 has the following asymptotic behavior:

lim
t→∞

h1(t) = 0, lim
t→∞

h2(t) = 0, lim
t→∞

h3(t) = h31, lim
t→∞

h4(t) = h41, h2
31 + h2

41 = 1. (39)

Proof. Let r(t) = h2
1(t) + h2

2(t). Due to system (33), we have

ṙ(t) = 2h4(t)r(t) ⇒ r(t) = e
∫ t

0 2h4(τ)dτ r(0). (40)

Now, we estimate the above integral. Due to (33), we have ḣ4(t) = −h2
1(t) ≤ 0.

Thus, the function h4(t) is non-increasing. Together with h4(0) = h40 < 0, this implies
h4(t) ≤ h40 < 0 for all t ≥ 0. Then, the integral of h4 decreases indefinitely:

∫ t
0 2h4(τ)dτ ≤

2h40t → −∞. Then, the exponential of the integral tends to zero: e
∫ t

0 2h4(τ)dτ → 0. Thus,
we proved lim

t→∞
h1(t) = lim

t→∞
h2(t) = 0. It remains to prove the asymptotic behavior of h3(t)

and h4(t). The Hamiltonian h2
1(t) + h2

3(t) + h2
4(t) = 1 implies that h4(t) is bounded from

below: h4(t) ≥ −1. The boundness and non-increasing of h4(t) implies lim
t→∞

h4(t) = h41.

The remaining statement lim
t→∞

h3(t) = h31 follows from the Hamiltonian, since h2
3(t) →

1 − h2
40.

Note that the condition h40 < 0 is technical, and we use it in the proof. Based on the
numerical experiments, we formulate the following conjecture.

Hypothesis 1. Any solution to the vertical part corresponding to the initial covector h2
10 + h2

20 > 0
has the following asymptotic behavior:

lim
t→∞

h1(t) = 0, lim
t→∞

h2(t) = 0, lim
t→∞

h3(t) = h31, lim
t→∞

h4(t) = h41, h2
31 + h2

41 = 1. (41)

5. Approach to the Boundary Value Problem

A geodesic on a sub-Riemannian manifold is a horizontal curve whose sufficiently
short arcs are length minimizers. In the optimal control formulation, SR geodesics are the
Pontryagin extremal trajectories. Note that PMP is only a necessary, but not sufficient, con-
dition for optimality. It is an infinite-dimensional analogy of the zero derivative condition
when minimizing a smooth function in Rn. One needs higher-order conditions to find the
minimum among all the critical points. The Pontryagin extremals are first-order candidates
for being optimal among all admissible trajectories of a control system. Sufficiently short
arcs of SR geodesics are optimal, since they satisfy the Legendre condition [48]. An extremal
trajectory loses optimality at a so-called cut point [47].

There are two types of Pontryagin extremals, called abnormal and normal. In the
previous section, we found an explicit expression for the abnormal extremals and derived
the Hamiltonian system (33) for the normal extremals in SIM(2). Note that the set of reach-
able end conditions for arbitrary time (the attainable set) by the abnormal extremals is a
one-dimensional subspace in the four-dimensional space SIM(2). In contrast, the attainable
set by the normal extremals is the entire group SIM(2), as we proved in Theorem 1.
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By varying the initial value of covector h(0) over the set C = {h ∈ R4 | H = 1}, we
obtain a three-parameter family of the normal extremals. Consider a so-called exponential
map Exp(h(0), t) : C → SIM(2), which maps the initial covector and the instance of
time t > 0 to the point γ(t) of the corresponding geodesic. It holds for general sub-
Riemannian manifolds that the exponential map is not injective. For example, consider the
initial covector h(0) = (0, 0, 1, 0), then the corresponding extremal trajectory is given by
θ(t) = Mod(t, 2π) (see (33)), which is periodic with a period 2π.

Cut points are singularities of the exponential map. There are typically two reasons
for a cut point [47]: a conjugate point (a point where the exponential map is degenerate),
and a Maxwell point (a point where two distinct geodesics meet at the same time). Finding
cut points is a hard mathematical problem, and its solution relies on explicit formulas
for the geodesics and analysis of symmetries of the exponential map. Thus, to solve the
boundary value problems (15) and (16) of finding a length minimizer between two given
configurations, one needs to restrict the preimage of the exponential map to the domain
corresponding to only optimal geodesics. Further, the shooting method can be applied.

6. Modeling of Association Field

The problem of contour completion (integration) by human visual system was inves-
tigated by psychophysicists. Gestalt laws have been proposed for several phenomena of
visual perception. Among them, the law of good continuation plays the central role for
perceptual completion. The principle of good continuation is found in the experiments of
Field, Hayes and Hess [51]. Those experiments have resulted in the notion of association
field, which describes the set of possible subjective contours starting from a given initial
configuration. The role of the scale in contour integration process was stressed in [52].

Inspired by Figure 16 in [51], we provide a simulation of association field by sub-
Riemannian geodesics in SIM(2) (see Figure 3). A remarkable property of this model is that
the further spatial propagation of the present geodesics does not appear with growing time,
which corresponds to Hypothesis 1. This gives a natural bound for the spacial distance
between given boundary configurations, which corresponds to the Field model.

Figure 3. Modeling of association field by sub-Riemannian geodesics in SIM(2). The spatial pro-
jections of the geodesics are depicted for the following initial covectors: h20 = h40 = 0; (h10, h30) ∈
{(±1, 0), (±0.93,±0.35), (±0.99,±0.11)}.

In Figure 4, we provide a simulation showing that the sub-Riemannian distance in
SIM(2) can be used as a criterion for perceptual grouping of the patterns with different
positions, orientations, and sizes. In this experiment, we show the points in SIM(2) that
are equidistantly (with the distance d = 0.1) distributed along the given three segments of
geodesics. They are plotted over the background consisting of points in SIM(2) on a regular
spatial (x, y) grid and with randomly chosen orientation θ ∈ S1 and the scale σ ∈ [0, 1.8].
The grid is constructed in a way to guarantee that the distance between the background
elements is greater than 0.18. One can see that the equidistantly distributed points are
grouped in contrast to the points in the background.

We performed the above simulations in Wolfram Mathematica by numerical integra-
tion of the normal Hamiltonian system (33). In the experiments, we relied on the local
properties of the exponential map. A further detailed study of the feasibility of SIM(2)
model for contour completion on real images requires software to solve a boundary value
problem, as discussed in Section 5. This will be a topic of our future research.
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Figure 4. Perceptual grouping of the elements in SIM(2) having small SR distance between them.
They are plotted over the background consisting of the elements located from each other on a
bigger distance.

7. Conclusions

In this paper, we considered the sub-Riemannian problem in the Lie group SIM(2) of
orientation-preserving similarity transformations of the plane. This problem arises when
modeling the mechanism of completing contours by the visual cortex. We considered
an extended Petitot–Citti–Sarti model, where the thickness of the contours is taken into
account. Based on the principle of minimum energy in the contour completion process, we
proposed a sub-Riemannian metric encoding the energy. We stated the contour completion
problem as the problem of finding a length-minimizer with given boundary conditions. We
reformulated the problem as a time-optimal problem. We proved a solution’s existence
and applied a necessary optimality condition: PMP. The Hamiltonian PMP system for the
geodesics was derived. We found explicit parameterization of abnormal trajectories and
provided a qualitative analysis of the normal Hamiltonian system. Finally, we presented
simulations on constructing the association field by sub-Riemannian geodesics in SIM(2).
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Nomenclature
R Set of real numbers.
Z Set of integer numbers.
S1 One dimensional sphere (a circle): S1 = R/2πZ.
SO(2) Lie group of rotations of the plane R2. This group is parameterized by angle θ ∈ S1.

SE(2)
Lie group of proper motions of the plane R2. This group is topologically equivalent to
the manifold R2 × S1 and parameterized by a vector of parallel translation (x, y) ∈ R2

and an angle θ ∈ S1.

SIM(2)
Lie group of orientation-preserving similarity transformations of the plane R2. Its
matrix representation is given by (1).

M Short notation for the Lie group SIM(2).
ω̃ Differential one form in SE(2) in the classic Petitot–Citti–Sarti model.

Ker
Kernel of a differential form. It is a linear space spanned by the vectors vanishing the
form.

∆̃ Distribution in T SE(2) in the classic Petitot–Citti–Sarti model.
g̃ Metric in SE(2) in the classic Petitot–Citti–Sarti model.
q Element of SIM(2).

(x, y)
The parameters of SIM(2): (x, y) ∈ R2 is a vector of parallel translation. In our model,
(x, y) are coordinates in image plane.

θ
The parameter of SIM(2): θ ∈ S1 is an angle of rotation. In our model, θ is the
orientation angle between the abscissa and the tangent vector to the contour.

σ
The parameter of SIM(2): σ ∈ R is a scaling parameter. In our model, eσ is the
thickness of the contour.

Id
Unit element of the group SIM(2). It is given unit matrix and corresponds to the
parameters values x = y = θ = σ = 0.

G The Gabor function, see (3).
I Image on the retinal plane.
O Lifted image in the extended space SIM(2), see (5).
Lq Left translation on element q ∈ SIM(2), see (A3).
Xi Left-invariant vector field on SIM(2), see (9)–(12).
ω Differential one form in SIM(2), see (7).
∆ Distribution in T SIM(2), see (8)
γ Horizontal curve in SIM(2), see (13).
l(γ) Sub-Riemannian length of a horizontal curve γ, see (14).
T Terminal time in the optimal control problem.
u The control vector.
ui i-th component of the control vector u.
U Set of admissible controls, see (28).

[·, ·]

Commutator (also known as Lie bracket). Commutator of two matrices Ai and Aj is
defined by [Ai, Aj] = Ai Aj − Aj Ai. Commutator of two vector fields Xi, Xj ∈ TM at a

point q ∈ M is defined by [Xi, Xj]q = ∂
∂s∂t

∣∣∣
t=s=0

e−tXi ◦ esXj ◦ etXi (q), where etX

denotes a flow generated by the vector field X, see [47].

sim(2)
Lie algebra of the Lie group SIM(2). This is a vector space sim(2) = TId SIM(2)
spanned by the basis vectors A1, . . . , A4, see (A4) for their matrix representation.

Lie Lie algebra generated by the given vector fields and all their commutators, see (18).
p Adjoint covector in the Darboux coordinates.
pi i-th component of the covector p.
h Adjoint covector in the left-invariant coordinates.

hi
Left-invariant Hamiltonian corresponding to the basis vector field Xi, see (19). hi is the
i-th component of the covector h.

hi0 Initial (for t = 0) value of hi.
hi1 Terminal (for t = T) value of hi.
Hu Pontryagin function, see (19).
Yi Right-invariant vector field.
gi Right-invariant Hamiltonian, see (34).
P Poisson bivector.
{·, ·} Poison bracket.
⟨·, ·⟩ Scalar product of a covector and a vector, ⟨∑ pi dxi, ∑ vi

∂
∂xi

⟩ = ∑ pivi.
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Abbreviations

The following abbreviations are used in this manuscript:

LGN lateral geniculate nucleus
RF receptive fields
V1 primary visual cortex
PMP Pontryagin maximum principle
SR sub-Riemannian

Appendix A. Construction of the Left-Invariant Distribution

The Lie group of orientation-preserving similarity transformations on the plane is

SIM(2) =

q =

eσ cos θ − eσ sin θ x
eσ sin θ eσ cos θ y

0 0 1

 ∣∣∣∣∣∣ (x, y) ∈ R2, θ ∈ S1, σ ∈ R

. (A1)

The basis vector fields associated with the coordinates (x, y, θ, σ) are given by

∂
∂x =

0 0 1
0 0 0
0 0 0

 , ∂
∂θ =

− eσ sin θ − eσ cos θ 0
eσ cos θ − eσ sin θ 0

0 0 0

 ,

∂
∂y =

0 0 0
0 0 1
0 0 0

 , ∂
∂σ =

eσ cos θ − eσ sin θ 0
eσ sin θ eσ cos θ 0

0 0 0

.

(A2)

Denote by Id the unit element, which is given by identity matrix and corresponds to
the origin, and denote by Lq the left translation on element q ∈ SIM(2), which is given by
matrix multiplication

Lqq′ = qq′. (A3)

The canonical basis for the Lie algebra sim(2) = TId SIM(2) is given by

A1 =

0 0 1
0 0 0
0 0 0

 , A2 =

0 0 0
0 0 1
0 0 0

 , A3 =

0 −1 0
1 0 0
0 0 0

 , A4 =

1 0 0
0 1 0
0 0 0

 . (A4)

Every left-invariant vector field is obtained by push-forward of a Lie algebra element
under the left translation. The basis left-invariant vector fields are defined as Xi(q) = Lq∗Ai
(see Figure A1). Explicitly, this construction is the following: Let γ(t) : R → SIM(2)
be a smooth curve such that γ(0) = Id, d

dt

∣∣∣
t=0

γ(t) = Ai. Then, Xi is given by Xi(q) =

d
dt

∣∣∣
t=0

Lq(γ(t)), or Xi(q) = qAi in matrix representation

X1(q) =

0 0 eσ cos θ
0 0 eσ sin θ
0 0 0

 , X3(q) =

− eσ sin θ − eσ cos θ 0
eσ cos θ − eσ sin θ 0

0 0 0

 ,

X2(q) =

0 0 − eσ sin θ
0 0 eσ cos θ
0 0 0

 , X4(q) =

eσ cos θ − eσ sin θ 0
eσ sin θ eσ cos θ 0

0 0 0

.

(A5)

Thus, we have

X1(q) = eσ
(

cos θ ∂
∂x + sin θ ∂

∂y

)
, X3(q) = ∂

∂θ ,

X2(q) = eσ
(
− sin θ ∂

∂x + cos θ ∂
∂x

)
, X4(q) = ∂

∂σ .
(A6)
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Figure A1. Construction of left-invariant vector fields. Here, γ is a smooth curve passing through the
unit element Id, Lq is the left translation on element q ∈ SIM(2), and A is the tangent vector of γ.
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